Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Омской области» (ФБУ «Омский ЦСМ»)

УТВЕРЖДАЮ:

И.о. директора
ФБУ «Омский ЦСМ»

А.В. Бессонов

2018 г.

Государственная система обеспечения единства измерений Счетчики газа бытовые СГ-1 вариант 14 серия 01

МЕТОДИКА ПОВЕРКИ

ОЦСМ 046196-2018 МП

РАЗРАБОТЧИКИ:

Начальник отдела поверки и испытаний средств измерений в приборостроении ФБУ «Омский ЦСМ»

Д.С. Нуждин

Ведущий инженер по метрологии ФБУ «Омский ЦСМ»

зу «Омскии ЦСМ»

Д.А. Воробьев

Настоящая методика поверки распространяется на счетчики газа бытовые СГ-1 вариант 14 серия 01 (далее по тексту — счетчики), выпускаемые ОАО ОмПО «Радиозавод им. А.С. Попова» (РЕЛЕРО) по ЯШИУ.407369.001 ТУ, и устанавливает методику их первичной и периодической поверок.

Интервал между поверками – двенадцать лет.

1 Операции поверки

1.1 При проведении поверки должны быть выполнены операции, представленные в таблице 1.

Таблица 1

	Номер пункта	Проведение операции при	
Наименование операции	методики	первичной	периодической
	поверки	поверке	поверке
Внешний осмотр	7.1	Да	Да
Проверка на герметичность	7.2	Да	Да
Опробование	7.3	Да	Да
Определение потери давления	7.4	Да	Да
Определение основной относительной погрешности измерений объема газа	7.5	Да	Да
Определение абсолютной погрешности измерений температуры газа	7.6	Да	Да

1.2 Если при проведении той или иной операции поверки получен отрицательный результат, поверку прекращают, счетчик признается непригодным к применению.

2 Средства поверки

2.1 При проведении поверки применяют основные и вспомогательные средства поверки, представленные в таблице 2.

Таблица 2

Номер пункта	Наименование и тип основного или вспомогательного средства поверки; обозначение	
методики	ки нормативного документа, регламентирующего основные технические требования и (или)	
поверки	метрологические и основные технические характеристики средства поверки	
7.2	Стенд для проверки герметичности:	
	- до 0,1 кгс/см² (до 1000 мм вод. ст.)	
7.2, 7.3, 7.4, 7.5	Установка поверочная УПС-1М (рег. №72466-18):	
1.2, 1.3, 1.4, 1.3	- диапазон воспроизводимых расходов от 0,03 до 10,00 м ³ /ч; δ: ± 0,5 %	
7.2, 7.3, 7.4, 7.5	Мановакуумметр показывающий МВП4-Уф (рег. №43902-14):	
1.2, 1.3, 1.4, 1.3	- диапазон измерения от -1 до 5 кгс/см²; δ: ± 1,5 %	
7.2, 7.3, 7.4, 7.5	Мановакуумметр двухтрубный МВ-2500 (рег. №1846-93):	
	- диапазон измерения от 0 до 2500 Па, ∆: ± 30 Па	
72.75	Секундомер СОСпр (рег. №11519-11):	
7.2, 7.5	- до 30 мин; ЦД 0,2 c; KT 2	
7.5	Частотомер электронно-счетный Ч3-85/5 (рег. №56478-14):	
	- от 0,001 до 200 МГц; δ : \pm (5·10 ⁻⁶)	
7.6	Термометр цифровой малогабаритный ТЦМ 9410/М2 в комплекте с термопреобразователем	
	TTЦ14-180-1 (per. №32156-06):	
	- от -50 до +200 °C; Δ : $\pm (0.06+0.0005 \cdot t)$ °C	

Продолжение таблицы 2

Номер пункта	Наименование и тип основного или вспомогательного средства поверки; обозначение
методики	нормативного документа, регламентирующего основные технические требования и (или)
поверки	метрологические и основные технические характеристики средства поверки
Гигрометр психрометрический ВИТ-2 (рег. №42453-09):	
6, 7	- от +5 до +25 °C; Δ : ± 0,2 °C;
~	- от 20 до 90 %; ∆: ± 6 % при температуре по сухому термометру св. +10 до +30 °C
6, 7	Барометр-анероид контрольный М-67 (рег. №3744-73):
	- от 610 до 790 мм рт. ст.; Δ: ± 0,8 мм рт. ст.
Примечание -	В таблице приняты следующие обозначения: Δ – абсолютная погрешность измерений, единица
величины: б – о	гносительная погрешность измерений %: ПЛ – цена деления, единица величины: КТ – класс точности.

t – измеряемая температура, °C.

