

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ «Ростест-Москва»

А.Д. Меньшиков

«17» сентября 2018 г.

Государственная система обеспечения единства измерений

КОЛОНКИ РАЗДАТОЧНЫЕ СЖИЖЕННОГО ГАЗА HELIX LPG

Методика поверки

РТ-МП-5221-449-2018

1 Общие положения

- 1.1 Настоящая методика поверки распространяется на колонки раздаточные сжиженного газа Helix LPG (далее колонки), изготовленные фирмой «DOVER FUELING SOLUTIONS UK LIMITED», Соединенное Королевство, и устанавливает объём и методы их первичной и периодической поверок.
 - 1.2 Интервал между поверками 1 год.

2 Операции поверки

При проведении поверки колонок выполняются операции, указанные в таблице 1.

Таблица 1- Операции поверки

Наименование операции	Номер пункта методики Поверки	Проведение операции при:	
		первичной поверке	периодической поверке
1 Внешний осмотр	7.1	да	да
2 Проверка герметичности	7.2	да	да
3 Опробование	7.3	да	да
4 Определение относительной погрешности колонки	7.4	да	да

3 Средства поверки

3.1 Средство измерений, применяемое при поверке, указано в таблице 2

Таблица 2 – Основное средство поверки

Номер пункта методики поверки	Наименование и тип основных средств поверки
7.3 – 7.4	Мерник металлический 2-го разряда для сжиженных газов ММСГ-1, номинальная вместимость 10 дм ³ , погрешность $\pm 0,1$ %

3.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

4 Требования безопасности

- 4.1 При проведении поверки должны выполняться следующие требования безопасности:
- к проведению поверки допускаются лица, прошедшие инструктаж по технике безопасности на рабочем месте и имеющие группу по технике электробезопасности не ниже второй;
 - вся аппаратура, питающаяся от сети переменного тока, должна быть заземлена;
- все разъёмные соединения линий электропитания и линий связи должны быть исправны;
- соблюдаться требования безопасности, указанные в эксплуатационных документах на колонки, применяемые средства поверки и вспомогательное оборудование;

- поверитель должен соблюдать правила пожарной безопасности, действующие на предприятии.
- 4.2 Источником опасности при поверке и эксплуатации может быть измеряемая среда сжиженный газ, находящийся под давлением.

5 Условия проведения поверки

- 5.1 При проведении поверки колонки должны быть соблюдены следующие условия:
 - относительная влажность окружающего воздуха от 30 до 95 %;
 - атмосферное давление от 84 до 106 кПа;
 - температура окружающей среды при первичной поверке от 15 до 25 °C;
- температура окружающей среды при периодической поверке от минус 40 до плюс 60 °C;
 - температура поверочной среды от минус 20 до плюс 40 °C;
- измеряемая среда: пропан, бутан и их смеси по ГОСТ Р 52087-2003 «Газы углеводородные сжиженные топливные. Технические условия», ГОСТ 27578-87 «Газы углеводородные сжиженные для автомобильного транспорта. Технические условия».

6 Подготовка к поверке

- 6.1 Колонку подключают в соответствии с Приложением А.
- 6.1 При проведении поверки при температурах, отличных от (20 ± 5) °C, должны быть учтены поправки на изменение вместимости мерника.

7 Проведение поверки

7.1 Внешний осмотр

При внешнем осмотре проверить:

- соответствие комплектности колонки требованиям паспорта;
- отсутствие механических повреждений, не позволяющих провести поверку;
- отсутствие дефектов, препятствующих чтению надписей, маркировки, индикатора.

Проверить соответствие идентификационных данных программного обеспечения (ПО). Для этого необходимо выполнить следующее:

- снять корпус блока электроники в соответствии с руководством по эксплуатации:
- нажать на кнопку CRC на плате iGEM, контрольная сумма и версия будут выведены на дисплей, как приведено в руководстве по эксплуатации;
- проверить соответствие идентификационных данных ПО, приведённым в таблице 3.

Таблица 3 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	iGEM SW ver. 12.XX
Номер версии (идентификационный номер) ПО	12.XX
Цифровой идентификатор ПО (контрольная сумма)	62D1

7.2 Проверка герметичности

Герметичность колонки проверяют давлением, создаваемым насосом при закрытом раздаточном кране. Для этого включить насос, заполнить гидравлическую систему колонки. После выдержки колонки под максимальным рабочим давлением в

течение 3 минут выключить двигатель насоса, перекрыть краны, соединяющие колонку с мерником, и выдержать систему ещё одну минуту, после чего смочить мыльным раствором места соединений колонки и осмотреть их.

Результат проверки считается положительным, если при осмотре не обнаружено следов течи и при обмыливании стыков и соединений не обнаружена утечка газа, а давление не снижается более, чем на 0,01 МПа.

