УТВЕРЖДАЮ

Технический директор ООО «ИЦРМ»

__ М. С. Казаков

«04» октября 2018 г.

Газоанализаторы трассовые Dräger Pulsar тип OTR 00YY

Методика поверки

ИЦРМ-МП-090-18

Содержание

3
3
3
5
5
5
€
7
. 11

1 ВВОДНАЯ ЧАСТЬ

- 1.1 Настоящая методика поверки распространяется на газоанализаторы трассовые Dräger Pulsar тип OTR 00YY (далее-газоанализаторы) и устанавливает методику их первичной и периодической поверок.
- $1.2~{
 m Ha}$ первичную поверку следует предъявлять газоанализатор до ввода в эксплуатацию и после ремонта. Первичная поверка газоанализатора проводится по поверочным газовым смесям (далее Γ C) определяемых веществ и Γ C, содержащих поверочный компонент.
- 1.3 На периодическую поверку следует предъявлять газоанализатор в процессе эксплуатации и хранения. Периодическая поверка газоанализатора проводится по ГС, содержащих поверочный компонент.
 - 1.4 Интервал между поверками не реже одного раза в год.
- 1.5 Основные метрологические характеристики (диапазоны измерений, пределы допускаемых погрешностей) приведены в таблице Б1 Приложения Б.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1

	Номер	Необходимость выполнения			
Наименование операции поверки	пункта ме- тодики поверки	при пер- вичной поверке	при периодиче- ской поверке		
Внешний осмотр	8.1	Да	Да		
Опробование и подтверждение соответствия программного обеспечения: - опробование - подтверждение программного обеспечения	8.2 8.2.1 8.2.2	Да Да	Да Нет		
Определение нормируемых метрологических характеристик	8.3	Да	Да		

- 2.2 Последовательность проведения операций поверки обязательна.
- 2.3 При получении отрицательного результата в процессе выполнения любой из операций поверки газоанализатор бракуют и его поверку прекращают.

3 СРЕДСТВА ПОВЕРКИ

При проведении поверки рекомендуется применять средства поверки, приведённые в таблице 2 и газовые смеси (далее – Γ C), приведенные в таблице A1 Приложения A.

Применяемые средства поверки должны быть исправны, средства измерений поверены и иметь действующие документы о поверке, ГСО в баллонах под давлением – действующие паспорта. Испытательное оборудование должно быть аттестовано.

Допускается применение аналогичных средств поверки, в том числе ГСО состава газовых смесей и генераторы газовых смесей, метрологические характеристики которых обеспечивают приготовление поверочных газовых смесей с характеристиками, соответствующими приведенным в таблице А1 Приложения А.

Таблица 2 – Средства поверки

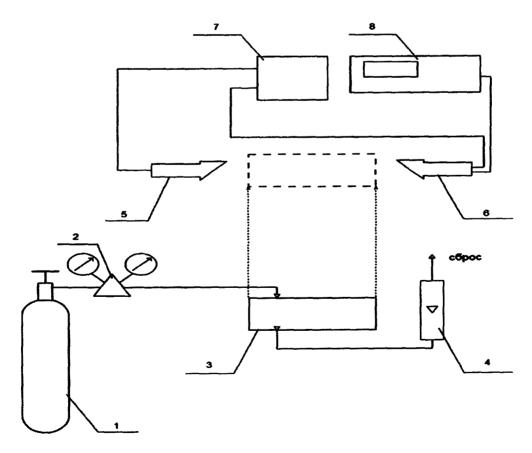
1 40	лица 2 – Средства поверки									
No	Наименование, обозначение	Номер пункта Методики	Рекомендуемый тип средства поверки и его регистрационный номер в Федеральном информационном фонде или метрологические характеристики							
	Основные средства поверки									
1.	Стандартные образцы состава искусственной газовой смеси ГСО ПГС	8.3	Метан-азот (ГСО 10707-2015), этан-азот (ГСО 10543-2014), пропан-азот (ГСО 10543-2014), н-бутан-азот (ГСО 10543-2014), изобутан-азот (ГСО 10543-2014), этилен-азот (ГСО 10543-2014), пропилен-азот (ГСО 10543-2014) в баллонах под давлением, выпускаемые по ТУ6-16-2956-92 (технические характеристики ГС приведены в таблице А1 Приложения А)							
2.	Поверочный нулевой газ	8.3	Азот особой чистоты сорт 2 по ГОСТ 9293-74 в баллоне под давлением							
	Вспомогательные средства поверки (оборудование)									
3.	Генератор газовых смесей ГГС	8.3	Генератор газовых смесей ГГС модификации ГГС-Р, рег. № 62151-15							
4.	Секундомер	8.3	Секундомер механический СОПпр-2a-3-000, рег. № 11519-11							
5.	Ротаметр	8.3	Ротаметр с местными показаниями типа РМ модификации РМ-КА-0,063 ГУЗ, рег. № 59782-15							
6.	Мультиметр	8.3	Мультиметр 3458А, рег. № 25900-03							
7.	Источник питания	8.3	Источник питания SM6000 модификации SM 30-200, рег. № 62237-15							
8.	Кюветы газовые	8.3	Кювета газовая ГСО ПГС из комплекта длина 0,176 м/ 0,068 м							
9.	Трубка фторопластовая	8.3	Трубка фторопластовая по ТУ 6-05-2059-87, диаметр условного прохода 5 мм, толщина стенки 1 мм							
10.	Юстировочный комплект	8.2, 8.3	Комплект для юстировки Pulsar (ручной терминал тип GC2, пластины тестовые, шестигранный ключ, ПО Pulsar PC Software или Dräger PolySoft)							
11.	Интерфейсный адаптер	8.2, 8.3	Адаптер интерфейсный РІА тип НАС 00YY							
12.	Модуль цифрового интерфейса	8.2, 8.3	Модуль цифрового интерфейса AI500							

