Федеральное государственное унитарное предприятие «ЦЕНТРАЛЬНЫЙ АЭРОГИДРОДИНАМИЧЕСКИЙ ИНСТИТУТ имени профессора Н.Е. Жуковского» ФГУП «ЦАГИ»

КОМПЛЕКС ИЗМЕРИТЕЛЬНО-ВЫЧИСЛИТЕЛЬНЫЙ СПЕЦИАЛИЗИРОВАННЫЙ ИВК М2М

МЕТОДИКА ПОВЕРКИ

МП 3.34.002-2017

Заместитель начальника НИО-7

А.И. Самойленко

Начальник сектора № 3 НИО-7

С.В. Дыцков

Ведущий специалист сектора №12

НИО-7

С.В. Дыцков

Г.В. Родзевич

А.В. Горячев

Инженер 1 кат. сектора № 3 НИО-7

А.В. Горячев

Содержание

1 ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ	3
2 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	5
3 ТРЕБОВАНИЯ ПО БЕЗОПАСНОСТИ	5
4 УСЛОВИЯ ПОВЕРКИ	6
5 ПОДГОТОВКА К ПОВЕРКЕ	ϵ
6 ПРОВЕДЕНИЕ ПОВЕРКИ	6
7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	44

Государственная система обеспечения единства измерений

Комплекс измерительно-вычислительный специализированный ИВК М2М

Методика поверки

Дата введения в действие:	«	>>	2018г.

Настоящая разработана соответствии положениями методика В c РМГ рекомендации межгосударственной стандартизации 51-2002 ПО «Государственная система обеспечения единства измерений. Документы на методики поверки средств измерений. Основные положения, распространяется на комплекс ИВК М2М (далее – «ИВК М2М») и устанавливает методику первичной и периодической поверки на аппаратуру.

Интервал между поверками – 1 год.

1 Операции и средства поверки

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

No	Наименование операции поверки	Номер пункта методики по-	Проведение операции при:		
п/п	Панменование операции поверки	верки	первичной поверке	периодичес- кой поверке	
1	Внешний осмотр	6.1	+	+	
	Модуль ADC6	6.2			
2	Опробование	6.2.1	+	+	
	Определение основной приведенной погрешности	6.2.2			
3	Модуль ADC УНЧ Опробование Определение основной приведенной погрешности Определение относительной погрешности от неравномерности амплитудно-частотной характеристики(АЧХ)	6.3 6.3.1 6.3.2 6.3.3	+	+	
4	Модуль ADC УПТ Опробование Определение основной приведенной погрешности Определение относительной погрешности от неравномерности AЧХ	6.4 6.4.1 6.4.2 6.4.3	+	+	
5	Модуль ADC64 Опробование Определение основной приведенной погрешности	6.5 6.5.1 6.5.2	+	+	
6	Модуль ADC32 Опробование Определение основной приведенной погрешности	6.6 6.6.1 6.6.2	+	+	

Продолжение таблицы 1

	МодульFDC16	6.7		
7	Опробование	6.7.1	+	+
	Определение основной приведенной погрешности	6.7.2		
	МодульRDC32	6.8		
8	Опробование	6.8.1	+	+
	Определение основной приведенной погрешности	6.8.2		
	Модуль IDC32	6.9		
9	Опробование	6.9.1	+	+
	Определение основной приведенной погрешности	6.9.2		
	Модуль RDC16	6.10		
10	Опробование	6.10.1	+	+
	Определение основной приведенной погрешности	6.10.2		
	Модуль DAC32	6.11		
11	Опробование	6.11.1	+	+
	Определение основной приведенной погрешности	6.11.2		

1.2 Используемые средства поверки перечислены в таблице 2.

Таблица 2

Тип модуля	Наименование средств поверки	Метрологические характеристики средств поверки	№ ри- сунка схем поверки			
1 ADC6	Калибратор К148	Диапазон выходного напряжения – от ± 2 до ± 100 мВ/В; КТ 0,01	6.2.1			
2 ADC УНЧ	Калибратор К3607	Диапазон выходного напряжения – от \pm 0,05 до \pm 10 мВ/В; КТ 0,025				
	Калибратор К148	Диапазон выходного напряжения – от ± 2 до ± 100 мВ/В; КТ 0,01	6.3.1			
	Генератор Г3-110	Диапазон измерения — от 0,01 до $2\cdot10^6$ Гц Основная погрешность установки частоты — $\pm 3\cdot10^{-6}$ Гц	6.3.2			
3 АДС УПТ	Вольтметр В78/1	тметр В78/1 Пределы измерения переменного напряжения — от 0,1 до 10 В. Диапазон частот — от 10 до $20\cdot10^3$ Гц. Основная погрешность — \pm 0,06 %·Uизм + 3 мВ				
	Мера электриче- ского сопротивле- ния Р3026-2	Диапазон измерений – от 0 до 10 ⁵ ; КТ 0,005				
4ADC64	Калибратор	Диапазон выходного напряжения – ± 32 В.	6.5.1			
5 ADC32	Fluke-9100E	Погрешность – ± 0,006 %·Uвых + 416 мкВ.	6.6,1			
6 FDC16	Генератор Г3-110	Диапазон измерения – от 0,01 до $2\cdot10^6$ Гц Основная погрешность установки частоты $-\pm 3\cdot10^{-6}$ Гц	6.7.1			
7 RDC32	Мера электриче- ского сопротивле- ния Р3026-2	Диапазон измерений – от 0 до 10 ⁵ ; КТ 0,005				

Продолжение таблицы 2

8 IDC 32	Калибратор	Диапазон выходного напряжения – ± 32 В,	
	Fluke-9100E	погрешность $-\pm 0,006$ % Uвых $+ 41,6$ мкВ. Диапазон выходного напряжения $-$ от нуля до 320 мВ, погрешность $-\pm 0,006$ % Uвых $+ 4,16$ мкВ. Диапазон выходных токов $-$ от 3,2 до 32,0 мА, погрешность $-\pm 0,014$ % Івых $+ 900$ пА	6.9.1 6.9.2 6.9.3
9 RDC16	Мера электриче- ского сопротивле- ния Р3026-2	Диапазон измерений – от 0 до 10 ⁵ ; КТ 0,005	6.10.1 6.10.2 6.10.3
10 DAC32	Вольтметр В78/1	Пределы измерения постоянного напряжения — \pm 10 В. Основная погрешность — \pm 0,0035 % \cdot U _{нзм} + 50 мкВ.	6.11.1

Примечание – Допускается применять средства поверки, не приведенные в перечне, но обеспечивающие определение (контроль) метрологических характеристик поверяемых средств измерений с требуемой точностью.

- 1.2 При получении отрицательного результата любой из операций по таблице 1 к дальнейшей поверке не допускают аппаратуру и последующие операции не проводят, за исключением оформления результатов по п.6.2.
- 1.3 Допускается поверять «ИВК М2М» на диапазонах и каналах, которые необходимы в процессе эксплуатации владельцу аппаратуры. При этом в протоколе и свидетельстве о поверке необходимо сделать соответствующую запись.

2 Требования к квалификации поверителей

- 2.1 В качестве персонала, выполняющего поверку, допускаются лица с высшим образованием и (или) дополнительным профессиональным образованием в области обеспечения единства измерений в части проведения поверки средств измерений.
- 2.2 Персонал, выполняющий поверку, должен иметь опыт практической работы со средствами измерений электрических и магнитных величин.
- 2.3 К работам по поверке допускаются лица, ознакомившиеся с эксплуатационной документацией на «ИВК М2М» и прошедшие инструктаж по технике безопасности и безопасной работе с электрооборудованием напряжением до 1000 В.

3 Требования по безопасности

- 3.1 Помещения, в которых располагается «ИВК М2М», средства измерений и другие технические средства, должны соответствовать требованиям, изложенным в ПОТ РМ-016-2001.
- 3.2 При проведении поверки в помещении, где располагается «ИВК М2М» средства измерений и другие технические средства, персоналу, участвующему в

поверке надлежит соблюдать требования безопасности, указанные в следующих документах:

- эксплуатационная документация «ИВК М2М», используемого оборудования и средств поверки;
- инструкции по охране труда при эксплуатации ПЭВМ и другого оборудования вычислительной техники;
- Правила пожарной безопасности в РФ ППБ 01-03, утвержденные приказом от 18 июня 2003 года № 313.

4 Условия поверки

4.1 При проведении поверки должны соблюдаться следующие условия:

от 15 до 25
от 30 до 80
от 84 до 106
от 198 до 242
50 ± 1
250, не более
100, не более

4.2 **В**оздух в помещении не должен содержать вредных примесей и газов, вызывающих коррозию элементов «ИВК М2М».

5 ПОДГОТОВКА К ПОВЕРКЕ

5.1 Для проведения поверки необходимо:

- собрать схему поверки измерительного модуля в комплексе ИВК в соответствии с п.п. таблицы 2;
 - выполнить заземление всех приборов.

5.2 Меры предосторожности

Так как модули выполнены на элементах с КМОП-структурой, то возможно их повреждение статическим электричеством, поэтому следует:

- перед работой с модулем необходимо коснуться заземленного металлического предмета или надеть заземляющий браслет;
- при распаковке и работе с элементами платы все материалы должны находиться на антистатической поверхности;
- запрещается во время эксплуатации вставлять и вынимать изделие из крейта при включенном питании.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре необходимо проверить:

- комплектность модулей ИВК, указанную в формуляре;

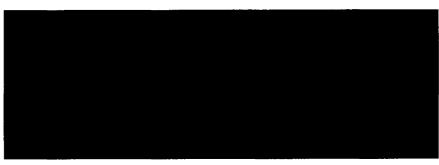
- отсутствие механических повреждений корпусов модулей и ИВК;
- наличие маркировки на передней панели модуля с указанием базового адреса модуля;
 - исправность входных кабелей и разъемов;
- отсутствие затруднений при установке поверяемого модуля в корпус ИВК (при выключенном питании);
 - наличие надежного контакта для заземления.

При обнаружении дефектов поверку не проводят и комплекс бракуют. Идентификацию программного обеспечения (далее – ПО) ИВК М2М утвержденному типу проводят по следующей методике:

— проверка названия и номера версии программного обеспечения осуществляется методом сравнения с идентификационными признаками, указанными в технической документации. Проверка названия ПО осуществляется путем сравнения названия, указанного в технической документации, с названием, которое отображается в левом верхнем углу главного окна программы.

Номер версии пользователь может посмотреть в контекстном меню программы. На вкладке "Подробнее" в графе версия продукта. Вызов контекстного меню осуществляется однократным щелчком правой кнопки мыши на ярлыке программы.

– проверка цифрового идентификатора программного обеспечения осуществляется путем расчета контрольных сумм (хэш-кодов) исполняемых файлов в форматах MD5 и CRC32. Расчет производится с помощью программного обеспечения, имеющего функцию расчета контрольных сумм в форматах MD5 и CRC32, например, ПО Total Commander.


6.2 Модуль АВС6

Назначение модуля – измерение с высокой точностью напряжения с выхода тензометрических мостов с питанием постоянным напряжением.

6.2.1 Опробование

При опробовании необходимо выполнить проверку функционирования каналов модуля ADC6 в составе ИВК.