7.3 Опробование

При опробовании необходимо выполнить следующее (см. Приложение А):

- 7.3.1 Пропустить 30 дм³ сжиженного газа из резервуара 14 через колонку 1 в мерник 5 и обратно в резервуар (для смачивания мерника).
- 7.3.2 Закрыть краны 9 и 12 мерника 5 и проверить давление в мернике, оно должно быть не менее 0.4 МПа.
 - 7.3.3 Выключить насос 13 подачи сжиженного газа из резервуара в колонку.
 - 7.3.4 Закрыть кран 10 и открыть краны 9 и 12 мерника 5 и кран 8.
- 7.3.5 Вытеснить сжиженный газ из мерника 5 с помощью сжатого азота из баллона 15, установив с помощью редуктора 16 давление азота, соответствующее давлению в резервуаре при открытом кране 8, до полного опорожнения мерника. Визир 6 должен быть пустым.
 - 7.3.6 Закрыть кран 13 по истечении 30 с.
- 7.3.7 Несколько раз открыть и закрыть кран 8, наблюдая визир 6. Если в визире окажется жидкость, необходимо повторить операции по п. 7.3.5 при открытых кранах 8, 9 и 12.
- 7.3.8 Включить насос 13, подающий сжиженный газ в колонку 1, при закрытых кранах 8 и 12 и открытых кранах 9 и 12 и налить в мерник дозу 10 дм³ сжиженного газа. Закрыть кран 9 и затем кран 10. Проверить давление в мернике по манометру мерника.
 - 7.3.9 Повторить операции по п.п. 7.3.3, 7.3.4, 7.3.5, 7.3.6, 7.3.7, 7.3.8, если это необходимо.

7.4 Определение относительной погрешности колонки

Относительная погрешность колонки определяется путем сравнения значения объёма дозы сжиженного газа, выдаваемой колонкой, с показаниями мерника.

Сброс показания разового учёта выданного объёма топлива в нулевое положение производится автоматически при снятии раздаточного крана с колонки.

Определение относительной погрешности производится трёхкратным измерением выданных доз, указанных в таблице 4, следующим образом:

- подождать, пока давление в гидравлической системе колонки достигнет максимального рабочего значения, и записать его. Давления по окончанию и до начала измерений должны быть равны;
- открыть кран устройства подключения мерника к колонке и налить сжиженный газ в мерник;
 - снять показания термометра и шкалы мерника.

Таблица 4

Минимальная доза, выдаваемая колонкой, л	Доза для определения погрешности, л
5	10

Относительную погрешность колонки δ_V , %, рассчитать по формуле

$$\delta_V = \frac{V_{\kappa} - V_{M}}{V_{M}} \cdot 100, \qquad (1)$$

где V_{κ} — показания индикатора (указателя разового учёта) колонки, дм³;

 V_{M} — объём газа в мернике, дм³.

При поверке при температурах, отличных от (20 \pm 5) °C, объём газа в мернике $V_{\scriptscriptstyle M}$, дм³, определяют по формуле

$$V_{M} = V \cdot [1 + \beta \cdot (t_{M} - 20)], \qquad (2)$$

где V – объём газа в мернике, дм³;

 β — коэффициент объёмного расширения материала мерника (β = 53·10⁻⁶ 1/°C (для мерника из медных сплавов); β = 36·10⁻⁶ 1/°C (для мерника из нержавеющей стали));

 t_{M} — температура в мернике по показаниям термометра, °C.

Относительная погрешность колонки не должна превышать ± 1 %.

8 Оформление результатов поверки

8.1 При положительных результатах поверки оформляется свидетельство о поверке согласно действующим нормативным правовым документам. Знак поверки наносится на свидетельство о поверке, на электронный блок, и измеритель объёма поршневого типа LPG6000, или расходомер массовый LPGmass, или измеритель объёма поршневого типа GPL700 в соответствии с описанием типа.

8.2 При отрицательных результатах поверки колонки выдают извещение о непригодности с указанием причин.

Разработали:

Начальник лаборатории № 449

А.А. Сулин

Ведущий инженер по метрологии лаборатории № 449

И.В. Беликов

Схема подключения колонки для проведения поверки

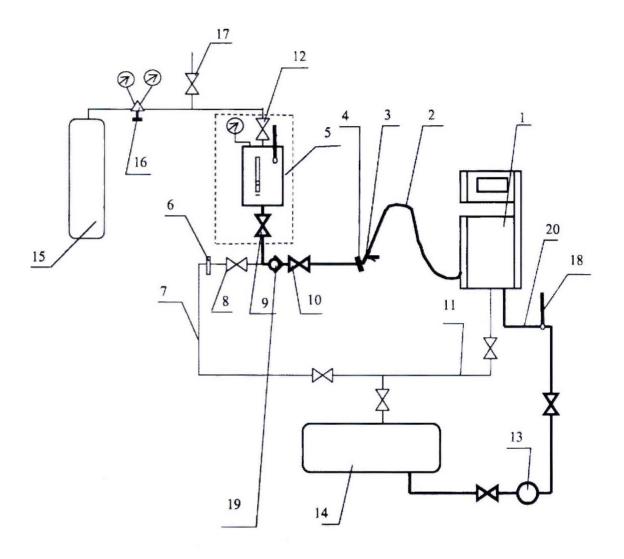


Рисунок А.1. - Схема подключения колонки.

1 — поверяемая колонка, 2 — раздаточный рукав колонки, 3 — кран раздаточного рукава, 4 —гнездо для подключения крана, 5 — мерник, 6 — визир, 7 — трубопровод слива жидкой фазы, 8 —кран отвода жидкой фазы, 9 — кран мерника нижний, 10 — кран устройства подключения мерника к колонке, 11 — трубопровод подачи паровой фазы, 12 — кран мерника верхний, 13 —насос подачи сжиженного газа, 14 — резервуар, 15 — баллон с сжатым азотом, 16 — редуктор, 17 — кран сброса давления азота, 18 — термометр, 19 — клапан обратный, 20 — трубопровод подачи сжиженного газа.