- Эталоны единиц величин, используемые при поверке, должны быть аттестованы 2.2 в соответствии с Положением об эталонах единиц величин, используемых в сфере государственного регулирования обеспечения единства измерений.
- Средства измерений должны быть поверены, испытательное оборудование -2.3 аттестовано в установленном порядке.
- 2.4 обеспечивающих Допускается применение аналогичных средств поверки, определение метрологических характеристик поверяемых счетчиков с требуемой точностью

3 Требования безопасности

- 3.1 Лица, проводящие поверку, должны быть ознакомлены с правилами (условиями) безопасной работы счетчика, оборудования и средств поверки, указанными в эксплуатационной документации на них, и пройти инструктаж по технике безопасности,
- 3.2 Все работы по монтажу и демонтажу счетчика выполняют при неработающей поверочной установке.
- 3.3 Конструкция соединительных элементов счетчика и поверочной установки должна обеспечивать надежность крепления счетчика и фиксацию его положения в течение всего цикла поверки.

4 Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие настоящую методику поверки, эксплуатационную документацию на счетчики и средства их поверки, прошедшие обучение в качестве поверителей и работающие в организации, аккредитованной в соответствии с законодательством Российской Федерации об аккредитации в национальной системе аккредитации.

5 Условия поверки

- 5.1 В качестве поверочной среды используют воздух.
- 5.2 Требования к помещению, в котором должна находиться поверочная установка, приведены в эксплуатационной документации на поверочную установку.
 - 5.3 При проведении поверки соблюдают следующие условия:

- температура окружающего воздуха, °С

от +15 до +25;

- относительная влажность окружающего воздуха, %, не более

80:

- атмосферное давление, кПа

от 84,0 до 106,7;

- изменение температуры поверочной среды в течение поверки, °C

не более 1;

- вибрация, тряска и удары, влияющие на работу счетчика

отсутствуют;

- электромагнитное поле, кроме Земного

отсутствует;

- рабочее положение

любое.

6 Подготовка к поверке

- 6.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- поверяемый счетчик и средства поверки приводят в рабочее состояние в соответствии с документацией по их эксплуатации;
- поверяемый счетчик и средства поверки выдерживают в помещении, где проводят поверку, не менее двух часов.
 - 6.2 Счетчик на первичную поверку представляют с паспортом.
- 6.3 Счетчик на периодическую поверку представляют с паспортом или свидетельством о предыдущей поверке.
- 6.4 Перед проведением периодической поверки необходимо заменить автономный элемент питания счетчика.

7 Проведение поверки

7.1 Внешний осмотр

- 7.1.1 При внешнем осмотре устанавливают соответствие счетчика следующим требованиям:
- 7.1.1.1 Надписи и обозначения на корпусе счетчика должны быть четкими и соответствовать требованиям эксплуатационной документации.
- 7.1.1.2 Видимые повреждения, препятствующие правильному снятию показаний должны отсутствовать.