6.2.1.1 Собрать схему поверки первого канала модуля в соответствии с рисунком 6.2.1.

Рисунок 6.2.1 – Схема поверки модуля АДС6

- 6.2.1.2 Установить на модуле напряжение питания мостов $U_{\rm M} = 5~{\rm B}.$
- 6.2.1.3 Включить в сеть ИВК и рабочий эталон (тензокалибратор К148) и прогреть их в течение одного часа.

Настроить режимы работы каналов:

- напряжение питания мостов Uм,В
 5;
- верхний предел измеряемой величины Uн, мВ/В2;
- частота режекции фильтра нижних частот Fcp, Гц
 10.

Задать с тензокалибратора К148 на вход первого канала модуля последовательно значения $U_{\rm H}$ равными плюс 1,8 мВ/В и минус 1,8мВ/В и провести измерения.

- 6.2.1.4 Результат опробования считается удовлетворительным, если данные измерения не отличаются от номинальных значений больше, чем на $\pm\,0.05\%\,$ для верхнего предела измерения $U_H = \pm\,2$ мВ/В. Если это условие не выполняется, канал бракуют.
- 6.2.1.5 Провести опробование остальных каналов модуля по методике п.п. 6.2.1.1-6.2.1.4.
- 6.2.2 Определение основной приведенной погрешности каналов модуля ADC6
- 6.2.2.1 Подключить калибратор К148 ко входу первого канала модуля АДС6 в соответствии с рисунком 6.2.1.
- 6.2.2.2 Задать от калибратора значения, указанные в таблице 6.2.1 и провести измерения.

Таблица 6.2.1

Верхний предел измерений, мВ/В, (U _м = 5 В)		Номинальные значения входных сигналов Ujн, мВ/В									
± 2	1,8	1,6	1,2	0,8	0,4	0	-0,4	-0,8	-1,2	-1,6	-1,8
± 5	4,5	4	3	2	1	0	-1	-2	-3	-4	-4,5
±10	9	8	6	4	2	0	-2	-4	-6	-8	-9
±20	18	16	12	8	4	0	-4	-8	-12	-16	-18
±50	45	40	30	20	10	0	-10	-20	-30	-40	-45
±100	90	80	60	40	20	0	-20	-40_	-60	80	-90

6.2.2.3 Значение основной приведенной погрешности определяется из выражения:

$$\gamma \le \pm (\Delta / U_{H}) \cdot 100 \%, \qquad (6.2.1)$$

где $\Delta = (U_{jизм} - U_{jH})$, мB/B — абсолютная погрешность измерения;

ј – номер поверяемой точки на диапазоне измерений;

Ujн, мВ/В – номинальное значение входного сигнала в точке j;

Uјизм, мB/В – измеренное значение входного сигнала;

γ – основная приведенная погрешность каналов измерения, %;

Uн, мВ/В – нормирующее значение измеряемой величины, равное верхнему пределу измерений.

- 6.2.2.4 Провести поверку остальных каналов модуля ADC6 по п.п.6.2.2.1 6.2.2.3.
- 6.2.2.5 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения ± 0.03 %. При погрешности, превышающей значение ± 0.03 %, канал модуля ADC6 бракуют.
- 6.2.2.6 Протокол с результатами поверки каждого канала модуля выводится в конце измерений в форме таблицы 6.2.2.

Таблица 6.2.2

Номер измери- тельного канала	Верхний предел из- мерений Uн, мВ/В	Номинальное значение входного сигнала Ujн, мВ/В	Измеренное значение входного сигнала Uјизм, мВ/В	Абсолютная погрешность измерения $\Delta = \pm \text{ (Uјизм - Uјн)}, \text{ мВ/В}$	Основная приведенная погрешность ± у %

- 6.2.2.7 Определить основную приведенную погрешность первого канала модуля для верхнего предела измерений $U_H = \pm 1$ мB/B ($U_M = 10$ B).
 - 6.2.2.8 Установить напряжение питания мостов на модуле $U_M = 10 \ B.$
- 6.2.2.9 Задать от калибратора значения напряжений, указанные в таблице 6.2.3 и провести измерения.

Таблица 6.2.3

Верхний предел измерений, мВ/В, $(U_{M} = 10B)$		Номинальные значения входных сигналов Ujн, мВ/В										
± 1	1,0	0,8	0,6	0,4	0,2	0	-0,2	-0,4	-0,6	-0,8	-1,0	
± 2	1,8	1,6	1,2	0,8	0,4	0	-0,4	-0,8	-1,2	-1,6	-1,8	
±5	4,5	4,0	3,0	2.0	1,0	0	-1,0	-2,0	-3,0	-4,0	-4,5	
±10	9	8	6	4	2	0	-2	-4	-6	-8	-9,0	
±20	18	16	12	8	4	0	-4	-8	-12	-16	-18	
±50	45	40	30	20	10	0	-10	-20	-30	-40	-45	
±100	90	80	60	40	20	0	-20	-40	-60	-80	-90	

6.2.2.10 Значение основной приведенной погрешности определяется из выражения (6.2.1) п. 6.2.2.3.

- 6.2.2.11 Провести поверку остальных каналов модуля ADC6.
- 6.2.2.12 Протокол с результатами поверки каждого канала модуля выводится в конце измерений в форме таблицы 6.2.2.
- 6.2.2.13 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения ± 0.03 %.При погрешности, превышающей значение ± 0.03 %, канал модуля ADC6 бракуют.

6.3 Модуль АВС УНЧ

Назначение модуля – измерение сигналов тензорезисторных и индуктивных преобразователей силы, давления, перемещения с питанием преобразователей синусоидальным напряжением несущей частоты.

6.3.1 Опробование

При опробовании необходимо выполнить проверку функционирования модуля ADC УНЧ в составе ИВК.

6.3.1.1 Собрать схему поверки модуля в соответствии с рисунком 6.3.1.

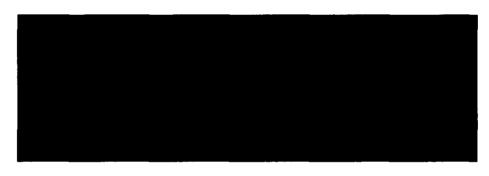


Рисунок 6.3.1 –Схема поверки модуля АДС УНЧ

- 6.3.1.2 Включить в сеть ИВК и рабочий эталон (тензокалибратор К3607) и прогреть их в течение одного часа. Установить на калибраторе напряжение, равным нулю.
 - 6.3.1.3 Настроить режимы работы каналов:
 - напряжение питания мостов, В
 значение несущей частоты, кГц
 верхний предел измеряемой величины Uн, мВ/В
 частота среза фильтра нижних частот Fcp, Гц
 500;
- компенсировать начальный разбаланс канала, используя органы балансировки «R» и «С».
- 6.3.1.4 Задать с тензокалибратора K3607 на вход канала модуля последовательно значения UH, равными ± 1 мВ/В и произвести их измерения. Результат опробования считается удовлетворительным, если данные измерения не отличаются от номинальных значений больше, чем на 0.5 % для верхнего предела измерения UH = ± 1 мВ/В. Если это условие не выполняется, канал бракуют.

Примечание — Для получения отрицательных значений измеряемого сигнала необходимо переключателем «+», «-» на калибраторе К3607 сменить фазу несущей частоты на 180° .

- 6.3.1.5 Повторить операции п.п. 6.3.1.3 6.3.1.5 для опробования канала АДС УНЧ, установив режимы работы модуля:
 - напряжение питания мостов, В

10;

- значения несущей частоты, кГц

10, 20.

- 6.3.2 Определение основной приведенной погрешности
- 6.3.2.1 Подключить калибратор К3607 ко входу канала модуля АДС УНЧ в соответствии с рисунком 6.3.1.
 - 6.3.2.2 Настроить режимы работы АДС УНЧ по п. 6.3.1.4.
- 6.3.2.3 Задавать последовательно от калибратора К3607 значения, указанные в таблице 6.3.1 и провести измерение для выбранного предела измерений.

Таблица 6.3.1

Верхние пределы входных напряжений Uн, мВ/В, (U _м = 5 В)		Номинальные значения входных сигналов Ujн, мВ/В									
± 1	0,9	0,8	0,6	0,4	0,2	0	-0,2	-0,4	-0,6	-0,8	-0,9
± 2	1,8	1,6	1,2	0,8	0,4	0	-0,4	-0,8	-1,2	-1,6	-1,8
± 4	4	3	2	1	0,5	0	-0,5	-1	-2	-3	-4
± 8	8	6	4	2	1	0	-1	-2	-4	-6	-8

6.3.2.4 Основная приведенная погрешность у определяется из формулы:

$$\gamma \le \pm (\Delta / U_{H}) \cdot 100 \%, \qquad (6.3.1)$$

где $\Delta = (U_{jизм} - U_{jн})$, мВ/В – абсолютная погрешность измерения;

ј – номер поверяемой точки на диапазоне измерений;

Ujн, мВ/В – номинальное значение входного сигнала в точке j;

Ujизм, мВ/В – измеренное значение входного сигнала в точке j;

 γ – основная приведенная погрешность каналов измерения, %;

 U_{H} , мB/B — нормирующее значение измеряемой величины, равное верхнему пределу измерений.

- 6.3.2.5 Значение основной приведенной погрешности γ не должно превышать ± 0.5 %.
- 6.3.2.6 Определить основную приведенную погрешность на остальных пределах измерения модуля ADC УНЧ, задавая значения входного сигнала, приведенные в таблице 6.3.1. В качестве нормирующего применяется значение верхнего предела измерения. Данные измерения после обработки заносятся в таблицу вида 6.3.3.

- 6.3.2.7 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,5 %. При погрешности, превышающей значение \pm 0,5 %, канал модуля ADC УНЧ бракуют.
- 6.3.2.8 Установить напряжение питания мостов равным $10\,\mathrm{B}$ и частоту несущей последовательно 10 и 20 кГц и повторить операции п.п. 6.3.2.3-6.3.2.5.

Верхние пределы для напряжения питания мостов Uм = 10 В приведены в таблице 6.3.2.

Таблица 6.3.2

Верхние пределы входных напряжений, Uн, мВ/В, (U _м = 10в)			Номин	чальные	значени	я входн	ых сигн	алов Ujн	ı , мВ/В		,
±0,5	0,45	0,4	0,3	0,2	0,1	0	-0,1	-0,2	-0,3	0,4	<u>-0,4</u>
± 1	0,9	0,8	0,6	0,4	0,2	0	-0,2	-0,4	-0,6	-0,8	-0,9
± 2	1,8	1,6	1,2	0,8	0,4	0	-0,4	-0,8	-1,2	-1,6	-1,8
± 4	4	3	2	1	0,5	0	-0,5	-1_	-2	-3	_4

6.3.2.9 Протокол с результатами поверки канала модуля выводится в конце измерений в форме таблицы 6.3.3.