No	Наименование, обозначение	Номер пункта Методики	Рекомендуемый тип средства поверки и его регистрационный номер в Федеральном информационном фонде или метрологические характеристики
13.	Кабель интерфейсный	8.2, 8.3	Кабель интерфейсный для подключения к ПК
14.	Конвертер USB-ИК	8.2, 8.3	Конвертер USB-ИК DIRA с кабелем
15.	Адаптер для связи с ПК по HART	8.2, 8.3	USB/HART модем
16.	Коммуникатор HART	8.2, 8.3	Ручной коммуникатор HART
17.	Тестовые пластины метан/пропан	8.3	Пластины тестовые для версии метан/пропан
18.	Тестовые пластины этилен	8.3	Пластины тестовые для версии этилен
19.	Редуктор баллонный	8.3	Редуктор баллонный БКО 50-4, наибольшая пропускная способность 50 м ³ /ч
20.	Вентиль точной регулировки	8.3	Вентиль точной регулировки ВТР-1
21.	Термогигрометр электронный	8.1-8.3	Термогигрометр электронный «CENTER» модель 313, рег. № 22129-09
22.	Барометр-анероид метеорологический БАММ-1	8.1-8.3	Барометр-анероид метеорологический БАММ-1, рег. № 5738-76

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К проведению поверки допускаются лица, изучившие эксплуатационную документацию на газоанализаторы, прошедшие необходимый инструктаж, аттестованные в качестве поверителей.
- 4.2 К проведению поверки допускают лица, являющиеся специалистами органа метрологической службы, юридического лица или индивидуального предпринимателя, аккредитованного на право поверки, непосредственно осуществляющие поверку средств измерений.
- 4.3 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением до $1000~\mathrm{B}$ с квалификационной группой по электробезопасности не ниже III.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ


- 5.1 Помещение, где проводится поверка должно быть оборудовано приточновытяжной вентиляцией.
- 5.2 При работе с чистыми газами и ГС в баллонах под давлением необходимо соблюдать «Правила устройства и безопасности эксплуатации сосудов, работающих под давлением», утвержденные Госгортехнадзором России 11.06.03 № 91.
- 5.3 Следует выполнять требования, изложенные в «Правилах технической эксплуатации электроустановок потребителей (ПТЭ)», «Правила техники безопасности при эксплуатации электроустановок потребителей» и «Правила устройства электроустановок (ПУЭ)», утвержденных в установленном порядке.
 - 5.4 Не допускается сбрасывать ГСО-ПГС в атмосферу рабочих помещений.