- 7.1.1.3 В исходном состоянии индикация счетчика должна находится в неактивном состоянии, показания на отсчетном устройстве должны отсутствовать (при этом измерение объема потребленного газа производится). Однократное нажатие на экран отсчетного устройства ближе к знаку « Д» переводит индикацию в активное состояние, на отсчетном устройстве отображается информация об объеме потребленного газа в кубических метрах. При повторном нажатии на экран отсчетного устройства ближе к знаку « Д» в активном состоянии отображаются показания объема потребленного газа с дробными частями числа кубических метров после запятой. Время отображения информации в активном состоянии после нажатия на отсчетное устройство 30 с. После истечения 30 с индикация счетчика переходит в неактивное состояние.
- 7.1.1.4 Емкость отсчетного устройства должна быть 99999,999 м³ (в режиме отображения объема потребленного газа с дробными частями числа кубических метров после запятой).
- 7.1.1.5 Цена деления отсчетного устройства должна быть 0,001 м³ (в режиме отображения объема потребленного газа с дробными частями числа кубических метров после запятой).
- 7.1.1.6 На корпусе счетчика должна находиться стрелка, указывающая направления потока измеряемого газа.
- 7.1.1.7 Пломбы должны находиться на местах, определенных технической документацией на счетчик.
- 7.1.2 Счетчик, не удовлетворяющий вышеперечисленным требованиям, дальнейшей поверке не подлежит.

7.2 Проверка на герметичность

- 7.2.1 Проверку на герметичность счетчика проводят с помощью стенда для проверки герметичности (схема проверки герметичности приведена в приложении А) следующим образом:
 - 7.2.1.1 Закрывают вентили «1», «2», «3».
 - 7.2.1.2 Устанавливают счетчик на стенд для проверки герметичности.
- 7.2.1.3 Плавно открывают вентиль «2» и устанавливают избыточное давление в системе $(10,0\pm0,2)$ кПа. Значение давления контролируют по манометру.
- 7.2.1.4 Плавно открывают вентиль «1» и контролируют показания манометра водяного, которые должны быть (9.8 ± 0.4) кПа $((1000\pm40))$ мм вод. ст.).
 - 7.2.1.5 Закрывают вентили «1» и «2» и открывают вентиль «3»;
- 7.2.1.6 В течение 60 с наблюдают за изменением давления по манометру водяному. Давление не должно падать.
- 7.2.1.7 По окончанию проверки открывают вентиль «1», снимают счетчик и закрывают вентили «1» и «3».

7.3 Опробование

- 7.3.1 Проверка работоспособности
- 7.3.1.1 Устанавливают счетчик в поверочную установку.
- 7.3.1.2 Контролируют давление в вакуумной сети. Давление по вакуумметру должно быть в пределах от минус 1,0 до минус 0,8 кгс/см².
 - 7.3.1.3 Выбирают на установке сопло «7» (значение расхода 4,00-0,40 м³/ч) таблицы 4.
- 7.3.1.4 Двойным нажатием на экран отсчетного устройства ближе к знаку « **△**», переводят отсчетное устройство в режим отображения показаний общего объема потребленного газа с дробными частями числа кубических метров после запятой.
- 7.3.1.5 Включают расход, при этом показания отсчетного устройства должны равномерно увеличиваться.
- 7.3.1.6 Счетчик, не удовлетворяющий данному требованию, дальнейшей поверке не подлежит.
 - 7.3.2 Проверка идентификационных данных программного обеспечения
- 7.3.2.1 Для проверки идентификационных данных программного обеспечения счетчик необходимо перевести в режим отображения технологической информации с идентификационными данными программного обеспечения. Для перевода счетчика в режим отображения технологической информации с идентификационными данными программного обеспечения реализовано два способа:
- 7.3.2.1.1 Устанавливают счетчик в поверочную установку и задают расход 4,0 м³/ч, производят нажатие на экран отсчетного устройства ближе к знаку « △», вначале три нажатия, затем два нажатия и одно нажатие, с частотой 1 нажатие в с, с интервалом между сериями 2 с, при этом отсчетное устройство счетчика перейдет в режим отображения технологического кадра, содержащего информацию об измеренной температуре газа, модуле счетчика, измеренном объеме газа (накопительный итог с начала эксплуатации). Если перехода не произошло, повторить нажатия до перехода отсчетного устройства в режим отображения технологического кадра. При последующем однократном нажатии на экран отсчетного устройства ближе к знаку « △», отсчетное устройство счетчика перейдет в режим отображения следующего технологического кадра с идентификационными данными программного обеспечения, для возврата в режим отображения показаний общего объема потребленного газа в кубических метрах необходимо произвести тройное нажатие на экран отсчетного устройства ближе к знаку « △», с частотой 1 нажатие в с.

