УТВЕРЖДАЮ

Риректор ОП ГНМЦ

АО Нефтеавтоматика»

М.С. Немиров

2018 г.

инструкция

Государственная система обеспечения единства измерений

Система измерений количества и параметров нефти сырой на УПСВ (УПСВ-1) Восточно-Янгтинского месторождения

Методика поверки НА.ГНМЦ.0294-18 МП РАЗРАБОТАНА Обособленным подразделением Головной научный

метрологический центр АО «Нефтеавтоматика» в

г. Казань

(ОП ГНМЦ АО «Нефтеавтоматика»)

исполнители:

Целищева Е.Ю.,

Сайфугалиев Б.Ш.

Настоящая инструкция распространяется на систему измерений количества и параметров нефти сырой на УПСВ (УПСВ-1) Восточно-Янгтинского месторождения (далее – СИКНС) и устанавливает методику ее первичной и периодической поверки.

Интервал между поверками СИКНС: один год.

1 Операции поверки

При проведении поверки выполняют следующие операции:

- 1.1 Внешний осмотр (п.п. 6.1);
- 1.2 Подтверждение соответствия программного обеспечения (далее ПО) СИКНС (п.п. 6.2);
 - 1.3 Опробование (п.п. 6.3);
 - 1.4 Определение метрологических характеристик (далее МХ):
- 1.4.1 Определение MX средств измерений (далее СИ), входящих в состав СИКНС (п.п. 6.4.1);
- 1.4.2 Определение пределов допускаемой относительной погрешности измерений массы сырой нефти (п.п. 6.4.2).

2 Средства поверки

- 2.1 Рабочий эталон 2-го разряда в соответствии с частью 2 Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, утвержденной приказом Росстандарта от 07.02.2018 г. № 256 в диапазоне расходов, соответствующему диапазону расходов СИКНС.
- 2.2 Средства поверки в соответствии с документами на поверку СИ, входящих в состав СИКНС.
- 2.3 Допускается применение аналогичных средств поверки, обеспечивающих определение МХ поверяемой СИКНС с требуемой точностью.

3 Требования безопасности

При проведении поверки соблюдают требования, определяемые:

- в области охраны труда и промышленной безопасности:
- «Правила безопасности в нефтяной и газовой промышленности», утверждены приказом Ростехнадзора от 12.03.2013 № 101;
 - Трудовой кодекс Российской Федерации;
 - в области пожарной безопасности:
 - СНиП 21-01-97 «Пожарная безопасность зданий и сооружений»;
- «Правила противопожарного режима в Российской Федерации», утверждены постановлением Правительства РФ №390 от 25.04.2012;
- СП 12.13130.2009 «Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности»;
- СП 5.13130.2009 «Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования»;
- в области соблюдения правильной и безопасной эксплуатации электроустановок:
 - ПУЭ «Правила устройства электроустановок»;
 - в области охраны окружающей среды:
- Федерального закона от 10.01.2002 г. № 7-Ф3 «Об охране окружающей среды» и других законодательных актов по охране окружающей среды, действующих на территории РФ.

4 Условия поверки

При проведении поверки соблюдают условия в соответствии с требованиями нормативной документации (далее – НД) на поверку СИ, входящих в состав СИКНС.

Таблица1 – Характеристики измеряемой среды

Наименование характеристики	Значение сырая нефть	
Измеряемая среда		
Рабочий диапазон плотности измеряемой среды, кг/м3	от 820,0 до 880,0	
Рабочий диапазон температуры измеряемой среды, °C	от +5 до +58	
Рабочий диапазон давления измеряемой среды, МПа	от 0,4 до 4,0	
Объемная доля воды в сырой нефти, %	не более 10,0	
Диапазон измерений массового расхода сырой нефти, т/ч	от 5 до 50	

5 Подготовка к поверке

Подготовку к поверке проводят в соответствии с инструкцией по эксплуатации СИКНС и НД на поверку СИ, входящих в состав СИКНС.

При подготовке к поверке проверяют наличие действующих свидетельств о поверке и (или) знаков поверки на СИ, входящих в состав СИКНС.

6 Проведение поверки

6.1 Внешний осмотр

При внешнем осмотре должно быть установлено соответствие СИКНС следующим требованиям:

- комплектность СИКНС должна соответствовать технической документации;
- на компонентах СИКНС не должно быть механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
- надписи и обозначения на компонентах СИКНС должны быть четкими и соответствующими технической документации.
 - 6.2 Подтверждение соответствия ПО.
- 6.2.1 Проверка идентификационных данных ПО программы измерительновычислительного комплекса Вектор-02 (далее ИВК).

Чтобы определить идентификационные данные ПО ИВК необходимо выполнить нижеперечисленные процедуры.

В меню навигации выбрать пункт «Сервис». В меню «Сервис» выбрать пункт «О программе». На экран выводится окно, в левом нижнем углу которого указан номер версии (идентификационный номер) ПО. При нажатии на клавишу «Рассчитать» в строке «Контр.Сумма CRC32:» появится цифровой идентификатор ПО (контрольная сумма исполняемого кода), рассчитанный по алгоритму CRC-32.

Полученные идентификационные данные ПО ИВК заносят в соответствующие разделы протокола по форме приложения А.

- 6.2.2 Если идентификационные данные ПО, указанные в описании типа СИКНС, и полученные в ходе выполнения п.6.2.1 идентичны, то делают вывод о подтверждении соответствия ПО СИКНС ПО, зафиксированному во время проведения испытаний в целях утверждения типа, в противном случае результаты поверки признают отрицательными.
 - 6.3 Опробование.

Опробование проводят в соответствии с НД на поверку СИ, входящих в состав СИКНС.

6.4 Определение МХ.

6.4.1 Определение МХ СИ, входящих в состав СИКНС, проводят в соответствии с НД, приведенными в таблице 2.

Таблица2 – Перечень НД на поверку СИ

Наименование СИ	НД		
Счетчики-расходомеры	МП 45115-16 «ГСИ. Счетчики-расходомерь		
массовые Micro Motion	массовые Micro Motion. Методика поверки» с		
CMF 200 (далее – ПР)	изменением №1		
	МИ 3151-2008 «Счетчики-расходомеры		
	массовые. Методика поверки на месте		
	эксплуатации трубопоршневой поверочной		
	установкой в комплекте с поточным		
	преобразователем плотности»		
	МИ 3272-2010 «Счетчики-расходоме		
	массовые. Методика поверки на месте		
	эксплуатации компакт-прувером в комплекте		
	турбинным преобразователем расхода поточным преобразователем плотности»		
	МИ 3189-2009 «Рекомендация. ГСИ. Счетчики-		
	расходомеры массовые Micro Motion фирмы		
	поверочной установки и поточного		
	преобразователя плотности»		
	МИ 3313-2011 «ГСИ. Счетчики-расходомер		
	массовые. Методика поверки с помощью		
	эталонного счетчика-расходомера массового»		
Влагомеры нефти поточные	МП 0309-6-2015 «Инструкция. ГСИ. Влагомеры		
УДВН-1пм3	нефти поточные УДВН-1пм. Методика поверки»		
	МИ 2366-2005 «Рекомендация. Государственная		
	система обеспечения единства измерени		
	Влагомеры нефти типа УДВН. Методика		
	поверки»		
	МИ 3303-2011 «ГСИ. Влагомеры нефти		
	поточные. Методика поверки»		
Датчик избыточного	МП 4212-012-2013 «Датчики давления Метран-		
давления Метран-150TG3	150. Методика поверки»		
Датчик температуры	МП 60922-15 «Термопреобразователь		
Термопреобразователь	сопротивления 90.2020, 90.2050, 90.2210,		
сопротивления TCMУ JUMO	90.2220, 90.2230, 90.2240, 90.2250, 90.2820.		
componing folias solvio	Методика поверки»		
Расходомер жидкости	МП 11735-06:		
	COMMON NO. 10 10 10 10 10 10 10 10 10 10 10 10 10		
турбинный ЕНХА	2.1.1		
	единства измерений, Расходомеры жидкости		
	турбинные типов RTF и PNF. Методика поверки»		
	0 - Deales DTF		
	2. «Расходомеры жидкости турбинные типов RTF		
	и PNF. Рабочие эталоны. Методика поверки»		

6.4.2 Определение относительной погрешности измерений массы сырой нефти.

При прямом методе динамических измерений за погрешность измерений массы сырой нефти бМ, %, принимают пределы допускаемой относительной погрешности измерений ПР.

Относительная погрешность ΠP в диапазоне расходов на рабочей измерительной линии (далее – $U \Pi$) не должна превышать $\pm 0.25\%$, относительная погрешность ΠP в диапазоне расходов на резервно-контрольной $U \Pi$ не должна превышать $\pm 0.20\%$.

Значения пределов относительной погрешности измерений массы сырой нефти не должны превышать ±0.25%.

6.4.3 Определение пределов допускаемой относительной погрешности измерений массы нетто сырой нефти.

Пределы относительной погрешности измерений массы нетто нефти $\delta M_{\rm H},~\%,$ вычисляют по формуле

$$\delta M_{\rm H} = \pm 1.1 \cdot \sqrt{\delta_{\rm M}^2 + \left(\frac{\Delta_{W_{\rm B}}}{1 - \frac{W_{\rm B}}{100}}\right)^2 + \left(\frac{\Delta_{W_{\rm MII}} + \Delta_{W_{\rm XC}}}{1 - \frac{W_{\rm MII} + W_{\rm XC}}{100}}\right)^2}$$
(1)

где $\Delta_{W_{\rm B}}$ - пределы допускаемой абсолютной погрешности измерений массовой доли воды в сырой нефти, %;

 $W_{\rm B}$ - массовая доля воды в сырой нефти, %;

 Δ_{Wxc} - пределы допускаемой абсолютной погрешности измерений массовой доли хлористых солей в обезвоженной дегазированной нефти. %:

 $W_{
m xc}$ - массовая доля хлористых солей в обезвоженной дегазированной нефти, %;

 $\Delta_{W_{\rm MR}}$ - пределы допускаемой абсолютной погрешности измерений массовой доли механических примесей в обезвоженной дегазированной нефти, %;

 $W_{\mbox{\tiny MII}}$ - массовая доля механических примесей в обезвоженной дегазированной нефти, %;

Пределы допускаемой абсолютной погрешности измерения массовой доли воды в сырой нефти $\Delta_{W_{\mathrm{B}}}$, % рассчитывают по формуле:

$$\Delta_{W_{\rm B}} = \frac{\Delta \varphi_{\rm B} \cdot \rho_{\rm B_{20}}}{\left(1 - \frac{\varphi_{\rm B}}{100}\right) \cdot \rho_{\rm H_{20}} + \frac{\varphi_{\rm B}}{100} \cdot \rho_{\rm B_{20}}} \tag{2}$$

где $\Delta \varphi_{\rm B}$ - пределы допускаемой абсолютной погрешности измерений объемной доли воды поточного влагомера, %.

 $\varphi_{\scriptscriptstyle \mathrm{B}}$ - объемная доля воды в сырой нефти, измеренная поточным влагомером, %

 $ho_{_{\rm B_{20}}}$ - плотность пластовой воды при 20°C , кг/м 3 .

 $ho_{_{
m H}_{20}}$ - плотность обезвоженной дегазированной нефти при 20°C

Пределы допускаемой абсолютной погрешности измерения массовой доли механических примесей в обезвоженной дегазированной нефти $\Delta_{W_{\rm MII}},~\%,$ рассчитывают по формуле:

$$\Delta_{W_{\rm MII}} = \pm \sqrt{\frac{R_{\rm MII}^2 - 0.5 \cdot r_{\rm MII}^2}{2}} \tag{3}$$

где $R_{\rm M\Pi}, r_{\rm M\Pi}$ - воспроизводимость и повторяемость метода измерений массовой доли механических примесей в обезвоженной дегазированной нефти по ГОСТ 6370, %

Пределы допускаемой абсолютной погрешности измерения массовой доли хлористых солей в обезвоженной дегазированной нефти $\Delta_{W_{\rm XC}}$, %, рассчитывают в соответствии с ГОСТ 33701 с учетом пересчета в единицы массовой доли хлористых солей по формуле:

$$\Delta_{W_{XC}} = \pm \frac{0.1}{\rho_{20}} \sqrt{\frac{R_{XC}^2 - 0.5 \cdot r_{XC}^2}{2}}$$
 (4)

где $R_{\rm XC}, r_{\rm XC}$ - воспроизводимость и повторяемость метода измерений массовой концентрации хлористых солей в обезвоженной дегазированной нефти по ГОСТ 21534, %

Пределы допускаемой относительной погрешности измерений массы нетто сырой нефти при объемной доле воды в сырой нефти до 5% не должны превышать $\pm 0,35\%$, при объемной доле воды в сырой нефти от 5% до 10% не должны превышать $\pm 0,4\%$

7 Оформление результатов поверки

- 7.1 При положительных результатах поверки оформляют свидетельство о поверке СИКНС в соответствии с требованиями документа «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденного приказом Минпромторга России № 1815 от 02.07.2015 г. На оборотной стороне свидетельства о поверке системы указывают:
 - наименование измеряемой среды;
- значения пределов относительной погрешности измерений массы сырой нефти;
 - идентификационные признаки ПО СИКНС.

Знак поверки наносится на свидетельство о поверке СИКНС.

7.2 При отрицательных результатах поверки СИКНС к эксплуатации не допускают, свидетельство о поверке аннулируют и выдают извещение о непригодности к применению в соответствии с документом «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденным приказом Минпромторга России № 1815 от 02.07.2015 г.

Приложение А

(рекомендуемое)

Форма протокола подтверждения соответствия ПО СИКНС

Место проведения поверки:			
Наименование СИ:			
Заводской номер СИ: №			
Идентификационные данные ПО			:
	(наименование ПО)		
Идентификационные данные	Значение, полученное во время поверки СИКНС	Значение, указанное в описані типа СИКНС	
Идентификационное наименование ПО			
Номер версии (идентификационный номер ПО)			
Цифровой идентификатор ПО			
Другие идентификационные данные			
Заключение: ПО СИКНС соответствует/не соответ утверждения типа СИКНС. Должность лица проводившего поверку:	гствует ПО, зафиксированному	во время исг	пытаний в целях
Desc. =========		. 20 7 9 9 9	
Дата поверки:	<u> </u>	»	20 r.