6 УСЛОВИЯ ПОВЕРКИ

- 6.1 При проведении поверки должны соблюдаться следующие условия применения:
- температура окружающего воздуха (20 ± 5) °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84 до 106,7 кПа.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- изучить эксплуатационные документы на поверяемые газоанализаторы, а также руководства по эксплуатации на применяемые средства поверки;
- выдержать газоанализатор в условиях окружающей среды, указанных в п. 6.1 не менее 2 ч, если он находился в климатических условиях, отличающихся от указанных в п.6.1;
- подготовить к работе средства поверки и выдержать во включенном состоянии в соответствии с указаниями руководств по эксплуатации;
- баллоны с ГСО-ПГС выдержать в помещении, в котором проводят поверку в течение 24 часов;
 - собрать схему подачи ГС в соответствии с рис.1;
 - включить приточно-вытяжную вентиляцию.
- расстояние (длина трассы) между приемником и передатчиком должно быть не менее минимально допустимого, указанного в эксплуатационной документации поверяемого газоанализатора (допускается проводить поверку с установленным на передатчике оптическим аттенюатором).

- 1- источник ГС (баллон или ГГС);
- 2- редуктор и вентиль точной регулировки;
- 3- кювета газовая;

- 4- индикатор расхода (ротаметр);
- 5- передатчик газоанализатора;
- 6- приемник газоанализатора;
- 7- источник питания (подключение питания показано условно);
- 8- мультиметр.

Рисунок 1 – Схема подачи ГСО ПГС на газоанализаторы при проведении поверки.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

При проведении внешнего осмотра газоанализатора проверяют:

- соответствие комплектности перечню, указанному в руководстве по эксплуатации;
- соответствие серийного номера указанному в руководстве по эксплуатации;
- чистоту и исправность разъемов;
- маркировку и наличие необходимых надписей на передатчике и приемнике;
- отсутствие механических повреждений и ослабление крепления элементов конструкции (повреждение корпуса, разъёма);
 - сохранность органов управления, четкость фиксаций их положений.

Результат внешнего осмотра считают положительным, если выполняются все вышеуказанные требования.

- 8.2 Опробование и подтверждение соответствия программного обеспечения
- 8.2.1 Опробование проводить в следующей последовательности:

Проверка общего функционирования газоанализатора проводится автоматически при включении электрического питания.

По окончанию процедуры запуска приемник и передатчик газоанализатора переходят в режим измерений, выходной аналоговый сигнал должен быть в пределах от 4 до 20 мА, отсутствует сигнализация об отказах (значение токового сигнала 3,5 мА свидетельствует о предварительном предупреждении, 2 мА — блокировке луча, менее 1 мА — неисправности). При наличии ручного управляющего терминала GC2, подключенного к разъему на корпусе передатчика или приемника, на его дисплее должны отображаться текущие результаты измерений интегральной концентрации определяемого компонента.

Результаты считаются положительными, если газоанализатор работоспособен в соответствии с руководством по эксплуатации.

- 8.2.2 Подтверждение соответствия программного обеспечения (далее ПО) проводить в следующей последовательности:
- включить ПК и включить электрическое питание газоанализатора, на ПК запустить программу Pulsar PC Software или Dräger PolySoft в соответствии с руководством по эксплуатации, в меню программы считать данные о ПО приемника и передатчика (идентификационное наименование и номер версии ПО).

Результаты считаются положительными, если:

- идентификационное наименование соответствует указанному в описании типа и эксплуатационной документации,
- номер версии ПО не ниже указанного в описании типа и эксплуатационной документации.
 - 8.3 Определение нормируемых метрологических характеристик

Определение допускаемой приведенной (к верхнему пределу диапазона измерений) погрешности измерений по ГС.

Определение допускаемой приведенной (к верхнему пределу диапазона измерений) погрешности измерений проводится с использованием:

- при первичной поверке

ГС, содержащих определяемый компонент, - стандартные образцы состава: по ГС по ТУ 6-16-2956-92 и ГС, содержащим поверочный компонент (метан, пропан или этилен).

- при периодической поверке

ПГС, содержащих поверочный компонент (метан, пропан или этилен).

Перечень ГС, содержащих определяемые и поверочные компоненты, приведен в таблице A1, A2 Приложения A.

Перед каждым заполнением кювет следует продувать кюветы поверочным нулевым газом.

- 8.3.1. Определение погрешности измерений по ГС, содержащим определяемый компонент проводится по схеме рисунка 1 при подаче ГС в последовательности №№ 1-2-3 (таблица А1 Приложения А, соответственно определяемому компоненту и диапазону измерений) в следующем порядке:
- 1) присоединить на входной штуцер кюветы газовой соответствующей длины газовую линию от баллона с ГС№1, к выходному штуцеру подключить индикатор расхода, вентиль тонкой регулировки на входном штуцере кюветы должен быть закрыт (положение микрометрического винта «0»);
- 2) открыть баллон с ГС№1, редуктором установить давление на уровне 2,0^{+0,1} кгс/см², открыть вентиль точной регулировки (5 полных оборотов микрометрического винта), проконтролировать наличие расхода ГС№1 через кювету по индикатору расхода на выходе:
- 3) подавать ГС№1 в течении не менее 1 мин для одинарной кюветы и не менее 2 мин для двойной;
- 4) закрыть редуктор на баллоне с ГС№1, закрыть баллон, микрометрический винт на вентиле тонкой регулировки входного штуцера кюветы повернуть в положение «0» («закрыто»);
 - 5) отсоединить кювету от газовой линии баллона с ГС№1;
 - 6) Поместить кювету газовую в оптический тракт газоанализатора;

Примечание — здесь и далее под «поместить в оптический тракт газоанализатора кювету газовую» понимается размещение кюветы газовой на одной оси с приемником и передатчиком таким образом, чтобы ближний к приемнику торец кюветы прислонялся к резиновому защитному козырьку приемника и края кюветы не попадали в оптический тракт.

- 7) зарегистрировать показания мультиметра и/или газоанализатора на мониторе ПК, связанного с газоанализатором посредством интерфейсного адаптера с помощью программы Dräger Polysoft или Pulsar PC Software, либо на дисплее ручного терминала GC2, либо коммуникатора HART.
 - 8) повторить операции 1)-7) для ГС №№2,3.

Значение интегральной концентрации определяемого компонента по значению выходного токового сигнала 4-20 мА рассчитать по формуле (1).

$$C_i = \frac{1}{k} \cdot (I_i - 4), \tag{1}$$

где I_i - установившееся значение выходного токового сигнала при подаче i-ой $\Gamma C,$ мA;

k- значение коэффициента функции преобразования (k=4 мА/(НКПР·м) для диапазона измерений от 0 до 4 НКПР·м, k=2 мА/(НКПР·м) для диапазона измерений от 0 до 8 НКПР·м;

Действительное значение интегральной концентрации определяемого компонента C_{∂} , НКПР·м вычисляется по формуле (2).

$$C_{\partial} = L \cdot \frac{c}{c_{HK\Pi p}},$$
 (2)

где L – длина кюветы газовой, м;

C – объемная доля определяемого компонента, указанная в паспорте i-ой ΓC ,%; $C_{HK\Pi P}$ – объемная доля определяемого компонента, соответствующая нижнему концентрационному пределу распространения пламени (НКПР), %.

Примечания:

- 1. Длины кювет и концентрации газа следует выбирать так, чтобы номинальное значение НКПР·м было не менее 2,0 долей для диапазона (0-4) НКПР·м и не менее 4,0 долей для диапазона (0-8) НКПР·м;
- 2. При необходимости допускается применение кювет, не входящих в комплект поставки.

Значение приведенной (к верхнему пределу диапазона измерений) погрешности измерений газоанализатора при подаче і-ой ГС, б, %, для диапазонов измерений, в которых нормированы пределы допускаемой приведенной (к верхнему пределу диапазона измерений) погрешности измерений, рассчитать по формуле (3).

$$\gamma = \frac{C_i - C\partial}{C_B} \cdot 100\%,\tag{3}$$

- где C_i результат измерений интегральной концентрации определяемого компонента, рассчитанный по формуле (1), НКПР·м (в зависимости от определяемого компонента и проверяемого диапазона измерений);
- C_{∂} действительное значение интегральной концентрации определяемого компонента, рассчитанное по формуле (2), НКПР·м (в зависимости от определяемого компонента и проверяемого диапазона измерений);
- $C_{\text{в}}$ верхний предел диапазона измерений, НКПР·м (в зависимости от определяемого компонента и проверяемого диапазона измерений);

Значение относительной погрешности измерений газоанализатора при подаче іой ГС, δ , %, для диапазонов измерений, в которых нормированы пределы допускаемой относительной погрешности измерений, рассчитать по формуле (4).

$$\delta = \frac{C_i - C\partial}{C\partial} \cdot 100\%,\tag{4}$$

Результат считают положительными, если погрешность измерений во всех точках поверки не превышает пределов, указанных в таблице Б1 Приложения Б.

8.3.2. Определение погрешности измерений по ГС, содержащим поверочный компонент (Метан – при поверке газоанализаторов для определяемого компонента Метан. Этилен – при поверке газоанализаторов для определяемого компонента Этилен. Пропан – при поверке для остальных типов определяемых компонентов с применением в формуле (5) коэффициента чувствительности «п», приведенного в таблице Б1 Приложения Б).

Определение погрешности измерений по ГС, содержащим поверочный компонент проводится по схеме рисунка 1 при подаче ГС в последовательности №№ 1-2-3 (таблица А2 Приложения А, соответственно определяемому компоненту и диапазону измерений) в следующем порядке:

1) присоединить на входной штуцер кюветы газовой соответствующей длины газовую линию от баллона с ГС№1, к выходному штуцеру подключить индикатор

расхода, вентиль тонкой регулировки на входном штуцере кюветы должен быть закрыт (положение микрометрического винта «0»);

- 2) открыть баллон с ГС№1, редуктором установить давление на уровне 2,0^{+0,1} кгс/см², открыть вентиль точной регулировки (5 полных оборотов микрометрического винта), проконтролировать наличие расхода ГС№1 через кювету по индикатору расхода на выходе;
- 3) подавать азот особой чистоты в течении не менее 1 мин для одинарной кюветы и не менее 2 мин для двойной;
- 4) закрыть редуктор на баллоне с ГС№1, закрыть баллон, микрометрический винт на вентиле тонкой регулировки входного штуцера кюветы повернуть в положение «0» («закрыто»);
 - 5) отсоединить кювету от газовой линии баллона с ГС№1.
 - 6) поместить кювету газовую в оптический тракт газоанализатора;
- 7) зарегистрировать показания мультиметра и/или газоанализатора на мониторе ПК, связанного с газоанализатором посредством интерфейсного адаптера с помощью программы Dräger Polysoft или Pulsar PC Software, либо на дисплее ручного терминала, либо коммуникатора HART;
 - 8) повторить операции 1)-7) для ГС №№ 2,3.

Значение интегральной концентрации определяемого компонента по значению выходного токового сигнала 4-20 мА рассчитать по формуле (1).

Действительное значение интегральной концентрации определяемого компонента C_{∂} , НКПР·м, вычисляется по формуле (5).

$$C_{\partial} = L \cdot \frac{c}{C_{HK\Pi p} \cdot n'},\tag{5}$$

где L – длина кюветы газовой, м;

C – объемная доля определяемого компонента, указанная в паспорте i-ой ΓC , %; $C_{HK\Pi P}$ – объемная доля определяемого компонента, соответствующая нижнему концентрационному пределу распространения пламени (НКПР), %;

п – коэффициент чувствительности газа для соответствующего определяемого компонента, приведенный в таблице Б1 Приложения Б.

Значение приведенной (к верхнему пределу диапазона измерений) погрешности измерений газоанализатора при подаче i-ой ΓC , δ , %, для диапазонов измерений, в которых нормированы пределы допускаемой приведенной (к верхнему пределу диапазона измерений) погрешности измерений, рассчитать по формуле (3).

Значение относительной погрешности измерений газоанализатора при подаче іой ГС, δ , %, для диапазонов измерений, в которых нормированы пределы допускаемой относительной погрешности измерений, рассчитать по формуле (4).

Результат считают положительными, если погрешность измерений во всех точках поверки не превышает пределов, указанных в таблице Б1 Приложения Б.

- 8.3.3 Определения времени установления выходного сигнала:
- 1) поместить в оптический тракт газоанализатора кювету газовую, заполненную азотом особой чистоты, зафиксировать установившиеся показания газоанализатора;
- 2) поместить в оптический тракт газоанализатора кювету газовую, заполненную ГС №2, зафиксировать установившиеся показания газоанализатора рассчитать значение, равное 0,9 от полученного значения;
- 3) поместить в оптический тракт газоанализатора кювету газовую, заполненную азотом особой чистоты, зафиксировать установившиеся показания затем быстро заменить ее на кювету, заполненную Γ С № 2, включить секундомер, зафиксировать моменты достижения значений, рассчитанных в п.2).

Допускается использование для определения времени установления выходного сигнала контрольных пластин, поставляемых изготовителем газоанализаторов:

- пластины тестовые для версии метан/пропан для всех определяемых компонентов за исключением этилена.
- пластины тестовые для версии этилен для определяемого компонента этилена.
 Порядок определения времени установления выходного сигнала при использовании контрольных пластин, следующий:
- 1) поместить в оптический тракт газоанализатора тестовую пластину (или пластины), соответствующие поверяемому диапазону измерений и определяемому компоненту (обеспечивающий показания на уровне 2 НКПР·м для диапазона от 0 до 4 НКПР·м, 4 НКПР·м для диапазона от 0 до 8 НКПР·м), зафиксировать установившиеся показания газоанализатора, рассчитать значение, равное 0,9 от полученного значения;
- 2) извлечь тестовую пластину из оптического тракта газоанализатора, зафиксировать установившиеся показания газоанализатора на чистом атмосферном воздухе;
- 3) поместить в оптический тракт газоанализатора тестовую пластину согласно $\pi.1$), включить секундомер, зафиксировать момент достижения значения, рассчитанных в $\pi.2$).

Результат считают положительными, если время установления выходного сигнала не превышает 10 с.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:
 - полное наименование аккредитованной на право поверки организации;
 - номер и дата протокола поверки:
 - наименование и обозначение поверенного средства измерений;
 - заводской (серийный) номер;
 - обозначение документа, по которому выполнена поверка;
- наименования, обозначения и заводские (серийные) номера использованных при поверке средств поверки (со сведениями о поверке последних);
 - температура и влажность в помещении;
 - фамилия лица, проводившего поверку:
 - результаты каждой из операций поверки согласно таблице 2.

Допускается не оформлять протокол поверки отдельным документом, а результаты операций поверки указывать на оборотной стороне свидетельства о поверке.

- 9.2 При положительном результате поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. № 1815.
- 9.3 При отрицательном результате поверки, выявленных при любой из операций поверки, описанных в таблице 13, выдается извещение о непригодности в соответствии с Приказом Министерства промышленности и торговли РФ от 02.07.2015 г. № 1815.

11

Инженер отдела испытаний ООО «ИЦРМ»	Sy	Т. В. Полякова
инженер отдела испытании 000 «ицРМ»	0. /	1. В. Полякова

Приложение А (обязательное)

Таблица А1- Технические характеристики ГС

Определяемый компонент	Диапазон показаний интегральной концен-		ачение определяемого опускаемого отклоне		Источник получения ГС	Длина кюветы га- зовой, м ¹⁾	
	трации определяе-	концентрация, Н	ІКПР∙м)				
	мого компонента,						
	НКПР-м	ГС №1	ГС №2	<u>ΓC</u> №3			
	от 0 до 4	Азот	$50 \pm 5 (2,0)$	$90 \pm 2 (3,6)$	ГСО 10707-2015	0,176	
метан (СН4)	от 0 до 8	Азот	50 ± 5 (4,0)	$90 \pm 2 (7,2)$	ГСО 10707-2015	2×0,176	
	0 4	Азот	$71 \pm 2 \ (2,0)$	1.00	EGO 10512 2011	0,068	
этан (С2Н6)	от 0 до 4			49 ± 3 (3,6)	ГСО 10543-2014	0,176	
31ah (C2116)	0 0	Азот	$55 \pm 3 (4,0)$		ГСО 10543-2014	0,176	
	от 0 до 8			$71 \pm 2 (7,2)$		0,068+0,176	
пропан (С ₃ Н ₈)	от 0 до 4	Азот	$50 \pm 3 \ (2,0)$	$90 \pm 2 (3,6)$	ГСО 10543-2014	0,068	
	от 0 до 8	Азот	$50 \pm 3 \ (4,0)$	90 ± 2 (7,2)	ГСО 10543-2014	2×0,068	
н-бутан (С ₄ Н ₁₀)	от 0 до 4	Азот	41 ± 3 (2,0)		ГСО 10543-2014	0,068	
				$29 \pm 3 (3,6)$		0,176	
	от 0 до 8	Азот	$32 \pm 3 \ (4,0)$		ГСО 10543-2014	0,176	
				$41 \pm 3 (7,1)$		0,068+0,176	
изобутан (і-	от 0 до 4	Азот	$38 \pm 3 \ (2,0)$	$69 \pm 3 (3,6)$	ГСО 10543-2014	0,068	
C_4H_{10})	от 0 до 8	Азот	$30 \pm 3 \ (4,0)$	$53 \pm 3 (7,2)$	ГСО 10543-2014	0,176	
пропилен	от 0 до 4	Азот	59 ± 3 (2,0)		ГСО 10543-2014	0,068	
(C_3H_6)				$41 \pm 3 (3,6)$		0,176	
	от 0 до 8	Азот	$45 \pm 3 \ (4,0)$		ГСО 10543-2014	0,176	
				$59 \pm 3 \ (7,2)$		0,068+0,176	
Этилен (С2Н4)	от 0 до 4	Азот	$68 \pm 3 \ (2,0)$		ГСО 10543-2014	0,068	
				$47 \pm 3 (3,6)$		0,176	
	от 0 до 8	Азот	$53 \pm 3 \ (4,0)$		ГСО 10543-2014	0,176	
				$68 \pm 3 \ (7,2)$		0,068+0,176	

1 Длина кюветы, для которой проведен расчет номинального значения объемной доли определяемого компонента.

Таблица А2 - Технические характеристики ГС, содержащих поверочный компонент

Определяемый компонент	Поверочный компонент	Диапазон по- казаний инте- гральной кон- центрации	ГС, % об, пред	вначение поверочног делы допускаемого ог ентрация, НКПР·м) 1	Источник получения ГС	Длина кюветы га- зовой, м ²⁾	
		определяе- мого компо- нента, НКПР·м	ГС №1	ГС №2	ГС №3		
		от 0 до 4	Азот	50 ± 3 (2,0)	$90 \pm 2 (3,6)$	ГСО 10707-2015	0,176
метан (СН ₄)	метан (СН4)	от 0 до 8	Азот	50 ± 3 (4,0)	90 ± 2 (7,2)	ГСО 10707-2015	2x0,176
			Азот	70,0 ± 3 (2,0)			0,068
aray (C.U.)	(0.11)	от 0 до 4			49 ± 3 (3,6)	ГСО 10543-2014	0,176
этан (С ₂ Н ₆)	пропан (С ₃ Н ₈)	от 0 до 8	Азот	54 ±3 (4,0)		ГСО 10543-2014	0,176
		от о до в			$70 \pm 3 \ (7,2)$		0,068+0,176
пропан (С ₃ Н ₈)	пропан (С3Н8)	от 0 до 4	Азот	$50 \pm 3 (2,0)$	$90 \pm 2(3,6)$	ГСО 10543-2014	0,068
		от 0 до 8	Азот	$50 \pm 3 (4,0)$	$90 \pm 2 (7,2)$	ГСО 10543-2014	2x0,068
н-бутан (С ₄ Н ₁₀)	пропан (С ₃ Н ₈)	от 0 до 4	Азот	48 ± 3 (2,0)	$85 \pm 2 (3,6)$	ГСО 10543-2014	0,068
		от 0 до 8	Азот	$37 \pm 3 (4,0)$	$66 \pm 3 (7,2)$	ГСО 10543-2014	0,176
изобутан (і-	пропан (С3Н8)	от 0 до 4	Азот	$54 \pm 3 (2,0)$	$86 \pm 2 (3.2)$	ГСО 10543-2014	0,068
C_4H_{10})		от 0 до 8	Азот	$41 \pm 3 \ (4,0)$	$74 \pm 2 (7,2)$	ГСО 10543-2014	0,176
пропилен	пропан (С ₃ Н ₈)	от 0 до 4	Азот	42 ± 3 (2,0)	$75 \pm 2 (3,6)$	ГСО 10543-2014	0,068
(C_3H_6)		от 0 до 8	Азот	42 ± 3 (4,0)	$57 \pm 3 (7,1)$	ГСО 10543-2014	0,176
		от 0 до 4	Азот	$68 \pm 3 \ (2,0)$		ГСО 10543-2014	0,068
Этилен (С2Н4)	Этилен (С2Н4)				$47 \pm 3 (3,6)$		0,176
		от 0 до 8	Азот	$53 \pm 3 (4,0)$		ГСО 10543-2014	0,176
					$68 \pm 3 (7,2)$		0,068+0,176

¹ Интегральная концентрация номинального значения поверочного компонента, рассчитывается по формуле (5).

² Длина кюветы, для которой проведен расчет номинального значения объемной доли компонента.

Приложение Б (обязательное)

Таблица Б1- Основные метрологические характеристики газоанализаторов

Определяемый компонент	Объемная доля опреде- ляемо-го ком-	Диапазон измерений, выраженный в объ- емных долях опреде-	Диапазон измерений интегральной кон- центрации определя-	Пределы допу грешности из	Коэффициент пере- крестной чувстви- тельности		
	понента, со- ответствую- щая НКПР ¹⁾ ,	ляемого компонента, %	емого компонента, НКПР·м ²⁾	приведенной (к диапазону измерений)	относитель- ной	по эти- лену	по про- пану
метан (CH ₄) Dräger Pulsar 7000/7700 тип OTR 00YY	4,4	от 0 до 8,8 включ. св. 8,8 до 17,6 от 0 до 17,6 включ. св. 17,6 до 35,2	от 0 до 2 включ. св. 2 до 4 от 0 до 4 включ. св. 4 до 8	± 10 - ± 10 -	- ± 10 - ± 10	1,55	1,57
этан (C ₂ H ₆) Dräger Pulsar 7000/7700 тип OTR 00YY	2,4	от 0 до 4,8 включ. св. 4,8 до 9,6 от 0 до 9,6 включ. св. 9,6 до 19,2	от 0 до 2 включ. св. 2 до 4 от 0 до 4 включ. св. 4 до 8	± 10 - ± 10 -	± 10 - ± 10	1,29	1,40
пропан (C ₃ H ₈) Dräger Pulsar 7000/7700 тип OTR 00YY	1,7	от 0 до 3,4 включ. св. 3,4 до 6,8 от 0 до 6,8 включ. св. 6,8 до 13,6	от 0 до 2 включ. св. 2 до 4 от 0 до 4 включ. св. 4 до 8	± 10 - ± 10	± 10 - ± 10	0.47	1,00
н-бутан (C ₄ H ₁₀) Dräger Pulsar 7000/7700 тип OTR 00YY	1,4	от 0 до 2,8 включ. св. 2,8 до 5,6	от 0 до 2 включ. св. 2 до 4	± 10 -	- ± 10	0,81	0,95
изобутан (i-C ₄ H ₁₀) Dräger Pulsar 7000/7700 тип OTR 00YY	1,3	от 0 до 2,6 включ. св. 2,6 до 5,2	от 0 до 2 включ. св. 2 до 4	± 10	± 10	-	1.07
пропилен (C ₃ H ₆) Dräger Pulsar 7000/7700 тип OTR 00YY	2,0	от 0 до 4 включ. св. 4 до 8 от 0 до 8 включ. св. 8 до 16	от 0 до 2 включ. св. 2 до 4 от 0 до 4 включ. св. 4 до 8	± 10 - ± 10 -	± 10 ± 10 ± 10	0,95	0,83

Окончание таблицы Б1

Определяемый компонент	Объемная доля определяемо-го компонента, соот-	Диапазон измерений, выраженный в объемных долях определяемого компонента, %	Диапазон измерений интегральной кон- центрации определя- емого компонента,	Пределы допускаемой погрешности измерений ³⁾ , %		Коэффициент пере- крестной чувстви- тельности	
	ветствующая НКПР ¹⁾ , %		НКПР·м ²⁾	приведенной (к диапазону измерений)	относитель- ной	по эти- лену	по про- пану
этилен (C ₂ H ₄)	2.2	от 0 до 4,6 включ. св. 4.6 до 9,2	от 0 до 2 включ. св. 2 до 4	± 10	- ± 10	1	
Dräger Pulsar 7000/7900 тип OTR 00YY	Sar /000/7900 2,3	от 0 до 9,2 включ. св. 9,2 до 18,4	от 0 до 4 включ. св. 4 до 8	± 10 -	± 10	ı	-

¹ НКПР – нижний концентрационный предел распространения пламени, значения НКПР указаны в соответствии с ГОСТ Р МЭК 600 79-20-1-2011.

$$Ci = 1 \text{ M} \frac{C}{CHK\Pi p}$$

где С – верхняя граница диапазона измерений объемной доли определяемого компонента;

С_{НКПР} – объемная доля определяемого компонента, соответствующая нижнему концентрационному пределу распространения пламени (НКПР), %.

3 Ввиду того, что газоанализаторы обладают чувствительностью к широкой номенклатуре органических веществ, помимо указанных, пределы допускаемой погрещности газоанализаторов нормированы для смесей, содержащих только один горючий компонент

Примечание - Пределы допускаемого изменения выходного сигнала за 8 недель непрерывной работы, в долях от пределов допускаемой погрешности измерений - 1,0.

² Пересчет диапазона измерений объемной доли определяемого компонента в интегральную концентрацию в долях НКПР на 1 метр трассы С*i*, осуществляется в соответствии с нижним концентрационным пределом распространения пламени и ГОСТ Р 52350.29.4-2011, по формуле