7.3.2.1.2 Удаляют заглушку отверстия доступа на боковой стороне корпуса счетчика, переводят индикацию счетчика в активное состояние, соединяют перемычкой контакты 2 и 6 разъема X2 платы счетчика через отверстие доступа (расположение контактов разъема представлено в приложении Б), отсчетное устройство счетчика перейдет в режим отображения технологического кадра, содержащего информацию о температуре газа, модуле счетчика, измеренном объеме газа (накопительный итог с начала эксплуатации),при последующем однократном нажатии на экран отсчетного устройства ближе к знаку « **\(\Delta\)**», отсчетное устройство перейдет счетчика режим отображения следующего технологического кадра с идентификационными данными программного обеспечения, для возврата в режим отображения показаний общего объема потребленного газа в кубических метрах необходимо отсоединить перемычку от контактов 2 и 6 разъема Х2 платы счетчика.

Примечание — Модуль счетчика — это количество импульсов, генерируемое датчиком расхода при прохождении через счетчик объема газа равного 0,001 м³. Значение модуля индивидуально для каждого счетчика и изменяется в зависимости от величины установленного расхода.

7.3.2.2 Результаты проверки считают положительными, если идентификационные данные программного обеспечения счетчика соответствуют представленным в таблице 3.

Таблица 3

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	11401.hex
Номер версии (идентификационный номер) ПО	1.0.0
Цифровой идентификатор ПО	EEA5BF10

7.4 Определение потери давления

- 7.4.1 Потерю давления на счетчике определяют при максимальном расходе (4,0_{-0,6}) м³/ч. Потерю давления измеряют с помощью мановакуумметра двухтрубного МВ-2500, входящего в состав поверочной установки.
- 7.4.2 Результаты проверки считают положительными, если потеря давления на счетчике не превышает 1,7 кПа (173 мм вод. ст.).
- 7.4.3 Допускается определять потерю давления одновременно с определением основной относительной погрешности измерений объема газа на максимальном расходе по 7.5 настоящей методики.

7.5 Определение основной относительной погрешности измерений объема газа

7.5.1 Основную относительную погрешность измерений объема газа определяют методом сравнения объема воздуха, измеренного поверяемым счетчиком и поверочной установкой на расходах, представленных в таблице 4.

Таблица 4

Pacxo	Расход, м3/ч	
Номинальное значение,	Допустимое отклонение	м³, не менее
0,040	+ 0,008	0,002
0,300	± 0,060	0,010
0,600	± 0,120	0,020
0,800	± 0,160	0,030
2,300	± 0,460	0,100
3,000	± 0,600	0,100
4,000	- 0,800	0,100

- 7.5.2 Измерение объема начинают не менее чем через 10 с после установления контрольного расхода. Минимальные значения контрольных объемов воздуха, измеряемых при поверке, указаны в таблице 4.
 - 7.5.3 Устанавливают счетчик на поверочную установку.
 - 7.5.4 Задают необходимый расход подключением соответствующего сопла.
- 7.5.5 Двойным нажатием на экран отсчетного устройства ближе к знаку «**△**», переводят отсчетное устройство в режим отображения показаний общего объема потребленного газа с дробными частями числа кубических метров после запятой.
- 7.5.6 Измеряют время прохождения через счетчик заданного в таблице 4 объема воздуха для соответствующего расхода с точностью до 0,2 с.
- 7.5.7 Эталонный объем газа V_0 , м³, заданный поверочной установкой определяют по формуле:

$$V_{\rm o} = \frac{K_{\rm o}}{1000} \cdot \sqrt{t + 273,15} \cdot \left(1 - \frac{\Delta P_{\rm cu}}{P_{\rm atm}}\right) \cdot \tau, \tag{1}$$

где K_9 — градуировочный коэффициент эталонного критического сопла (по сертификату о калибровке на эталонное критическое сопло), л·с⁻¹·K^{-0,5};

t – температура окружающего воздуха при проведении поверки, °C;

 $\Delta P_{\rm cu}$ – потеря давления на счетчике при поверочном расходе, кПа;

 $P_{\text{атм}}$ – атмосферное давление в месте проведения поверки, кПа;

au – интервал времени прохождения заданного объема воздуха через поверяемы счетчик, с.

