УТВЕРЖДАЮ

Первый заместитель генерального директора — заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов

2018 1.

инструкция

Системы анализа гармоник и фликера САГФ1000

МЕТОДИКА ПОВЕРКИ САГФ1000 МП

Содержание

	стр
1 ОПЕРАЦИИ ПОВЕРКИ	3
2 СРЕДСТВА ПОВЕРКИ	4
3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	5
4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
5 УСЛОВИЯ ПОВЕРКИ	5
6 ПОДГОТОВКА К ПОВЕРКЕ	5
7 ПРОВЕДЕНИЕ ПОВЕРКИ	5
8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	14

Настоящая методика распространяется на системы анализа гармоник и фликера $CA\Gamma\Phi 1000$ (далее - системы), изготавливаемые обществом с ограниченной ответственностью «АНТЭМС ГРУПП», г. Москва, и устанавливает объём, методы и средства первичной и периодической поверок.

Интервал между поверками – один год.

При проведении поверки необходимо руководствоваться эксплуатационной документацией на системы (САГФ1000 РЭ).

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.1. Таблица 1.1 – Операции поверки

Наименование операций	Номер пункта методики поверки	Проведение операции при		
		первичной	периодичес-	
		поверке	кой поверке	
1 Внешний осмотр	7.1	+	+	
2 Опробование	7.2	+	+	
3 Идентификация программного обеспечения	7.3	+	+	
4 Определение выходного напряжения переменного				
тока и относительной погрешности установки				
выходного напряжения переменного тока источника	7.4	+	+	
питания, частоты выходного напряжения и	7.4	Т		
абсолютной погрешности установки частоты				
выходного напряжения источника				
5 Определение угла между фазами выходного	7.5	+		
напряжения	7.3		-	
6 Определение коэффициента гармонических	7.6	1		
составляющих выходного напряжения	7.6	+	-	
7 Определение отношения пикового к				
среднеквадратичному значению выходного	7.7	+	-	
напряжения				
8 Определение импеданса источника питания	7.8	+	-	
9 Определение диапазона измерений напряжения				
переменного тока и абсолютной погрешности	7.9	+	+	
измерений напряжения переменного тока				
10 Определение диапазона измерений и абсолютной				
погрешности измерений амплитудного значения	7.10	+	+	
силы переменного тока				
11 Определение диапазона измеряемых				
гармонических составляющих напряжения и силы			:	
переменного тока и относительной погрешности	7.11	+		
измерений коэффициента гармонической	7.11	7	,	
составляющей выходного напряжения и силы				
переменного тока				
12 Определение относительной погрешности	7.12	+	+	
измерений опорных доз фликера	7.12			
13 Определение максимальной амплитуда силы	7.13	-+		
пускового переменного тока	7.13			

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.1.

Таблица 2.1 – Средства поверки

	г средеты поверки
Номер	Наименование рабочего эталона или вспомогательного средства поверки; номер
пункта	документа, регламентирующего технические требования к средству; разряд по
методики	государственной поверочной схеме и (или) метрологические и основные технические
поверки	характеристики
7.4, 7.5, 7.6,	Вольтметр универсальный В7-78/1, диапазон измерений напряжения
7.10, 7.12,	переменного тока от 10 мкВ до 750 В, пределы допускаемой абсолютной
7.12	погрешности измерений $\pm (0,0006 \text{ Ux} + 0,0003 \text{ Uпр})$; диапазон измерений частоты
	от 3 Гц до 300 кГц пределы допускаемой абсолютной погрешности измерений,
	пределы допускаемой абсолютной погрешности измерений частоты $\pm 0,0001$ Fx;
	диапазон измерений силы постоянного тока от 1 мкА до 3 А, пределы
	допускаемой абсолютной погрешности измерений ±(0,0005 Ix + 0,0002 Iпр)
7.6, 7.7, 7.11	
7.0, 7.7, 7.11	диапазон частот от 0 до 70 МГц, погрешность коэффициента ослабления ± 5 %;
	R _{вх} = 50 МОм;
7.6, 7.11	Шумомер-виброметр, анализатор спектра ЭКОФИЗИКА-110A, диапазон частот
7.0, 7.11	
	при измерении напряжения от 10 Гц до 400 кГц, диапазон измерений напряжения
	переменного тока от 0 до 140 дБ мкВ, пределы допускаемой относительной
	погрешности измерений 2 % в частотном диапазоне от 10 Γ ц до 45 κ Γ ц, \pm 5% в
	частотном диапазоне от 45 до 400 кГц
7.7, 7.13	Осциллограф цифровой запоминающий WaveSurfer WR62 Xs-A, диапазон частот
	от 0 до 600 МГц, погрешность измерений напряжения $\pm 1,5$ %;
7.8	Измеритель LCR Agilent E4980A,
	Погрешность измерений сопротивления не более 0,03 %, погрешность измерений
	емкости и индуктивности не более 1 %
7.10	Катушка сопротивления Р 321 (10 Ом), класс 0,01
7.10	Катушка сопротивления Р 321 (0,1 Ом), класс 0,01
7.10, 7.13	Катушка сопротивления Р 322 (0,001 Ом), класс 0,02
7.12	Генератор сигналов произвольной формы 33220А, диапазон частот от 1 мкГц до
	20 МГц; диапазон установки выходного напряжения от 10 мВ до 10 В, пределы
	допускаемой относительной погрешности установки частоты выходного сигнала
	± 0,002 %
7.12	Коммутатор (твердотельное реле SR1 1415R), ток коммутации 15A, напряжение
	48480В (вспомогательное оборудование)
7.10, 7.11,	Комплект нагрузок (вспомогательное оборудование):
7.12	3250 Ом (15 Вт),
	1300 Om (40 Bt),
	650 Ом (80 Вт),
	325 Om (150 BT),
	160 Om (300 BT),
	65 Om (800 Bt),
	32,5 OM (1500 BT);
	15 Om (3,3 kBt)
	TO OM (,), ADI)

- 2.2 Применяемые при поверке средства измерений (СИ) должны быть поверены (кроме коммутатора и комплекта нагрузок по пп. 7.10...7.12 настоящей методики поверки).
- 2.3 Допускается применение других средств поверки, обеспечивающих определение метрологические характеристики с требуемой точностью.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

3.1 К проведению поверки могут быть допущены лица, имеющие высшее или среднее техническое образование и практический опыт в области радиотехнических измерений, и аттестованные на право проведения поверки.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки следует соблюдать требования ГОСТ 12.3.019-80 и требования безопасности, устанавливаемые эксплуатационной документацией на поверяемую систему и используемое при поверке оборудование.

5 УСЛОВИЯ ПОВЕРКИ

- 5.1 Поверку проводить при условиях:
- температура окружающего воздуха (20 ± 5) °C,
- относительная влажность окружающего воздуха от 30 до 80 %,
- атмосферное давление от 84,0 до 106,7 кПа,
- напряжение сети питания (220 \pm 22) В (для модификации САГ Φ 1000-1 Φ),
- напряжение сети питания (380 \pm 38) В (три фазы) (для модификации САГ Φ 1000-3 Φ).
- частота сети питания (50 ± 1) Гц.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Поверитель должен изучить эксплуатационные документы на поверяемую систему и используемые средства поверки.
- 6.2 Перед проведением поверки используемое при поверке оборудование должно быть подготовлено к работе в соответствии с эксплуатационной документацией на него.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

- 7.1 Внешний осмотр
- 7.1.1 Перед распаковыванием системы необходимо выдержать её в течение 4 ч в теплом сухом помещении при температуре окружающего воздуха от плюс 15 до плюс 25 °C.
- 7.1.2 Распаковать систему, произвести внешний осмотр и установить выполнение следующих требований:
 - соответствие комплектности и маркировки системы пункту 1.3 САГФ1000 РЭ;
 - отсутствие видимых механических повреждений (в том числе дефектов покрытий), при которых эксплуатация недопустима;
 - отсутствие ослабления крепления элементов конструкции;
 - отсутствие изломов и повреждений кабелей.
- 7.1.3 Результаты поверки считать положительными, если указанные в 7.1.2 требования выполнены, надписи и обозначения маркировки системы имеют четкое видимое изображение. В противном случае дальнейшие операции не выполняют, а систему признают непригодной к применению.
 - 7.2 Опробование
 - 7.2.1 Подключить к разъему EUT системы нагрузку 65 Ом.
 - 7.2.2 Установить систему в режим измерений гармоник.
 - 7.2.3 Установить на выходе системы уровень выходного напряжения 230В.
- 7.2.4 Записать показания системы при измерении коэффициента гармоник тока $K_{\rm I}$, % и напряжения $K_{\rm U}$, %.
- 7.2.5 Результаты опробования считать положительными, если полученные значения коэффициента гармоник тока K_I , % и напряжения K_U , % соответствуют допустимым пределам, указанным в таблице 7.1.

Таблица 7.1

Номер гармоники	Коэффициент гармонической составляющей выходного напряжения и тока %, не более
3	0,9
5	0,4
7	0,3
2,4,6,8,10 с 11 по	0,2
с 11 по	0,1

- 7.3 Идентификация программного обеспечения (ПО) системы
- 7.3.1 С помощью программы HashCalc (или аналогичной) рассчитать контрольную сумму исполняемого кода файла harcs.exe с использованием алгоритма CRC-32.
- 7.3.2 Запустить программу HARCS и считать идентификационное наименование ПО и номер версии с заголовка программы.
- 7.3.3 Результаты поверки считать положительными, если идентификационное наименование ПО, номер версии и цифровой идентификатор (контрольная сумма исполняемого кода) ПО соответствуют данным, приведенным в таблице 7.2.

Таблина 7.2

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	HARCS
Номер версии (идентификационный номер) ПО	4.22 или выше
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	1c6cbffb
Алгоритм вычисления цифрового идентификатора ПО	CRC-32

- 7.4 Определение выходного напряжения переменного тока и относительной погрешности установки выходного напряжения переменного тока источника питания, частоты выходного напряжения и абсолютной погрешности установки частоты выходного напряжения источника
 - 7.4.1 Собрать схему, приведенную на рисунке 1.

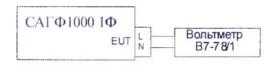


Рисунок 1

- 7.4.2 Последовательно устанавливая уровень выходного напряжения Uo, B равным 200, 220, 250 В измеряют выходное напряжение Uu, B и частоту Fu, Гц с помощью вольтметра B7-78/1 (далее вольтметр).
- 7.4.3 Рассчитать относительную погрешность измерений напряжения δU , % и частоты по формулам (1), (2):

$$\delta U = 100 \cdot (Uo - Uu) / Uu \tag{1}$$

$$\Delta F = 50 - F_{\mathbf{H}} \tag{2}$$

- 7.4.4 Для модификации САГФ1000-3Ф повторить пп. 7.4.1...7.4.3 для двух других фаз выходного сигнала.
- 7.4.5 Результаты поверки считать положительными, если значения относительной погрешности установки выходного напряжения переменного тока источника питания находятся в пределах ± 2 % и значения абсолютной погрешности относительная погрешности установки частоты выходного напряжения находятся в пределах ± 0.25 Γ ц.

- 7.5 Определение угла между фазами выходного напряжения (только для модификации САГФ1000-3Ф)
 - 7.5.1 Подключить вольтметр к выходам L1 и N системы САГФ1000-3Ф.
 - 7.5.2 Записать показания вольтметра U_1 B.
- 7.5.3 Повторить п.п. 7.5.1 7.5.2 последовательно подключая вольтметр к выходам L2 и N, L3 и N, L1 и L2, L2 и L3, L1 и L3 и записать показания вольтметра U₂, U₃, U₁₂, U₂₃, U₁₃, B.
- 7.5.4 Рассчитать углы между фазами выходного напряжения α_{12} , α_{23} , α_{13} , $^{\circ}$, по формулам (3) (5):

$$\alpha_{12} = \arccos\left(\frac{U_1^2 + U_2^2 - U_{12}^2}{2 \cdot U_1 \cdot U_2}\right)$$
 (3)

$$\alpha_{23} = \arccos\left(\frac{U_2^2 + U_3^2 - U_{23}^2}{2 \cdot U_2 \cdot U_3}\right) \tag{4}$$

$$\alpha_{13} = \arccos\left(\frac{U_1^2 + U_3^2 - U_{13}^2}{2 \cdot U_1 \cdot U_3}\right) \tag{5}$$

- 7.5.5 Результаты поверки считать положительными, если значения угла между фазами выходного напряжения составляет ($120\pm1,5$) °.
 - 7.6 Определение коэффициента гармонических составляющих выходного напряжения 7.6.1 Собрать схему, приведенную на рисунке 2.

Рисунок 2

- 7.6.2 Установить на выходе системы уровень выходного напряжения 220В.
- 7.6.3 Шумомер-виброметр, анализатор спектра ЭКОФИЗИКА-110А (далее селективный вольтметр) установить в режим селективного вольтметра.
- 7.6.4 Установить на селективном вольтметре частоту 50 Γ ц и измерить напряжение $U_{50\Gamma$ ц, дБмкВ.
- 7.6.5 Установить на селективном вольтметре частоту $100~\Gamma$ ц, и измерить напряжение Uг, дБмкВ.
 - 7.6.6 Рассчитать коэффициент гармоник Кг по формуле (6):

$$K_{\Gamma} = \left(10^{\frac{U_{\Gamma} - U_{S0\Gamma u}}{20}}\right) \cdot 100\% \tag{6}$$

- 7.6.7 Результаты занести в таблицу 7.2.
- 7.6.8 Повторить 7.6.5...7.6.7, устанавливая частоту в соответствии с таблицей 7.2.

Таблипа 7.2

Частота, Гц	Измеренное значение напряжения гармоники,	Рассчитанное значение коэфици-	Максимально допу- стимый коэффици-	соответствие
ΙЦ	иапряжения гармоники, Ur, дБмкВ	ента гармоник, %	ент	
		•	гармоник, %	
50		-	-	
100			0,2	
150			0,9	
200			0,2	
250			0,4	
300			0,2	
350		440	0,3	
400			0,2	
450			0,2	
500			0,2	
550			0,1	
600			0,1	
650			0,1	
700			0,1	
750			0,1	
800			0,1	
850			0,1	
900			0,1	
950			0,1	
1000			0,1	
1050			0,1	
1100			0,1	
1150			0,1	
1200			0,1	
1250			0,1	
1300			0,1	
1350			0,1	
1400			0,1	
1450			0,1	
1500			0,1	
1550			0,1	
1600			0,1	
1650			0,1	
1700			0,1	
1750			0,1	
1800			0,1	
1850			0,1	
1900			0,1	
1950			0,1	
2000	AND		0,1	

^{7.6.9} Для модификации САГФ1000-3Ф повторить пп. 7.6.4...7.6.8 для двух других фаз выходного сигнала.

^{7.6.10} Результаты поверки считать положительными, если полученные значения коэффициента гармоник соответствуют допустимым пределам, указанным в таблице 7.2.

- 7.7 Определение отношения пикового к среднеквадратичному значению выходного напряжения
 - 7.7.1 Собрать схему, приведенную на рисунке 3.

Рисунок 3

- 7.7.2 Установить на выходе системы уровень выходного напряжения 220В.
- 7.7.3 Измерить с помощью осциллографа амплитудное U_A , B и среднеквадратичное (RMS) U_{RMS} , B значения выходного напряжения. Рассчитать отношение амплитудного и среднеквадратичного значения по формуле (7):

$$Ka = U_A / U_{RMS} \tag{7}$$

- 7.7.4 Для модификации САГФ1000-3Ф повторить пп. 7.7.1...7.7.3 для двух других фаз выходного сигнала.
- 7.7.5 Результаты поверки считать положительными, если отношение пикового к среднеквадратичному значению выходного напряжения составляет от 1,40 до 1,42.
 - 7.8 Определение импеданса источника питания
 - 7.8.1 Отключить систему от сети питания.
 - 7.8.2 Собрать схему, приведенную на рисунке 4.

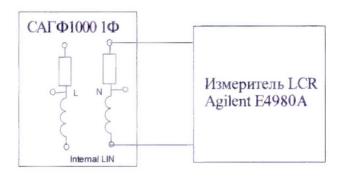
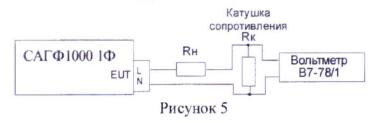


Рисунок 4

- 7.8.3 Измерить с помощью измерителя LCR Agilent E4980A значение комплексного импеданса на частоте 50 Гц по линии N.
 - 7.8.4 Повторить пп. 7.8.2...7.8.3 для линии L.
 - 7.8.5 Для модификации САГФ1000-3Ф повторить пп. 7.8.2...7.8.4 для двух других фаз.
- 7.8.6 Результаты поверки считать положительными, если комплексный импеданс источника питания (активная + индуктивная составляющая) составляет:
 - по фазе (линия L) $(0.24\pm0.024) + i (0.15\pm0.015)$ Ом
 - по нейтрали (линия N) $(0.16\pm0.016) + j (0.10\pm0.01)$ Ом.
- 7.9 Определение диапазона измерений напряжения переменного тока и абсолютной погрешности измерений напряжения переменного тока
 - 7.9.1 Установить систему в режим измерений гармоник.
 - 7.9.2 Собрать схему, приведенную на рисунке 1.
 - 7.9.3 Последовательно устанавливая уровень выходного напряжения источника питания Uo, B равным 10, 50, 120, 230, 250 B записать показания вольтметра Uu, B и показания системы U_{RMS} , B.
 - 7.9.4 Рассчитать абсолютную погрешность измерений напряжения ΔU , В по формуле (8):


$$\Delta U = U_{RMS} - U_{II}$$
 (8)

7.9.5 Результаты измерений и расчетов занести в таблицу 7.3.

Таблица 7.3

Установленное значение напряжения, В	Показание системы U _{RMS} , В	Показание вольтметра Uи, В	Абсолютная погрешность измерений Δ , мТл	Допускаемое значение абсолютной погрешности измерений ΔU , B
10				± 0,17
50				± 0,25
120				± 0,4
230				± 0,6
250				± 0,65

- 7.9.6 Для модификации САГФ1000-3Ф повторить пп. 7.9.2...7.9.5 для двух других фаз выходного сигнала.
- 7.9.7 Результаты поверки считать положительными, если полученные значения абсолютной погрешности измерений напряжения переменного тока соответствуют допустимым пределам, указанным в таблице 7.3.
- 7.10 Определение диапазона измерений и абсолютной погрешности измерений амплитудного значения силы переменного тока
 - 7.10.1 Установить систему в режим измерений гармоник.
 - 7.10.2 Собрать схему, приведенную на рисунке 5.
 - 7.10.3 Установить на выходе системы уровень выходного напряжения 230В.

7.10.4 Последовательно подключая нагрузку RH и катушку сопротивления с номинальным значением сопротивления RK в соответствии с таблицей 7.4 записать показания системы I_{pk} , A и вольтметра U, B. В качестве катушки сопротивления использовать катушки P 321(10 Om), P 321 (0,1 Om), P 322 (0,001 Om).

Таблица 7.4

Предел измерения, А	Сопротивление нагрузки, Ом (Катушка сопротивления	Рекомендованное значение силы тока, А	Показание системы $I_{pk,}$ А	Измеренное значение силы тока $I_{\mu p}, A$	Абсолютная погрешность измерений, ΔI , A A	Допускаемое значение абсолютной погрешности измерений, А
0,25	3250 (10)	0,1				$\pm 0,0010$
0,25	1300 (10)	0,25				$\pm 0,0018$
0,5	1300 (10)	0,25				$\pm 0,0024$
0,5	650 (0,1)	0,5				$\pm 0,0035$
1	650 (0.1)	0,5				$\pm 0,0050$
1	325 (0,1)	1				$\pm 0,0070$
2	325 (0,1)	1				$\pm 0,0095$
2	160 (0,1)	2				$\pm 0,0140$
5	160 (0,1)	2				$\pm 0,0205$
5	65 (0,1)	5				$\pm 0,035$
10	65 (0,1)	5				$\pm 0,050$
10	32,5 (0,001)	10				± 0,070
25	32,5 (0,001)	10				± 0,130
25	15 (0,001)	22				± 0,175
50	15 (0,001)	22				± 0,350

7.10.5 Рассчитать значение тока I_{up} , A, по формуле (9):

$$I_{\rm up} = \frac{\sqrt{2} \cdot U}{R_{\rm g}} \tag{9}$$

7.10.6 Рассчитать абсолютную погрешность измерений силы тока ΔI , A по формуле (10):

$$\Delta I = I_{pk} - I_{\mu p} \tag{10}$$

- 7.10.7 Для модификации САГФ1000-3Ф повторить пп. 7.10.2...7.10.6 для двух других фаз выходного сигнала.
- 7.10.8 Результаты поверки считать положительными, если полученные значения абсолютной погрешности измерений амплитудного значения силы переменного тока соответствуют допустимым пределам, указанным в таблице 7.4.
- 7.11 Определение диапазона измеряемых гармонических составляющих напряжения и силы переменного тока и относительной погрешности измерений коэффициента гармонической составляющей выходного напряжения и силы переменного тока
 - 7.11.1 Собрать схему, приведенную на рисунке 6.

Рисунок 6

- 7.11.2 Установить систему в режим измерений гармоник.
- 7.11.3 Установить на выходе системы уровень выходного напряжения 230В.
- 7.11.4 Установить на селективном вольтметре частоту 50 Γ ц и записать показания селективного вольтметра $U_{50\Gamma u}$, дБмкВ.
 - 7.11.5 Установить систему в режим имитации 2 гармоники (100 Гц) с уровнем 3 %.
- 7.11.6 Установить на селективном вольтметре частоту 100 Гц, и записать показания селективного вольтметра Ur, дБмкВ.
 - 7.11.7 Рассчитать коэффициент гармоник Кг, % по формуле (6).
- 7.11.8 Записать показания системы при измерении коэффициента гармоник тока K_1 , % и напряжения K_1 , %.
- 7.11.9 Рассчитать относительную погрешность измерений коэффициента гармоник тока δK_1 , % и напряжения δK_U , % по формулам (11), (12):

$$\delta K_1 = 100*(K_1 - K_r)/K_r$$
 (11)

$$\delta K_U = 100*(K_U - K_{\Gamma})/K_{\Gamma}$$
 (12)

- 7.11.10 Повторить пп. 7.11.5...7.11.9 устанавливая режим имитации с 3 по 40 гармоники.
- 7.11.11 Для модификации САГФ1000-3Ф повторить пп. 7.11.1...7.11.10 для двух других фаз выходного сигнала.
- 7.11.12 Результаты поверки считать положительными, если полученные значения относительной погрешности измерений коэффициента гармоник тока и напряжения находятся в пределах $\pm 5\%$.
 - 7.12 Определение относительной погрешности измерений опорных доз фликера
 - 7.12.1 Собрать схему, приведенную на рисунке 7.

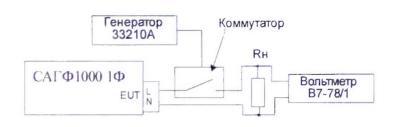


Рисунок 7

- 7.12.2 Подключить нагрузку Rн = 141 Ом.
- 7.12.3 Установить систему в режим измерений фликера.
- 7.12.4 Установить на выходе системы уровень выходного напряжения 230В.
- 7.12.5 Генератор 33210А (далее генератор) установить в режим генерации прямоугольных импульсов частотой 4 Гц, амплитудой 5 В.
- 7.12.6 Вольтметр установить в режим измерений максимального и минимального значения напряжения.
- 7.12.7 Записать показания вольтметра максимальное Umax, B и минимальное Umin, B значение напряжения.
- 7.12.8 Рассчитать амплитуду относительных изменений напряжения Ко, % по формуле (13):

$$Ko = (Umax/Umin - 1) \cdot 100 \tag{13}$$

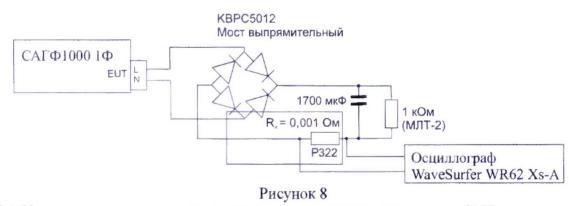
- 7.12.9 Записать показания системы: дозы фликера Fli и кратковременной дозы фликера Pst.
- 7.12.10 Рассчитать погрешность измерений дозы фликера Fli и кратковременной дозы фликера Pst по формулам (14) и (15):

$$\delta_{P} = (Fli - 0.72)/0.72 \cdot 100 \tag{14}$$

$$\delta_{\mathrm{F}} = (\mathrm{P}_{\mathrm{st}} - 1) \cdot 100 \tag{15}$$

7.12.11 Повторить пп. 7.12.1...7.12.10 подключая нагрузку Rн и устанавливая частоту на генераторе в соответствии с таблицей 7.5.

Таблица 7.5


Частота, Гц	Rн, Ом	Установленная амплитуда относительных изменений напряжения, %	Измеренное значение амплитуды относительных изменений напряжения Ко, %	Допускаемые значения амплитуды относительных изменений напряжения	Показание системы Fli (Pst)	Относительная погрешность измерений опорных доз фликера $\delta_{F}(\delta_{P)}$, %)
4	141	0,333		0,3230,343		
8	234	0,201		0,1950,207		
16	125	0,376		0,3650,387		
21	80	0,586		0,5680,604		

- 7.12.12 Для модификации САГФ1000-3Ф повторить пп. 7.12.1...7.12.11 для двух других фаз выходного сигнала.
- 7.12.13 Результаты поверки считать положительными, относительная погрешность измерений опорных доз фликера Fli и относительная погрешность измерений кратковременной дозы фликера Pst находятся в пределах ± 5 %.
 - 7.12.14 Собрать схему, приведенную на рисунке 1.
 - 7.12.15 Установить систему в режим имитации доз фликера.
- 7.12.16 Последовательно устанавливая частоту и амплитуду относительных изменений напряжения в соответствии с таблицей 7.6. Повторить пп. 7.12.7...7.12.11.

Таблица 7.6

Частота колебаний,		относительных напряжения, %	Частота колебаний,	•	относительных напряжения, %
Гц	синусои-	прямоуголь-	Гц	синусои-	прямоуголь-
	дальная	ная		дальная	ная
0,5	2,34	0,514	10,0	0,260	0,205
1,0	1,432	0,471	10,5	0,270	0,213
1,5	1,080	0,432	11,0	0,282	0,223
2,0	0,882	0,401	11,5	0,296	0,234
2,5	0,754	0,374	12,0	0,312	0,246
3,0	0,654	0,355	13,0	0,348	0,275
3,5	0,568	0,345	14,0	0,388	0,308
4,0	0,500	0,333	15,0	0,432	0,344
4,5	0,446	0,316	16,0	0,480	0,376
5,0	0,398	0,293	17,0	0,530	0,413
5,5	0,360	0,269	18,0	0,584	0,452
6,0	0,328	0,249	19,0	0,640	0,498
6,5	0,300	0,231	20,0	0,700	0,546
7,0	0,280	0,217	21,0	0,760	0,586
7,5	0,266	0,207	22,0	0,824	0,604
8,0	0,256	0,201	23,0	0,890	0,680
8,8	0,250	0,199	24,0	0,962	0,743
9,5	0,254	0,200	25,0	1,042	-

- 7.12.17 Для модификации САГФ1000-3Ф повторить пп. 7.12.13...7.12.16 для двух других фаз выходного сигнала.
- 7.12.18 Результаты поверки считать положительными, если относительная погрешность измерений опорных доз фликера Fli и относительная погрешность измерений кратковременной дозы фликера Pst находятся в пределах ± 5 %.
 - 7.13 Определение максимальной амплитуды силы пускового переменного тока
 - 7.13.1 Установить систему в режим измерений гармоник.
 - 7.13.2 Собрать схему, приведенную на рисунке 8.

- 7.13.3 Установить на выходе системы уровень выходного напряжения 230В.
- 7.13.4 Отключить и затем включить выходное напряжение. В момент включения измерить амплитуду импульса напряжения Ua, B при помощи осциллографа.
 - 7.13.5 Рассчитать значение тока I_a, А по формуле (16):

$$I_{a} = \frac{U}{R_{u}} \tag{16}$$

где Rи – сопротивление катушки сопротивления Р322, 0,001 Ом.

7.13.6 Результаты поверки считать положительными, если полученные значения I_a , A не менее 500 A.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки системы оформить свидетельство о поверке установленной формы. Знак поверки наносится на переднюю панель прибора или свидетельство о поверке в виде наклейки или поверительного клейма.
- 8.2 При отрицательных результатах поверки система к применению не допускается и оформляется извещение о непригодности к применению установленной формы с указанием причин непригодности.

Начальник лаборатории 123 ФГУП «ВНИИФТРИ»

А.Е. Ескин