Таблица 6.3.3

	Частота несущей	F _H = кГц,	Напряжение питания мостов U _м = В				
Номер измери- тельного канала	Верхний предел Номинальное измеряемых значение		Измеренное значение входного сиг- нала Uјнзм, мВ/В	Абсолютная погрешность измерения $\Delta = \pm \text{ (U}_{\text{јизм}} - \text{U}_{\text{јн}}\text{)},$ мВ/В	Основная приведенная погрешность $\pm \gamma,\%$		

- 6.3.2.10 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,5 %. При погрешности, превышающей \pm 0,5 %, канал модуля ADC УНЧ бракуют.
- 6.3.3 Определение относительной погрешности $\delta_{\text{Ч}}$ от неравномерности амплитудно-частотной характеристики (AЧX) модуля ADC УНЧ
 - 6.3.3.1 Собрать схему поверки в соответствии с рисунком 6.3.2.

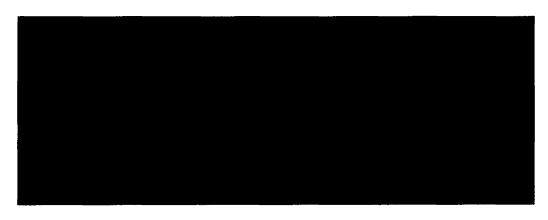


Рисунок 6.3.2 — Схема для определения относительной погрешности δ ч от неравномерности амплитудно-частотной характеристики (AЧX) модуля АДС УНЧ. R1, R2 — резисторы типа C2-29 A — 0.125 Bt — 10 кОм \pm 0.05 %. R3 — магазин сопротивлений МСР-63, класс точности — 0.02. R3 = 0.03187 кОм

6.3.3.2 Установить на модуле:

частоту несущей Fн, кГц

5;

– верхний предел измерения Uн, мВ

5;

- частоту среза фильтра ФНЧ Гср, Гц

- 500.
- 6.3.3.3 Установить на выходе генератора напряжение 2,000 В (эффективное) с частотой $F_{r3} = 5$ к Γ ц. Напряжение с выхода делителя U = 4,5 мB (амплитудное).
- 6.3.3.4 Регулируя частоту генератора в области частот близких к $F_H = 5$ к Γ ц, добиться на выходе канала напряжения с частотой, близкой к нулю по форме выходного сигнала, наблюдаемого на мониторе.
- 6.3.3.5 Последовательно изменять частоту генератора F_{r3} сначала в сторону увеличения $F_{r3} = F_H + \Delta F$, а затем в сторону уменьшения относительно несущей частоты $F_{r3} = F_H \Delta F$ в пределах частоты среза фильтра $F_{cp} = 500$ Гц. Провести измерения входного напряжения при каждом значении ΔF .

Значения разности частот $\pm \Delta F$ в полосе пропускания фильтра приведены в таблице 6.3.4.

Таблица 6.3.4

+ ΔF (Γιι)	25	50	100	200	250	300	350
Uj(+) мВ (ампл)							
- ΔF (Γц)	25	50	100	200	250	300	350
Uj(-) мВ (ампл)							

6.3.3.6 Определить относительную погрешность $\delta_{\text{ч}(+)}$, $\delta_{\text{ч}(-)}$ от неравномерности AЧX по формуле 6.3.2 при каждом значении $\pm \Delta F$ в полосе пропускания фильтра из выражений:

$$\delta_{u(+)} = \frac{U_{j(+)} - U_{j(+)0,1F_{cp}}}{U_{j(+)0,1F_{cp}}} \times 100\%, \quad \delta_{u(-)} = \frac{U_{j(-)} - U_{j(-)0,1F_{cp}}}{U_{j(-)0,1F_{cp}}} \times 100\%$$
 (6.3.2)

где $\delta_{\text{ч}(+)}$, $\delta_{\text{ч}(-)}$ — значения относительной погрешности от неравномерности АЧХ при $F_{\text{г3}} > F_{\text{н}}$ и $F_{\text{г3}} < F_{\text{н}}$;

 $U_j(+);$ $U_j(-);$ $U_j(+)0,1$ Fcp; $U_j(-)0,1$ Fcp — значения напряжений, измеренных соответственно при значениях $\pm \Delta F$, приведенных в таблице 6.3.4 и $\pm \Delta F = 0,1$ Fcp = 50 Γ ц.

Определить относительную погрешность δ_{4} от неравномерности АЧХ модуля АДС УНЧ из выражения 6.3.3. Результаты занести в протокол по форме таблицы 6.3.5.

$$\delta_{\rm H} = 0.5 \left[\delta_{\rm H}(+) + \delta_{\rm H}(-) \right] \%$$
 (6.3.3)

Таблица 6.3.5

ΔF (Γц)	25	50	100	200	250	300	350
δч(+)							
δч(-)							
δч				_			

6.3.3.7 Повторить измерения по п.п. 6.3.3.3-6.3.3.5 для частот среза ФНЧ Fcp равных 1000 и 2000 Гц. Выбор значения разностной частоты ΔF произвести в зависимости от частоты среза Fcp, $\Delta F = \pm (0,1; 02; 0,3; 0,4; 0,5; 0,6; 0,7)$ Fcp. Частоту среза 5000 Гц устанавливают при частоте несущей 20 кГц. Определение погрешности от неравномерности АЧХ производить по п.6.3.3.6. Результаты измерения оформить в протоколы по форме таблицы 6.3.4.

Таблица 6.3.6

+ ΔF (Γμ)	0,1Fcp	0,2Fcp	0,3Fcp	0,4Fcp	0,5Fcp	0,6Fcp	0,7Fcp
Uj(+) мВ (ампл)							
– ΔF (Γц)	0,1Fcp	0,2Fcp	0,3Fcp	0,4Fcp	0,5Fcp	0,6Fcp	0,7Fcp
Uj(-) мВ (ампл)							

- 6.3.3.8 Значение относительной погрешности δ_{4} от неравномерности AЧX не должно превышать значений $\delta_{4}=\pm3$ % до частоты среза 0.5 Fcp и ±7 % до частоты среза 0.7 Fcp.
- 6.3.3.9 Определить погрешность от неравномерности АЧХ, повторив измерения по п.п. 6.3.3.3 6.3.3.7, для частот среза фильтра F_{cp} равными 500; 1000; 2000 и 5000 Γ_{U} , установив последовательно несущую частоту F_{H} равными 10 и 20 к Γ_{U} . Частоту среза фильтра 5000 Γ_{U} устанавливают при частоте несущей 20 к Γ_{U} .
- 6.3.3.10 Если измерения на всех каналах удовлетворяют требованиям пункта 6.3.3.8, то результаты поверки считаются положительными.

6.4 Модуль АВС УПТ

Назначение модуля — измерение напряжения в широкой полосе частот с выхода тензометрических мостов с питанием постоянным напряжением.

6.4.1 Опробование

При опробовании необходимо выполнить проверку функционирования модуля ADC УПТ в составе ИВК.

6.4.1.1 Собрать схему поверки модуля в соответствии с рисунком 6.4.1

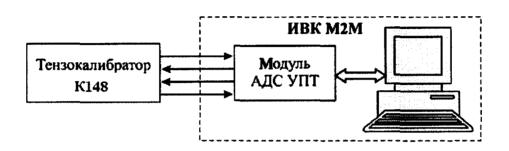


Рисунок 6.4.1 – Схема поверки модуля АДС УПТ

6.4.1.2 Включить ИВК и тензокалибратор и прогреть их в течение одного часа.

6.4.1.3 Установить на модуле АДС УПТ:

 верхний предел измерения Uн, мВ/В 	1;
- напряжение питания мостов, В	5;
 программируемый коэффициент усиления Ка 	10;
 полосу пропускания модуля F, кГц 	100;
 фиксированный коэффициент усиления Кф 	50;
– смешение нуля, мВ	0.

Примечание — выбор значения напряжения питания тензомостов и соотношения фиксированного и программируемого коэффициентов усиления для определения пределов измерения приведен в Руководстве по эксплуатации на модуль АДС УПТ — М1555.110.00РЭ.

6.4.1.4 Установить на модуле режим «Измерение»:

- сбалансировать канал;
- задать с тензокалибратора К148 на вход канала модуля последовательно значения U_{BX} равными 0,9 мВ/В, нуль и минус 0,9 мВ/В, где $U_{H} = 2$ мВ/В нормирующее значение входного сигнала на выбранном пределе измерения.

Величина измеренного выходного сигнала не должны отличаться от заданных значений, больше чем на ± 0.5 %.

- 6.4.2 Определение основной приведенной погрешности модуля ADC УПТ
 - 6.4.2.1 Выполнить подготовку к измерениям согласно п.п. 6.4.1.1 6.4.1.3.

6.4.2.2 Выбрать верхний предел измерения равным 1 мВ/В, сбалансировать канал, задать с тензокалибратора значения сигнала, указанные в таблице 6.4.1 и провести измерения.

Таблица 6.4.1

Верхний предел измерения, мВ/В, (U _л = 5 В)			Ном	инальні	ые значе	жи я в хс	одных си	гналов,	мВ/В		
1	0,9	0,8	0,6	0,4	0,2	0	-0,2	-0,4	-0,6	-0,8	-0,9

Данные измерений после обработки занести в таблицу 6.4.2.

Таблица 6.4.2

Номер измери- тельного модуля АДС УПТ	Верхний предел из- мерения Uн, мВ/В	Номинальное значение выходного сигнала U _j н, мВ/В	Измеренное значение входного сигнала Uj, мВ/В	Абсолютная погрешность измерения $\Delta = \pm \text{ (Uјизм-Uјн),}$ мВ/В	Основная приведенная погрешность $\pm \gamma \%$

6.4.2.3 Определить основную приведенную погрешность
$$\gamma$$
 из формулы: $\gamma = (\Delta / U_H) \cdot 100 \%$, (6.4.1)

где $\Delta = \pm (U_{jизм} - U_{jн})$, мВ/В – абсолютная погрешность измерения;

Ujн, мВ/В – номинальное значение выходного сигнала;

Uj, мВ/В – измеренное значение выходного сигнала;

ј – номер измеренного значения входного сигнала;

Uн, мВ/В — нормирующее значение измеряемой величины, равное верхнему пределу измерений указанное в таблице 6.4.1.

- 6.4.2.4 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,5 %. При погрешности, превышающей значение \pm 0,5 %, канал модуля ADC УПТ бракуют.
- 6.4.2.5 Определить основную приведенную погрешность на остальных пределах измерения модуля ADC УПТ, задавая значения входного сигнала, приведенные в таблице 6.4.3. В качестве нормирующего сигнала применяется значение верхнего предела измерений. Данные измерения после обработки заносятся в таблицу вида 6.4.2.

Таблица 6.4.3

Верхний предел измерения, мВ/В, $(U_{M} = 5 \text{ B})$		Номинальные значения входных сигналов, мВ/В									
±2	1,8	1,6	1,2	0,8	0,4	0	-0,4	-0,8	-1,2	-1,6	-1,8
± 5	4,5	4	3	2	1	0	-1	-2	-3	-4	-4,5
±10	9	8	6	4	2	0	-2	-4	-6	-8	-9
±20	18	16	12	8	4	0	-4	-8	-12	-16	-18
±50	45	40	30	20	10	0	-10	-20	-30	-40	45
±100	90	80	60	40	20	0	-20	-40	-60	-80	-90

6.4.2.6 Установить на модуле напряжение питания мостов $U_M = 10$ В. Определить основную приведенную погрешность на верхних пределах измерения, указанных в таблице 6.4.4, по методике, приведенной в $\pi.6.4.2.3$.

Таблица 6.4.4

Верхний предел измерения, мВ/В, (U _м = 10 В)		Номинальные значения входных сигналов, мВ/В									
±1	1,0	0,8	0,6	0,4	0,2	0	-0,2	-0,4	-0,6	-0,8	-1,0
±2	1,8	1,6	1,2	0,8	0,4	0	-0,4	-0,8	-1,2	-1,6	-1,8
± 5	4,5	4	3	2	1	0	-1	-2	-3	-4	-4,5
±10	9	8	6	4	2	0	-2	-4	-6	-8	-9
±20	18	16	12	8	4	0	-4	-8	-12	-16	-18
±50	45	40	30	20	10	0	-10	-20	-30	-40	-45
±100	90	80	60	40	20	0	-20	-40	-60	-80	-90

- 6.4.2.7 Результаты поверки считаются удовлетворительными, если они соответствуют требованиям п.6.4.2.3 и 6.4.2.4.
- 6.4.3 Определение относительной погрешности от неравномерности амплитудно-частотной характеристики (АЧХ) модуля ADC УПТ

6.4.3.1 Собрать схему поверки в соответствии с рисунком 6.4.2.

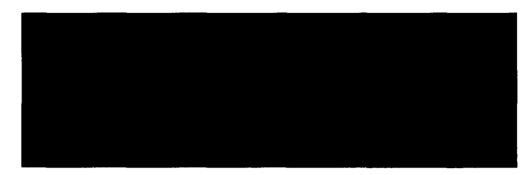


Рисунок 6.4.2— Схема определения относительной погрешности δ чот неравномерности амплитудно-частотной характеристики (AЧX) модуля АДС УПТ. R1, R2 — резисторы типа C2-29 A — 0,125 Bт — 10 кОм \pm 0,05 %. R3 — магазин сопротивлений МСР-63, класс точности — 0,02. R3 = 0,03187 кОм

6.4.3.2 Установить параметры модуля АДС УПТ по п 6.4.1.3. Задать на вход делителя напряжения с генератора Г3-110 переменное напряжение 2 В (эффективное) в диапазоне частот от 0,020 до 135 кГц на фиксированных частотах, приведенных в таблице 6.4.3 и зарегистрировать измеренное напряжение $U_{jизм}$. Напряжение с выхода делителя напряжения определяется как 0,9 $U_H = 4,5 \text{ мB}$ (амплитудное).

Таблица 6.4.3

F, кГц	0,020	0,200	1,00	5,00	10,0	20,0	40,0	60,0	80,0	100,0	135,0
Uj, мВ (ампл)											

6.4.3.3 Определить относительную погрешность от неравномерности AЧX по формуле:

$$\delta_{_{q}} = \frac{U_{_{fH3M}} U_{_{fH3M}1,0 \kappa fq}}{U_{_{fH3M}1,0 \kappa fq}} \cdot 100 \% , \qquad (6.4.2)$$

где $\delta_{\text{ч}}$ – относительная погрешность от неравномерности AЧX;

 $U_{јизм}$; $U_{јизм}$ 1,0 к Γ ц — соответственно напряжение, измеренное на частотах, указанных в таблице 6.4.3. В качестве нормирующего напряжения следует брать напряжение, измеренное на частоте 1 к Γ ц.

Максимальная погрешность от неравномерности АЧХ должна быть не более 20% – на частоте 100 к Γ ц и не более 30% – на частоте 135 к Γ ц.

6.4.3.4 Повторить измерения по п.п. 6.4.3.1 для частот среза встроенного ФНЧ модуля ADC УПТ $F_{cp} = 1$; 5; 10; 20 к Γ ц. Выбор частоты входного напряжения с генератора производить в зависимости от частоты среза фильтра нижних частот $F_{\Gamma 3} = (0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7)$ F_{cp} . Определение погрешности от неравномерности AЧX производить как в п.п. 6.4.3.2 относительно измеренного

значения напряжения $U_{jизм}$ на частоте $F_r = 0,1$ F_{cp} . Результаты измерения занести в таблицу 6.4.4.

Значение относительной погрешности $\delta_{\rm q}$ от неравномерности AЧX модуля ADC УПТ при работе с фильтром нижних частот не должно превышать на всех частотах $\delta_{\rm q}=\pm3$ % — до частоты среза фильтра 0,5 Fcp и не более ±5 % — до частоты среза 0,7 Fcp.

6.4.3.5 Если измерения на всех каналах удовлетворяют требованиям пункта 6.4.3.2, то результаты поверки считаются положительными.

Таблица 6.4.4

	Частота среза фильтра Fcp =									
Частота Fг, кГц	Измеренное значение Uјизм, В (ампл)	Относительная погрешность от неравномерности АЧХ, ± δч,%								
0,1Fcp										
0,2Fcp										
0,3Fcp										
0,4Fcp										
0,5Fcp										
0,6Fcp										
0,7Fcp										

6.5 Модуль АВС64

Назначение модуля — измерение напряжений с источников сигналов с однополюсным и дифференциальным выходами.

6.5.1 Опробование

При опробовании необходимо выполнить проверку функционирования каналов модуля ADC64 в составе ИВК.

- 6.5.1.1 Опробование каналов модуля ADC64 с однополюсным входом
- 6.5.1.1.1 Собрать схему поверки первого канала первого мезонина модуля в соответствии с рисунком 6.5.1а для однополюсного включения (32 канала на каждом из двух мезонинов). Включить в сеть ИВК и рабочий эталон калибратор FLUKE-9100E и прогреть их в течение одного часа.

Рисунок 6.5.1a— Схема опробования и поверки канала модуля ADC64 с однополюсным входом

- 6.5.1.1.2 Задать от калибратора FLUKE-9100E на вход поверяемого канала модуля последовательно значения напряжения U_{Bx} , равными плюс 0.9 UH, нуль и минус 0.9 UH, где UH = \pm (10; 5; 2; 1) В нормирующее значение входного напряжения на выбранном пределе измерения.
- 6.5.1.1.3 Выполнить опробование остальных каналов модуля на каждом из двух мезонинов.
- 6.5.1.1.4 Результат опробования считается удовлетворительным, если значения измеренного напряжения отличаются от номинальных значений меньше, чем на ± 0.03 %.
- 6.5.1.2 Опробование каналов модуля ADC64 с дифференциальным входом
- 6.5.1.2.1 Собрать схему поверки первого канала первого мезонина модуля в соответствии с рисунком 6.5.1б для дифференциального включения (16 каналов на каждом из двух мезонинов). Включить в сеть ИВК и рабочий эталон калибратор FLUKE-9100E и прогреть их в течение одного часа.

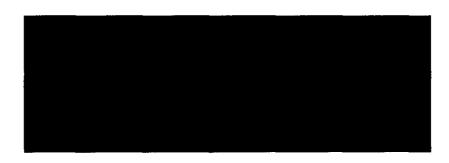


Рисунок 6.5.1б – Схема опробования и поверки канала модуля ADC64 с дифференциальным входом

- 6.5.1.2.2 Задать от калибратора FLUKE-9100E на вход поверяемого канала модуля последовательно значения напряжения U_{Bx} , равными плюс 0,9 U_{H} , нуль и минус 0,9 U_{H} В, где $U_{H} = \pm (10; 5; 2; 1)$ В нормирующее значение входного напряжения на выбранном пределе измерения.
- 6.5.1.2.3 Выполнить опробование остальных каналов на каждом из двух мезонинов модуля.
- 6.5.1.2.4 Результат опробования считается удовлетворительным, если значения измеренного напряжения отличаются от заданных значений меньше, чем на ± 0.03 %.

- 6.5.2 Определение основной приведенной погрешности
- 6.5.2.1 Определение основной приведенной погрешности каналов модуля ADC64 с однополюсным входом
- 6.5.2.1.1 Собрать схему измерения для первого канала первого мезонина в соответствии с рисунком 6.5.1a. Установить на модуле верхний предел измерений $U_H = \pm 1.0 \ B$.
- 6.5.2.1.2 Подать на вход канала от калибратора FLUKE-9100E напряжения, значения которых устанавливают в последовательности, указанной в таблице 6.5.1, и произвести их измерение.

Таблица 6.5.1

Uн , В		Номина	льные значе	ния входног	о напряжени	ıя Ujн, B	
± 1,0	0,900	0,600	0,300	0,000	- 0,300	- 0,600	- 0,900

6.5.2.1.3 Основная приведенная погрешность измерения у определяется из формулы:

$$\gamma = \pm (\Delta / U_{H}) \cdot 100 \%$$
, (6.5.1)

где $\Delta = \pm (U_{j \text{изм}} - U_{j \text{и}})$, В– абсолютная погрешность измерения;

Ujн, B – номинальное значение входного напряжения;

Ujнзм, В- измеренное значение входного напряжения;

J – номер поверяемой точки на диапазоне измерений;

Uн, B – нормирующее значение входного напряжения;

Предел допускаемой основной приведенной погрешности каналов измерения напряжения $\gamma = \pm 0.03$ %.

6.5.2.1.4 Повторить измерения п.п. 6.5.2.1.1 - 6.5.2.1.3 на остальных пределах измерения, устанавливая номинальные значения в соответствии с таблицей 6.5.2.

Таблица 6.5.2

Uн, В	Номинальные значения входного напряжения Ujн, В							
± 2,0	1,800	1,200	0,600	0,000	- 0,600	- 1,200	-1,800	
± 5,0	4,500	3,000	1,500	0,000	- 1,500	- 3,000	-4,500	
± 10,0	9,000	6,000	3,000	0,000	- 3,000	- 6,000	- 9,000	

- 6.5.2.1.5 Повторить измерения на остальных каналах первого и второго мезонинов модуля ADC64.
- 6.5.2.1.6 Протокол с результатами поверки каждого канала модуля для заданного предела измерений выводится в конце измерений в форме таблицы 6.5.3.

Таблица 6.5.3

	Модуль ADC64	Предел измерений « вход однополюсь	…» В; Мезонин № «… ный	.»,
Номер из- меритель- ного канала	Номинальное значение входного сигнала Ujн, В	Измеренное значение входного сигнала	Абсолютная погрешность $\Delta = \pm \text{ (Uјизм} - \text{ Uјн)},$ В	Основная приведенная погрешность, $\pm \gamma$, %

- 6.5.2.1.7 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,03 %. Если приведенная погрешность больше значения \pm 0,03 %, то канал бракуется.
- 6.5.2.2 Определение основной приведенной погрешности каналов модуля ADC64 с дифференциальным входом
- 6.5.2.2.1 При поверке модуля ADC64 в режиме с дифференциальными входами использовать схему соединения, представленную на рисунке 6.5.16.

Опробование и определение основной приведенной погрешности производится по методике п.п. 6.5.2.1.2 - 6.5.2.1.7 для каждого из двух мезонинов модуля.

6.6 Модуль ADC32

Назначение модуля – измерение с высоким быстродействием напряжения положительной полярности.

6.6.1 Опробование

При опробовании необходимо выполнить проверку функционирования каналов модуля ADC32 в составе ИВК.

6.6.1.1 Собрать схему поверки канала модуля ADC32 в соответствии с рисунком 6.6.1.

Включить ИВК и рабочий эталон-калибратор FLUKE-9100E в сеть и прогреть их в течение одного часа.

Рисунок 6.6.1 – Схема опробования и поверки модуля ADC32

- 6.6.1.2 Подать на вход первого канала первого мезонина модуля ADC32 от калибратора FLUKE-9100E последовательно значения входного напряжения равными нулю и 5 В и произвести измерения.
 - 6.6.1.3 Провести опробование всех 32-х каналов на двух мезонинах модуля.
- 6.6.1.4 Результат опробования считается удовлетворительным, если значение измеренного напряжения $U_{\text{изм}}$ с учетом начального сдвига нуля составляет $U_{\text{изм}} = (5 \pm 0.01)$ В.
- 6.6.2 Определение основной приведенной погрешности каналов модуля ADC32
- 6.6.2.1 Собрать схему измерения подключив первый канал первого мезонина в соответствии с рисунком 6.6.1.
- 6.6.2.2 Подать на вход канала последовательность напряжений от калибратора FLUKE-9100E в соответствии с таблицей 6.6.1 и произвести их измерение.

Таблица 6.6.1

Uн, B	Номинальные значения входного напряжения Ujн, B						
5	0,000	1,000	2,000	3,000	4,000	5,000	

6.6.2.3 Основная приведенная погрешность измерения у определяется из формулы:

$$\gamma = \pm (\Delta / U_{\rm H}) \cdot 100 \%$$
, (6.5.1)

где $\Delta = \pm (U_{јизм} - U_{јн})$, В— абсолютная погрешность измерения;

Ujн, B – номинальное значение входного напряжения;

Ujизм, B – измеренное значение входного напряжения постоянного тока;

ј – номер поверяемой точки на диапазоне измерений;

 $U_{H} = 5,000 \text{ B}$ — нормирующее значение измеряемой величины, равное верхнему пределу измерений.

Допускаемая основная приведенная погрешность не должна превышать значения $\gamma = \pm 0.05 \%$.

- 6.6.2.4 Повторить п.п. 6.6.2.2-6.6.2.3 на остальных каналах первого и второго мезонинов модуля ADC32.
- 6.6.2.5 Протокол с результатами поверки каждого канала модуля выводится в конце измерений в форме таблицы 6.6.2.

Таблица 6.6.2

Модуль ADC32 Мезонин « » Диапазон измерений от нуля до 5,000 В								
Номер измерительного канала	Номинальное значение входного сигнала	Измеренное значение входного сигнала Uјизм, B	Абсолютная погрешность измерения $\Delta = \pm (U \text{ јнзм} - U \text{јн}), B$	Основная приведенная погрешность $\pm \gamma$, %				

6.6.2.6 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,05 %. Если приведенная погрешность больше значения \pm 0,05 %, то канал бракуется.

6.7 Модуль FDC16

Назначение модуля — измерение частоты переменного напряжения в диапазоне от 0.004 до $1\cdot10^6$ Гц.

6.7.1 Опробование

При опробовании необходимо выполнить проверку функционирования каналов модуля FDC16 в составе ИВК.

6.7.1.1 Собрать схему поверки первого канала первого мезонина модуля FDC16 в соответствии с рисунком 6.7.1.

Рисунок 6.7.1—Схема опробования и поверки модуля FDC16

6.7.1.2 Включить в сеть ИВК, генератор ГСС-10 и прогреть их в течение одного часа. Установить генератор в режим МЕАНДР, уровень выходного напряжения – «ТТЛ».

Установить на модуле код диапазона измеряемых частот – «8».

- 6.7.1.3 Установить на генераторе частоту F = 100 Гц. Произвести измерение частоты на первом канале первого мезонина модуля FDC16.
- 6.7.1.4 Произвести измерение частоты на остальных каналах первого мезонина.
 - 6.7.1.5 Выполнить опробование каналов на втором мезонине модуля FDC16.
- 6.7.1.6 Результат опробования считается удовлетворительным, если значение измеренной частоты составляет ($100 \pm 0,005$) Гц.
- 6.7.2 Определение основной приведенной погрешности каналов модуля FDC16
- 6.7.2.1 Собрать схему измерения в соответствии с рисунком 6.7.1. Подключить к выходу генератора первый канал первого мезонина модуля. Установить генератор в режим «МЕАНДР», уровень выходного напряжения «ТТЛ». Включить в сеть ИВК, генератор ГСС-10 и прогреть их в течение одного часа.

Установить на модуле код диапазона измеряемых частот – «8».

6.7.2.2 Последовательно задавать с генератора ряд частот в соответствии с таблицей 6.7.1 и регистрировать соответствующее значение частоты на поверяемом канале.

Таблица 6.7.1

Fr			Γ	`ц			МΓц
LL	1	10	100	1000	10000	100000	11
Fиз м , Гц							

6.7.2.3 Основная приведенная погрешность измерения на канале модуля FDC16 определяется по формуле (F_I) :

$$\gamma = \pm (\Delta / F_{\Gamma}) \cdot 100 \%, \qquad (6.7.1)$$

где Δ – абсолютная погрешность измерения:

$$\Delta = \pm (F_{\text{изм}} - F_{\text{r}}), \Gamma_{\text{l}} \tag{6.7.2}$$

Fг, Гц – верхняя граница диапазона генератора;

Ризм, Гц — частота, измеренная на поверяемом канале модуля FDC16.

Допускаемая основная приведенная погрешность γ не должна превышать значения \pm 0,005 %.

- 6.7.2.4 Выполнить измерения на остальных каналах каждого из двух мезонинов модуля FDC16.
- 6.7.2.5 Протокол с результатами поверки каждого канала модуля выводится в конце измерений в форме таблицы 6.7.2.

Таблица 6.7.2

Модул	Модуль FDC16 Код диапазона «»			Канал № «…»		Мезонин № «…»	
F г, Гц	1	10	100	1000	10000	100000	1· 10 ⁶
Fизм, ГЦ		· · · · · · · · · · · · · · · · · · ·					
Δ, Гц							
± γ, %							

6.7.2.6 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,005 %. Если приведенная погрешность больше значения \pm 0,005 %, то канал бракуется.

Примечание — Поверка модуля FDC16, приведенная выше, рекомендуется при использовании в наиболее типичном для большинства применений диапазоне частот.

При необходимости поверить модуль FDC16 на других диапазонах частот следует:

– выбрать нужный код диапазона измерений от нуля до 15 из таблицы 6.7.4;

- выбрать номер канала измерений от нуля до 7;
- установить на генераторе минимальную частоту Fгмин, соответствующую значению выбранного кода измерений, указанному в таблице 6.7.3.

Таблица 6.7.3

Код диапазона измеряемых частот	Минимальная частота входного сигнала, Гц	Частота генератора, Fгмин, Гц
0	0,0038	0,004
1	0,0076	0,008
2	0,0150	0,016
3	0,0300	0,032
4	0,0610	0,062
. 5	0,1220	0,125

Продолжение таблицы 6.7.3

Код диапазона измеряемых частот	Минимальная частота входного сигнала, Гц	Частота генератора, Fгмин, Гц
6	0,2440	0,250
7	0,4880	0,500
8	0,9760	1
9	1,9530	2
10	3,9060	4
11	7,8120	8
12	15,6250	16
13	31,2500	32
14	62,5000	64
15	125	128

Задать с генератора последовательно ряд частот, значения которых определять, как $F\Gamma = F\Gamma_{\text{мин}} \cdot K$, где K-1; 10; 100; 1000; 10000.

Протокол с результатами поверки каждого канала модуля выводится в конце измерений в форме таблицы 6.7.3.

Если приведенная погрешность превышает значения $\pm 0,005 \%$, — канал бракуется.

6.8 Модуль RDC32

Назначение модуля – измерение температуры с термометров сопротивлений, соединенными по трехпроводной схеме.

6.8.1 Опробование

При опробовании необходимо выполнить проверку функционирования модуля RDC32 в составе ИВК.

6.8.1.1 Собрать схему поверки модуля RDC32 в соответствии с рисунком 6.8.1.

Включить в сеть ИВК и прогреть его в течение одного часа.

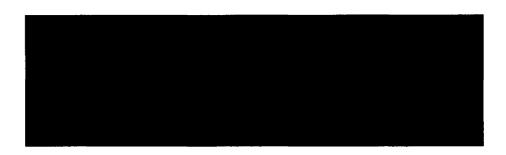


Рисунок 6.8.1— Схема опробования и поверки канала модуля RDC32 для работы с терморезистором, соединенным по трёхпроводной схеме

- 6.8.1.2 Установить на вход первого канала первого мезонина модуля с магазина сопротивлений ММЭС Р3026-2 последовательно значения сопротивлений равными 100 и 140 Ом и провести измерения. Разница в измеренных значениях сопротивления с учетом начального сдвига нуля должна составлять 40 Ом.
- 6.8.1.3 Выполнить опробование остальных каналов на четырёх мезонинах модуля RDC32.
- 6.8.1.4 Результат опробования считается удовлетворительным, если значение разницы в измеренных значениях сопротивления $R_{\text{изм}} = (40 \pm 0.04)$ Ом.
 - 6.8.2 Определение основной приведенной погрешности
- 6.8.2.1 Собрать схему измерения в соответствии с рисунком 6.8.1. Установить на образцовом магазине сопротивлений ММЭС Р3026-2 значение сопротивления равным 100 Ом.
- 6.8.2.2 Задать последовательно с магазина сопротивлений ММЭС Р3026-2 на вход первого канала первого мезонина модуля RDC32 значения сопротивления в соответствии с таблицей 6.8.1 и произвести их измерение.

Таблица 6.8.1

Верхний предел из- мерений, Ом	Номинальные значения входного сопротивления Рін, Ом					
140	100	110	120	130	140	

6.8.2.3 Основная приведенная погрешность у определяется из формулы:

$$\gamma = \pm (\Delta / R_{\rm H}) \cdot 100 \%$$
, (6.8.1)

где $\Delta = \pm (R_{јизм} - R_{ји})$, Ом-абсолютная погрешность каналов измерения сигналов термометров сопротивления;

Rju, Ом – номинальное значение сопротивления входного сигнала;

Rjизм, Ом — измеренное значение сопротивления входного сигнала;

ј – номер поверяемой точки на диапазоне измерений;

R_H = 140, Ом – нормирующее сопротивление терморезистора.

Допускаемая основная приведенная погрешность γ не должна превышать значения \pm 0,1%.

- 6.8.2.4 Выполнить измерения на остальных каналах каждого из четырёх мезонинов модуля RDC32.
- 6.8.2.5 Протокол с результатами поверки каждого канала модуля выводится в конце измерений в форме таблицы 6.8.2.

Таблица 6.8.2

	Mo	дуль RDC32 Meso	онин № « »	
Номер измеритель-ного канала	Номинальное значение сопротивления входного сигнала Кјн, Ом	Измеренное значение сопротивления входного сигнала Кјизм, Ом	Абсолютная погрешность измерения $\Delta = \pm (R_{\text{јизм}} - R_{\text{јн}}), Oм$	Основная приведенная погрешность ± γ, %

6.8.2.6 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения ± 0.1 %.

6.9 Модуль IDC32

Назначение модуля — измерение напряжений и токов положительной полярности. Исполнение модуля имеет несколько модификаций, предназначенных для работы с различными типами входных сигналов: источники тока в диапазонах от нуля до 20 мА и от нуля до 5 мА, источники постоянного напряжения — от нуля до 20 мВ и от нуля до 2 В.

Опробование и поверка характеристик выполняется для модификации модуля, указанных пользователем (98149РЭ, таблица 2)

6.9.1 Опробование

При опробовании необходимо выполнить проверку функционирования модуля IDC32 в составе ИВК.

- 6.9.1.1 Опробование каналов модуля IDC32 при работе с источником тока в диапазоне от нуля до 5 мА (модификация 98149-1)
 - 6.9.1.1.1 Собрать схему в соответствии с рисунком 6.9.1.

Включить ИВК и рабочий эталон-калибратор FLUKE-9100E в сеть и прогреть в течение одного часа.

Рисунок 6.9.1 – Схема опробования и поверки канала модуля IDC32 всех модификаций

- 6.9.1.1.2 Подать на вход первого канала первого мезонина модуля IDC32 от калибратора последовательно значения входного тока нуль и 5 мА и провести измерения.
- 6.9.1.1.3 Выполнить опробование остальных семи каналов в первом мезонине модуля.
- 6.9.1.1.4 Выполнить опробование каналов в остальных трёх мезонинах модуля.
- 6.9.1.1.5 Результат опробования считается удовлетворительным, если значение измеренного тока составляет (5 ± 0,005) мА.
- 6.9.1.2 Опробование каналов модуля IDC32 при работе с источником постоянного тока в диапазоне от нуля до 20 мА
 - 6.9.1.2.1 Собрать схему в соответствии с рисунком 6.9.1.

Включить в сеть ИВК и рабочий эталон-калибратор FLUKE -9100E и прогреть их в течение одного часа.

- 6.9.1.2.2 Подать на вход первого канала первого мезонина модуля IDC32 с тензокалибратора последовательно значения входного тока нуль и 20 мА и провести измерения.
- 6.9.1.2.3 Выполнить опробование остальных семи каналов в первом мезонине модуля.
- 6.9.1.2.4 Выполнить опробование всех каналов в остальных трёх мезонинах модуля.
- 6.9.1.2.5 Результат опробования считается удовлетворительным, если значение измеренного тока составляет $I_{\text{изм}} = (20 \pm 0.02) \text{ мA}$.
- 6.9.1.3 Опробование каналов модуля IDC32 при работе с источником постоянного напряжения в диапазоне от нуля до 20мВ
 - 6.9.1.3.1 Собрать схему в соответствии с рисунком 6.9.1.

Включить в сеть ИВК и рабочий эталон-калибратор FLUKE-9100E и прогреть их в течение одного часа.

- 6.9.1.3.2 Подать на вход первого канала первого мезонина модуля IDC32 от калибратора последовательно значения входного напряжения нуль и 20 мВ и провести измерения.
- 6.9.1.3.3 Выполнить опробование остальных семи каналов в мезонине модуля.
- 6.9.1.3.4 Выполнить опробование всех каналов в остальных трёх мезонинах модуля.
- 6.9.1.3.5 Результат опробования считается удовлетворительным, если значение измеренного напряжения составляет $U_{\text{изм}} = (20 \pm 0.02) \text{ мB}.$
- 6.9.1.4 Опробование каналов модуля IDC32 при работе с источником постоянного напряжения в диапазоне от нуля до2 В
 - 6.9.1.4.1 Собрать схему в соответствии с рисунком 6.9.1.

Включить в сеть ИВК и рабочий эталон – тензокалибратор FLUKE-9100E и прогреть их в течение одного часа.

- 6.9.1.4.2 Подать на вход первого канала первого мезонина модуля IDC32 с тензокалибратора последовательно значения входного напряжения нуль и 2В и провести измерения.
 - 6.9.1.4.3 Провести опробование остальных семи каналов в мезонине модуля.
- 6.9.1.4.4 Выполнить опробование всех каналов в остальных трёх мезонинах модуля.
- 6.9.1.4.5 Результат опробования считается удовлетворительным, если значение измеренного напряжения составляет $U_{\text{изм}} = (2 \pm 0,002)$ В.
- 6.9.2 Определение основной приведенной погрешности модуля IDC32
- 6.9.2.1 Определение основной приведенной погрешности каналов модуля IDC32 при работе с источником тока в диапазоне от нуля до 5 мА
 - 6.9.2.1.1 Собрать схему измерения в соответствии с рисунком 6.9.1

Включить в сеть ИВК и рабочий эталон-калибратор FLUKE-9100E и прогреть их в течение одного часа.

Установить на калибраторе FLUKE-9100E ток 1вх равным нулю миллиампер.

6.9.2.1.2 Подать на вход первого канала первого мезонина модуля IDC32 от калибратора FLUKE-9100E последовательно значения тока в соответствии с таблицей 6.9.1 и провести измерения входного тока.

Таблица 6.9.1

Верхний предел измерений	Номинальные значения входного тока Ijн, мА				мА	
5 мА	0	1	2	3	4	5

6.9.2.1.3 Основная приведенная погрешность измерения канала γ определяется из формулы:

$$\gamma = \pm (\Delta / I_{\rm H}) \cdot 100 \%$$
, (6.9.1)

где $\Delta = \pm (I_{jизм} - I_{jH})$, мА – абсолютная погрешность измерения канала;

Іјн, мА – номинальное значение входного тока;

 $I_{јизм}$, мA — измеренное значение входного тока с учетом начального сдвига нуля;

ј – номер поверяемой точки на диапазоне измерений;

 $I_H = 5 \text{ мA} - \text{нормирующее значение тока.}$

Предел допускаемой основной приведенной погрешности $\gamma = \pm 0,1$ %.

- 6.9.2.1.4 Выполнить измерения на остальных семи каналах мезонина модуля IDC32.
- 6.9.2.1.5 Последовательно провести поверку каналов остальных трёх мезонинов модуля IDC32.
- 6.9.2.1.6 Протокол с результатами поверки каждого канала модуля IDC32 выводится в конце измерений в форме таблицы 6.9.2.

Таблица 6.9.2

Модуль IDC32		Мезонин « »	Предел измерений – 5 мА		
Номер измери- тельного кана- ла	Номинальное зна- чение входного тока Іјн, мА	Измеренное значение входного сигнала Іјизм, мА	Абсолютная погреш- ность измерения $\Delta = \pm$ (Іјизм – Іјн), мА	Основная приведенная погрешность ± у, %	

- 6.9.2.1.7 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения $\pm 0,1$ %. Если приведенная погрешность больше значения $\pm 0,1$ %, то канал бракуется.
- 6.9.2.2 Поверка основной приведенной погрешности каналов модуля IDC32 при работе с источником постоянного тока в диапазоне от нуля до 20 мА
 - 6.9.2.2.1 Собрать схему измерения в соответствии с рисунком 6.9.1.

Включить в сеть ИВК и рабочий эталон-калибратор FLUKE-9100E и прогреть их в течение одного часа.

Установить на калибраторе ток 1вх равным нулю миллиампер.

6.10.2.2.2 Подать на вход первого канала первого мезонина модуля IDC32 от калибратора FLUKE-9100E последовательно значения тока в соответствии с таблицей 6.9.3 и провести измерения входного тока.

Таблица 6.9.3

Верхний предел измерений, мА		Номиналь	ные значени	я входного то	ока Іјн, мА	
20	0	4	8	12	16	20

6.9.2.2.3 Основная приведенная погрешность измерения у определяется из формулы:

$$\gamma = \pm (\Delta / 1_{\rm H}) \cdot 100 \%$$
, (6.9.2)

где $\Delta = \pm (I_{јизм} - I_{јн})$, мА – абсолютная погрешность измерения канала;

Іјн, мА – номинальное значение входного тока;

Іјизм, мА – измеренное значение входного тока с учетом начального сдвига нуля;

ј – номер поверяемой точки на диапазоне измерений;

1н = 20 мА – нормирующее значение тока.

Предел допускаемой основной приведенной погрешности $\gamma = \pm 0,1$ %.

- 6.9.2.2.4 Выполнить измерения на остальных семи каналах мезонина модуля IDC32.
- 6.9.2.2.5 Последовательно провести поверку каналов остальных трёх мезонинов модуля IDC32.
- 6.9.2.2.6 Протокол с результатами поверки каждого канала модуля IDC32 выводится в конце измерений в форме таблицы 6.9.4.

Таблица 6.9.4

Модуль IDC32		Мезонин « »	Предел измерений — 20 мА		
Номер измерительного канала	Номинальное значение входного тока Іјн, мА	Измеренное значение входного сигнала Іјизм, мА	Абсолютная погрешность измерения Δ= ± (Іјизм− Іјн), мА	Основная приведенная погрешность $\pm \gamma \%$	

- 6.9.2.2.6 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения ± 0.1 %. Если приведенная погрешность больше значения ± 0.1 %, то канал бракуется.
- 6.9.2.3 Поверка основной приведенной погрешности каналов модуля IDC32 при работе с источником постоянного напряжения в диапазоне от нуля до 20 мВ

6.9.2.3.1 Собрать схему измерения в соответствии с рисунком 6.9.1.

Включить в сеть ИВК и рабочий эталон-калибратор FLUKE-9100E и прогреть их в течение одного часа.

Установить на калибраторе FLUKE-9100E напряжение U_{вх} равным нулю милливольт.

6.9.2.3.2 Подать на вход первого канала первого мезонина модуля IDC32 от калибратора FLUKE-9100E последовательно значения напряжения в соответствии с таблицей 6.9.5 и провести измерения.

Таблица 6.9.5

Верхний предел измерений, мВ	Но	минальные	значения вхо	дного напря	жения, Ujи,	мВ
20	0	4	8	12	16	20

6.9.2.3.3 Основная приведенная погрешность у определяется из формулы:

$$\gamma = \pm (\Delta / U_{\text{H}}) \cdot 100 \%, \qquad (6.9.3)$$

где $\Delta = \pm (U_{jизм} - U_{jн})$, мВ – абсолютная погрешность каналов измерения входного напряжения с учетом начального сдвига нуля;

U_{jн}, мВ – номинальное значение входного напряжения в измеряемых точках;

Ujизм, мВ – измеренное значение входного напряжения;

J – номер поверяемой точки на диапазоне измерений;

 $U_H = 20 \text{ мB} - нормирующее значение напряжения.}$

Основная приведенная погрешность не должна превышать \pm 0,1 %.

- 6.9.2.3.4 Выполнить измерения на остальных семи каналах мезонина модуля IDC32.
- 6.9.2.3.5 Последовательно провести поверку всех каналов остальных трёх мезонинов модуля IDC32.
- 6.9.2.3.6 Протокол с результатами поверки каждого канала модуля IDC32 выводится в конце измерений в форме таблицы 6.9.6.

Таблица 6.9.6

Модуль IDC32		Мезонин « »	Предел измерений – 20 мВ		
Номер измерительного канала	Номинальное значение входного тока Ujh, мВ	Измеренное значение входного сиг- нала Uјизм, мВ	Абсолютная погрешность измерения $\Delta = \pm (U$ јизм — U јн), мВ	Основная приведенная погрешность $\pm \gamma$,	
_					

6.9.2.3.7 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,1 %. Если приведенная погрешность больше \pm 0,1 %, то канал бракуется.

- 6.9.2.4 Определение основной приведенной погрешности каналов модуля IDC32 при работе с источником постоянного напряжения в диапазоне от нуля до 2 В
 - 6.9.2.4.1 Собрать схему измерения в соответствии с рисунком 6.9.1.

Включить в сеть ИВК и рабочий эталон-калибратор FLUKE-9100E и прогреть их в течение одного часа.

Установить на калибраторе FLUKE-9100E напряжение U_{вх} равным нулю милливольтам.

6.9.2.4.2 Подать на вход первого канала первого мезонина модуля IDC32 от калибратора FLUKE-9100E последовательно значения напряжения в соответствии с таблицей 6.9.7 и провести измерения.

Таблица 6.9.7

Верхний предел измерений, В	Hor	минальные знач	ения входного	напряжения Uji	н, В
2,0	0	0,5	1,0	1,5	2,0

6.9.2.4.3 Основная приведенная погрешность у определяется из формулы:

$$\gamma = \pm (\Delta / U_{\rm H}) \cdot 100 \%, \qquad (6.9.4)$$

где $\Delta = \pm (U_{\text{јизм}} - U_{\text{јн}})$, мВ –абсолютная погрешность каналов измерения входного напряжения с учетом начального сдвига нуля;

U_{jн}, В – номинальное значение входного напряжения в измеряемых точках;

 $U_{јизм}$, B — измеренное значение входного напряжения;

ј – номер поверяемой точки на диапазоне измерений;

 $U_H = 2 \ B$ — нормирующее значение напряжения.

Предел основной приведенной погрешности $\gamma = \pm 0,1$ %.

- 6.9.2.4.4 Выполнить измерения на остальных семи каналах мезонина модуля IDC32.
- 6.9.2.4.5 Последовательно провести поверку всех каналов остальных трёх мезонинов модуля IDC32.
- 6.9.2.4.6 Протокол с результатами поверки каждого канала модуля IDC32 выводится в конце измерений в форме таблицы 6.9.8.

Таблица 6.9.8

Модуль IDC 32		Мезонин « »		Предел измерений – 2 В	
Номер измерительного канала	Номинальное значение входно- го тока Ujн, B	Измеренное значение входного сигнала Uјизм, В	Абсолютная погрешность измерения $\Delta = \pm (U_{\text{јизм}} - U_{\text{јн}}), B$	Основная приведенная погрешность, $\pm \gamma$, %	

6.9.2.3.7 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,1 %. Если приведенная погрешность больше значения \pm 0,1 %, то канал бракуется.

6.10 Модуль RDC16

Назначение модуля — измерение сигналов с различных типов датчиков (токовая петля, термопары, терморезисторы, источники тока в диапазоне от нуля до 20 мА и источники напряжения в диапазонах от нуля до 20 мВ и от нуля до 2,5 В).

6.10.1 Опробование

При опробовании необходимо выполнить проверку функционирования модуля RDC16 в составе ИВК. Опробование и поверка характеристик выполняется для модификации модуля, указанной пользователем.

- 6.10.1.1 Опробование каналов модуля RDC16 при работе с токовой петлей
 - 6. 10.1.1.1 Собрать схему в соответствии с рисунком 6.10.1.

Включить в сеть ИВК и рабочий эталон-калибратор FLUKE-9100E и прогреть их в течение одного часа.

Рисунок 6.10.1 — Схема опробования и поверки канала модуля RDC16 для работы с токовой петлей

- 6.10.1.1.2 Подать на вход первого канала модуля от калибратора последовательно значения входного тока равными нулю и 20 мА и провести измерения.
 - 6.10.1.1.3 Выполнить опробование остальных 15 каналов модуля.
- 6.10.1.1.4 Результат опробования считается удовлетворительным, если значение измеренного тока составляет (20 ± 0.02) мА.
- 6.10.1.2 Опробование каналов модуля RDC16 при работе с терморезистором, соединенным по трёхпроводной схеме
 - 6.10.1.2.1 Собрать схему в соответствии с рисунком 6.10.2.

- Рисунок 6.10.2 Схема опробования и поверки канала модуля RDC16 для работы с терморезистором, соединенным по трёхпроводной схеме
- 6.10.1.2.2 Установить на вход первого канала модуля магазином сопротивлений последовательно значения 100 и 140 Ом и провести измерения.
 - 6.10.1.2.3 Выполнить опробование остальных 15 каналов модуля.
- 6.10.1.2.4 Результат опробования считается удовлетворительным, если значение разницы в измеренных значениях сопротивления (40 ± 0.04) Ом.
- 6.10.1.3 Опробование каналов модуля RDC16 при работе с терморезистором, соединенным по четырёхпроводной схеме 6.10.1.3.1 Собрать схему в соответствии с рисунком 6.10.3.

- Рисунок 6.10.3 Схема опробования и поверки канала модуля RDC16 для работы с терморезистором, соединенным по четырёхпроводной схеме
- 6.10.1.3.2 Установить на вход первого канала модуля с магазина сопротивлений последовательно значения равными 100 и 140 Ом и провести измерения.
- 6.10.1.3.2 Установить на вход первого канала модуля с магазина сопротивлений последовательно значения равными 100 и 140 Ом и провести измерения.
 - 6.10.1.3.3 Выполнить опробование остальных 15 каналов модуля.
- 6.10.1.3.4 Результат опробования считается удовлетворительным, если значение разницы в измеренных значениях сопротивления $R_{\text{изм}} = (40 \pm 0,02)$ Ом.
- 6.10.1.4 Опробование каналов модуля RDC16 при работе с источником постоянного напряжения в диапазоне от нуля до 20 мВ
 - 6.10.1.4.1 Собрать схему в соответствии с рисунком 6.10.4.

Рисунок 6.10.4 — Схема опробования и поверки канала модуля RDC16 для измерения постоянного напряжения в диапазонах от нуля до 20 мВ и от нуля до 2,5 В

- 6.10.1.4.2 Включить в сеть ИВК и рабочий эталон-калибратор FLUKE 9100E и прогреть их в течение одного часа.
- 6.10.1.4.3 Подать на вход первого канала модуля от калибратора последовательно значения входного напряжения, равными нулю и 20 мВ, и произвести измерения.
 - 6.10.1.4.4 Провести опробование остальных 15 каналов модуля.
- 6.10.1.4.5 Результат опробования считается удовлетворительным, если значение измеренного напряжения составляет $U_{\text{изм}} = (20 \pm 0.01)$ мВ.
- 6.10.1.5 Опробование каналов модуля RDC16 при работе с источником постоянного напряжения в диапазоне от нуля до 2,5 В
 - 6.10.1.5.1 Собрать схему в соответствии с рисунком 6.10.4.

Включить в сеть ИВК и рабочий эталон-калибратор FLUKE-9100E и прогреть их в течение одного часа.

- 6.10.1.5.2 Подать на вход первого канала модуля от калибратора последовательно значения входного напряжения равными нулю и 2,5 В и произвести измерения.
 - 6.10.1.5.3 Выполнить опробование остальных 15 каналов модуля.
- 6.10.1.5.4 Результат опробования считается удовлетворительным, если значение измеренного напряжения составляет $U_{\text{изм}} = (2,500 \pm 1) \text{ мB}$.
 - 6.10.2 Определение основной приведенной погрешности
- 6.10.2.1 Определение основной приведенной погрешности для каналов модуля RDC16 при работе с токовой петлей
- 6.10.2.1.1 Собрать схему измерения в соответствии с рисунком 6.10.1. Включить в сеть ИВК и рабочий эталон-калибратор FLUKE-9100E и прогреть их в течение одного часа.

Установить на калибраторе FLUKE-9100E ток Івх равным нулю миллиампер.

6.10.2.1.2 Подать на вход первого канала модуля RDC16 с тензокалибратора FLUKE-9100E последовательно значения тока в соответствии с таблицей 6.10.1 и провести измерения входного тока.

Таблица 6.10.1

Верхний предел измерений, мА	Номинальные значения входного тока Іјн, мА					
20	0	4	8	12	16	20

6.10.2.1.3 Основная приведенная погрешность измерения у определяется из формулы:

$$\gamma = \pm (\Delta / 1_{\rm H}) \cdot 100 \%$$
, (6.10.1)

где $\Delta = \pm (I_{јизм} - I_{јн})$, мА – абсолютная погрешность измерения канала;

Іјн, мА – номинальное значение входного тока;

І_{јизм}, мА – измеренное значение входного тока с учетом начального сдвига нуля;

ј – номер поверяемой точки на диапазоне измерений;

Ін = 20 мА – нормирующее значение тока.

Допускаемая основная приведенная погрешность γ не должна превышать значения \pm 0,025 %.

- 6.10.2.1.4 Выполнить измерения на остальных 15 каналах модуля RDC16.
- 6.10.2.1.5 Протокол с результатами поверки каждого канала модуля выводится в конце измерений в форме таблицы 6.10.2.

Таблица 6.10.2

Mo,	дуль RDC16		Предел измерений – 20 мА		
Номер измерительного канала	Номинальное значение входного тока Іјн, мА	Измеренное значение вход- ного сигнала 1јизм, мА	Абсолютная погрешность измерения $\Delta = \pm (I_{\text{јизм}} - I_{\text{јн}}), \text{ мA}$	Допускаемая основная приведенная погрешность, ± γ, %	

- 6.10.2.1.6 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,025 %. Если приведенная погрешность больше \pm 0,025 %, то канал бракуется.
- 6.10.2.2 Определение основной приведенной погрешности каналов модуля RDC16 при работе с терморезистором, соединенным по трёхпроводной схеме
 - 6.10.2.2.1 Собрать схему измерения в соответствии с рисунком 6.10.2.

Установить на образцовом магазине сопротивлений ММЭС Р3026-2 значение сопротивления R равным 100,000 Ом.

6.10.2.2.2 Установить на вход первого канала модуля RDC16 с магазина сопротивлений последовательно значения сопротивления в соответствии с таблицей 6.10.3 и произвести измерения.

Таблица 6.10.3

Верхний предел измерений, Ом	HOME	инальные значен	ния входного со	противления Rj	јн, Ом
140	100	110	120	130	140

6.10.2.2.3 Основная приведенная погрешность γ определяется из формулы: $\gamma = \pm (\Delta / R_H) \cdot 100 \%$, (6.10.2)

где $\Delta = \pm (R_{jH3M} - R_{jH})$, Ом — абсолютная погрешность каналов измерения сигналов термометров сопротивления с учетом поправки на начальное значение;

Rjн, Ом – номинальное значение измеряемого сопротивления;

Rjизм, Ом – измеренное значение сопротивления;

ј – номер поверяемой точки на диапазоне измерений;

R_н = 140 Ом – нормирующее сопротивление терморезистора.

Допускаемая основная приведенная погрешность γ не должна превышать значения \pm 0,1 %.

- 6.10.2.2.4 Выполнить измерения на остальных 15 каналах модуля RDC16
- 6.10.2.2.5 Протокол с результатами поверки каждого канала модуля выводится в конце измерений в форме таблицы 6.10.4.

Таблица 6.10.4

Моду	ль RDC16	П	редел измерений – 140	Ом
Номер измерительного канала	Номинальное значение сопротивления вход- ного сигнала Rjн, Ом	Измеренное значение сопротивления входно- го сигнала Rјизм, Ом	Абсолютная погрешность измерения $\Delta = \pm (R_{\text{јизм}} - R_{\text{јн}}), O_{\text{м}}$	Основная приведенная погрешность, $\pm \gamma$, %
		,		_

- 6.10.2.2.6 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,1%. Если приведенная погрешность больше значения \pm 0,1%, то канал бракуется.
- 6.10.2.3 Определение основной приведенной погрешности каналов модуля RDC16 при работе с терморезистором, соединенным по четырёхпроводной схеме
 - 6.10.2.3.1 Собрать схему измерения в соответствии с рисунком 6.10.3.

Установить на образцовом магазине сопротивлений значение сопротивления R равным 100,000 Ом.

- 6.10.2.3.2 Провести поверку модуля по методике п. 6.10.2.2.
- 6.10.2.3.3 Основная приведенная погрешность γ определяется аналогично п. 6.10.2.2.3.

Предел допускаемой основной приведенной погрешности $\gamma = \pm 0,1$ %.

6.10.2.3.4 Протокол с результатами поверки каждого канала модуля выводится в конце измерений в форме таблицы 6.10.5.

Таблица 6.10.5

M	Іодуль RDC16	Предел измерений-140 Ом			
Номер измерительного канала	Номинальное значение сопротивления входного сигнала Rju, Ом	Измеренное значение сопротивления входного сигнала Кјизм, Ом	Абсолютная погрешность измерения $\Delta = \pm (R_{јизм} - R_{јн}), Om$	Основная приведенная погрешность, $\pm \gamma$, %	

- 6.10.2.3.5 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений приведенная погрешность не превышает предела допускаемого значения \pm 0,1 %. Если приведенная погрешность больше значения \pm 0,1 %, то канал бракуется.
- 6.10.2.4 Определение основной приведенной погрешности каналов модуля RDC16 при работе с источником напряжения в диапазоне от нуля до 20 мВ

6.10.2.4.1 Собрать схему измерения в соответствии с рисунком 6.10.4.

Включить в сеть ИВК и рабочий эталон-калибратор FLUKE-9100E и прогреть их в течение одного часа.

Установить на тензокалибраторе напряжение Uвх равным нулю микровольт.

6.10.2.4.2 Подать на вход первого канала модуля с тензокалибратора последовательно значения входного напряжения в соответствии с таблицей 6.10.6 и произвести измерения.

Таблица 6.10.6

Верхний предел измерений, мВ	H	Номинальные значения входного напряжения Ujн, мВ				
20	0	4	8	12	16	20

6.10.2.4.3 Основная приведенная погрешность у определяется из формулы:

$$\gamma = \pm (\Delta / U_H) \cdot 100 \%$$
, (6.10.3)

где $\Delta = \pm (U_{\text{јизм}} - U_{\text{јн}})$, мВ — абсолютная погрешность каналов измерения входного напряжения с учетом начального сдвига нуля;

U_{jн}, мВ – номинальное значение входного напряжения в измеряемых точках;

Ujизм, мВ – измеренное значение входного напряжения;

ј – номер поверяемой точки на диапазоне измерений;

U_н = 20 мВ – нормирующее напряжение.

Основная приведенная погрешность γ не должна превышать значения \pm 0.05 %.

- 6.10.2.4.4 Выполнить измерения на остальных 15 каналах модуля RDC16.
- 6.10.2.4.5 Протокол с результатами поверки каждого канала модуля выводится в конце измерений в форме таблицы 6.10.7.

Таблица 6.10.7

Mo	дуль RDC16	Предел измерений-20 мВ		
Номер измэрительного канала	Номинальное значение входного го напряжения Ujн, мВ Измеренное значение входного сигнала Ujн, мВ		Абсолютная Основі приведе измерения $\Delta = \pm (U_{\text{јизм}} - U_{\text{јн}})$, мВ $\Delta = \pm \gamma$,%	

- 6.10.2.4.6 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,05 %. Если приведенная погрешность больше \pm 0,05 %, то канал бракуется.
- ' 6.10.2.5 Определение основной приведенной погрешности каналов модуля RDC16 при работе с источником напряжения в диапазоне от нуля до 2,5 В
 - 6.10.2.5.1 Собрать схему измерения в соответствии с рисунком 6.10.4.

Включить в сеть ИВК и рабочий эталон-калибратор FLUKE-9100E и прогреть их в течение одного часа.

Установить на тензокалибраторе напряжение Uвх равным нулю микровольт.

6.10.2.5.2 Подать на вход первого канала модуля от калибратора последовательно значения входного напряжения в соответствии с таблицей 6.10.8 и произвести измерения.

Таблица 6.10.8

Верхний предел измерений, В	Номинальные значения входного напряжения U _{jн} , В						
2,5	0	0,5	1,0	1,5	2,0	2,5	

6.10.2.5.5 Основная приведенная погрешность у определяется из формулы:

$$\gamma = \pm (\Delta / U_{\rm H}) \cdot 100 \% ,$$

(6.10.4)

где $\Delta = \pm (U_{jизм} - U_{jн})$, В – абсолютная погрешность каналов измерения входного напряжения с учетом начального сдвига нуля;

U_{jн}, В – номинальное значение входного напряжения в измеряемых точках;

Ujизм – измеренное значение входного напряжения;

ј – номер поверяемой точки на диапазоне измерений;

 $U_H = 2.5 B$ – нормирующее напряжение.

Основная приведенная погрешность γ не должна превышать \pm 0,025 %.

- 6.10.2.5.4 Выполнить измерения на остальных 15 каналах модуля RDC16.
- 6.10.2.5.5 Протокол с результатами поверки каждого канала модуля выводится в конце измерений в форме таблицы 6.10.9.

Таблица 6.10.9

Mo	дуль RDC16		Предел измерений – 2,5 В				
Номер измерительного канала	Номинальное значение входно-го напряжения Ujн, B	Измеренное значение входного сигнала	значение вход- погрешность денная погрешного сигнала измерения				

6.10.2.5.6 Результаты поверки считаются удовлетворительными, если во всех проверяемых точках диапазона измерений основная приведенная погрешность не превышает предела допускаемого значения \pm 0,025 %. Если приведенная погрешность больше значения \pm 0,025 %, то канал бракуется.

6.11 Модуль DAC32

Назначение модуля — формирование аналоговых выходных сигналов в диапазоне от минус $10~\mathrm{B}$ до плюс $10~\mathrm{B}$ в соответствии с шестнадцатиразрядным двочиным кодом на входе.

6.11.1 Опробование

При опробовании необходимо выполнить проверку функционирования каналов модуля DAC32 в составе ИВК.

6.11.1.1 Собрать схему поверки первого канала первого мезонина модуля в соответствии с рисунком 6.11.1.

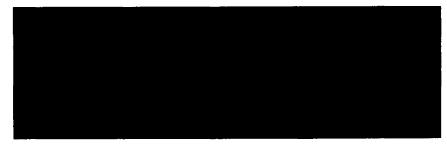


Рисунок 6.11.1 – Схема опробования и поверки модуля DAC32

- 6.11.1.2 Подать на вход первого канала модуля последовательный десятичный код 32767 с комплекса ИВК М2М и провести измерение аналогового напряжения на его выходе.
- 6.11.1.3 Провести опробование остальных каналов в первом и втором мезонинах модуля по методике п.п. 6.11.1.1 6.11.1.2.
- 6.11.1.4 Результаты опробования каналов считаются удовлетворительными, если значения выходного напряжения находятся в пределах ($10 \pm 0,025$) В.
 - 6.11.2 Определение основной приведенной погрешности
- 6.11.2.1 Подключить на выход поверяемого канала цифровой вольтметр и задать на вход канала последовательность значений десятичных кодов, указанные в таблице 6.11.1 и произвести измерения напряжения на выходе канала.

Таблица 6.11.1

Номинальные значения входных десятичных кодов, (бит)	32767	24575	16383	8191	0,000	- 8191	- 16383	- 24575	- 32767
Номинальные значения выходного напряжения Ujн, (B)	10,000	7,500	5,000	2,500	0,000	- 2,500	- 5,000	- 7,500	- 10,000

6.11.2.2 Определить основную приведенную погрешность ү из формулы:

$$\gamma = \pm (\Delta / U_H) \cdot 100 \%$$
, (6.4.1)

где $\Delta = \pm (U_{jизм} - U_{jH}), B - абсолютная погрешность;$

U_{jн} – номинальное значение выходного напряжения при заданном входном коде;

Ujизм – измеренное значение выходного напряжения;

ј – номер измеренного значения входного напряжения;

 $U_H = 10 \ B$ — нормирующее значение выходного напряжения для верхнего значения предела измерений, указанного в таблице 6.11.1.

Предел допускаемой основной приведенной погрешности не должен превышать $\gamma = \pm 0.25$ %.

6.11.2.3 Определить основную приведенную погрешность на остальных каналах первого и второго мезонинов модуля DAC32, задавая значения входных кодов, приведенные в таблице 6.11.1. В качестве нормирующего напряжения применяется значение верхнего предела измерений. Данные измерения после обработки заносят в таблицу вида 6.11.2.

Таблица 6.11.2

	Модуль DAC32							
Номер из- мери- тельного канала	Значения десятичного кода на входе	Номинальное значение выходного напряжения Uн, B	Измеренное значение выходного напряжения Ujизм, B	Абсолютная погрешность измерения $\Delta = \pm \text{ (Uјизм - Ujh), B}$	Основная приведенная погрешность $\pm \gamma$, %,			
	32767	10						
:	24575	7,5						
	16383	5,0						
	8191	2,5						
	0	0						
	- 8191	-2,5						
	- 16383	- 5,0						
	- 24575	- 7,5						
	- 32767	- 10						

6.11.2.4 Если измерения на всех каналах удовлетворяют требованию п. 6.11.2.2, то результаты поверки считаются положительными. Если приведенная погрешность больше значения \pm 0,25 %, то канал бракуется.

Примечание — Для модулей ADC64, ADC32, FDC16, RDC32, IDC32, RDC16, DAC32 допускается проводить поверку ограниченного количества каналов в ограниченном диапазоне измерения.

7 Оформление результатов поверки.

- 7.1 Положительные результаты поверки комплекса «ИВК М2М» оформляют свидетельством о поверке в соответствии с Приказом Минпромторга РФ 1815.
- 7.2 При несоответствии результатов поверки требованиям любого из пунктов настоящей методики комплекса ИВК М2М к дальнейшей эксплуатации не допускают и выдают извещение о непригодности в соответствии с Приказом Минпромторга РФ 1815. В извещении указывают причину непригодности и приводят указание о направлении в ремонт или невозможности их дальнейшего использования.

Рекомендуемая форма протокола поверки приведена в Приложении А.

ПРИЛОЖЕНИЕ А (рекомендуемое)

Форма протокола поверки «ИВК М2М»

8 Результаты поверки		
8.1 Внешний осмотр показал:	 	
8.2 При опробовании установлено:	 	

8.3 Определение (контроль) метрологических характеристик:

Определение допускаемой приведенной погрешности измерения.