7.5.8 Основную относительную погрешность измерений объема газа определяют по формуле:

$$\delta = \left(\frac{V_{\text{cq 20}}}{V_0 \cdot K} - 1\right) \cdot 100 \%, \tag{2}$$

где $V_{\text{сч20}}$ — объем воздуха, измеренный счетчиком, приведенный к нормальным условиям по ГОСТ 2939-63 по температуре, м³;

 V_0 — эталонный объем воздуха, заданный поверочной установкой, м³, определяемый по формуле (1);

K — поправочный коэффициент приведения измеренного объема газа к нормальным условиям по ГОСТ 2939-63 по температуре (плюс 20 °C), определяемый по формуле:

$$K = \frac{293,15}{t + 273.15},\tag{3}$$

где t – температура окружающего воздуха при проведении поверки, °C.

- 7.5.9 При каждом значении расхода воздуха измерения проводят до трех раз. Если по результатам первого измерения основная относительная погрешность счетчика не превышает пределов допускаемой относительной погрешности, повторные измерения не проводят. В противном случае измерения повторяют и за результат измерений принимают среднее арифметическое из полученных значений.
- 7.5.10 На расходах от 0,04 м³/ч до 3,00 м³/ч, определение основной относительной погрешности измерений объема газа допускается проводить методом измерения частоты сигнала датчика, соответствующей измеряемому расходу следующим образом:
 - 7.5.10.1 Удаляют заглушку отверстия доступа на боковой стороне корпуса счетчика.
- 7.5.10.2 Переводят счетчик в режим отображения технологического кадра описанного в 7.3.2.1, содержащего информацию об измеренной температуре газа, модуле счетчика, измеренном объеме газа.
 - 7.5.10.3 Устанавливают счетчик на поверочную установку и задают поверяемый расход.
- 7.5.10.4 Подключают вход частотомера к контакту 4 разъема X2 платы счетчика через отверстие доступа, общий провод соединяют с контактом 2 разъема X2 платы счетчика (корпус счетчика).
- 7.5.10.5 Устанавливают частотомер в режим измерения частоты следования импульсов, включают фильтр нижних частот 100 кГц, устанавливают время счета 10 с.
- 7.5.10.6 Измеряют частоту сигнала на поверяемом расходе F_i , Γ ц, не менее трех раз, с точностью до двух знаков после запятой, за результат измерений принимают среднее арифметическое из полученных значений.

7.5.10.7 Определяют эталонный объем воздуха, заданный поверочной установкой, м³, по формуле:

$$V_{0} = \frac{K_{3}}{1000} \cdot \sqrt{t + 273,15} \cdot \left(1 - \frac{\Delta P_{C4}}{P_{ATM}}\right) \cdot \frac{M}{F_{i}},\tag{4}$$

где K_3 — градуировочный коэффициент эталонного критического сопла (по сертификату о калибровке на эталонное критическое сопло), л·с⁻¹·К^{-0,5};

t – температура окружающего воздуха при проведении поверки, °C;

 $\Delta P_{\rm cu}$ – потеря давления на счетчике при поверочном расходе, кПа;

 $P_{\text{атм}}$ – атмосферное давление в месте проведения поверки, кПа;

M – модуль счетчика на поверяемом расходе;

 F_{i} – частота сигнала на i-ом поверочном расходе, Γ ц.

- 7.5.10.8 Основную относительную погрешность измерений объема газа определяют по формуле (2) при заданном значении объема $V_{cq20} = 0.001 \text{ м}^3$.
- 7.5.11 Основная относительная погрешность измерений объема газа не должна превышать допускаемых пределов:
 - $-\pm 3.0$ % в диапазоне расходов от 0,04 до 0,80 м³/ч включительно;
 - $-\pm 1,5$ % в диапазоне расходов св. 0,8 до 4,0 м³/ч.
- 7.5.12 После окончания поверки счетчик переводят в режим отображения показаний общего объема потребленного газа в кубических метрах

7.6 Определение абсолютной погрешности измерений температуры газа

- 7.6.1 Абсолютную погрешность измерений температуры газа определяют методом сравнения температуры, измеренной эталонным термометром и датчиком температуры счетчика следующим образом:
- 7.6.1.1 Счетчик переводят в режим отображения технологической информации по методике, изложенной в 7.3.2.1.
- 7.6.1.2 Не менее чем через две минуты фиксируют температуру, измеренную эталонным термометром и измеренную датчиком температуры счетчика.
 - 7.6.1.3 Определяют абсолютную погрешность измерений температуры газа по формуле:

$$\Delta = (t_{\rm CM} - t_{\rm ST}),\tag{3}$$

где t_{cq} – температура, измеренная датчиком счетчика, °C;

 $t_{\text{терм}}$ – температура, измеренная эталонным термометром, °C.

7.6.2 Абсолютная погрешность измерений температуры газа не должна превышать допускаемых пределов \pm 0,5 °C.

- 7.6.3 Допускается определять абсолютную погрешность измерений температуры газа одновременно с определением основной относительной погрешности измерений объема газа по 7.5 настоящей методики.
- 7.6.4 После окончания поверки счетчик переводят в режим отображения показаний общего объема потребленного газа в кубических метрах

8 Оформление результатов поверки

- 8.1 Результаты поверки оформляются протоколом поверки произвольной формы.
- 8.2 Положительные результаты первичной поверки оформляются оттиском поверительного клейма в паспорте или свидетельством о поверке установленного образца. Счетчик пломбируется согласно схеме пломбировки, представленной в приложении В.
- 8.3 Положительные результаты периодической поверки оформляются свидетельством о поверке установленного образца. Счетчик пломбируется согласно схеме пломбирования, представленной в приложении В.
- 8.4 При отрицательных результатах первичной поверки счетчик считают непригодным к применению.
- 8.5 При отрицательных результатах периодической поверки счетчик считают непригодным к применению. Свидетельство о поверке аннулируют и выдают извещение о непригодности установленного образца, с указанием причин непригодности.

Приложение А

(справочное)

Схема структурная проверки герметичности счетчиков

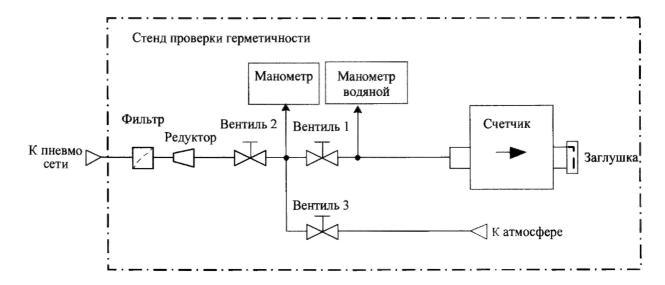
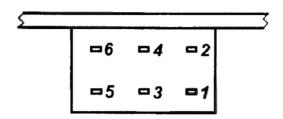



Рисунок А.1 – Схема структурная проверки герметичности счетчиков

Приложение Б

(справочное)

Расположение контактов разъема X2

Вид со стороны отверстия доступа

Контакт	Цепь
2	корпус (общий провод)
4	контроль частоты сигнала
6	Выход в режим отображения
	технологической информации

Рисунок Б.1 – Расположение контактов разъема X2

Приложение В

(обязательное)

Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки

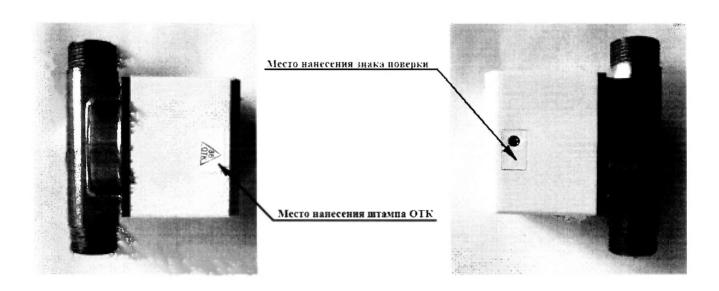


Рисунок В.1 — Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки