УТВЕРЖДАЮ

Хроматограф газовый промышленный «Хромос ПГХ-1000.1»

Методика поверки

XAC 2.320.006.01ΜΠ

Настоящая методика распространяется на хроматографы газовые промышленные «Хромос ПГХ-1000.1» (далее - хроматографы) и устанавливает методы и средства первичной и периодической поверки. Методика поверки составлена в соответствии с ГОСТ Р 8.771-2011 ГСИ. Хроматографы аналитические газовые промышленные. Методика поверки.

Хроматограф является индивидуально градуируемым измерительным средством измерения. На хроматограф распространяется действие ГОСТ 26703-93.

Интервал между поверками - один год.

Периодическая поверка у заказчика проводится в одном из двух вариантов:

- при отсутствии НД на МИ- по методике поверки.
- при наличии НД на методику измерений, соответствующей требованиям ГОСТ Р 8.563- по НД на МИ.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице1.

Таблица 1- Операции поверки

Наименование операции	Номер	Проведение операции при			
	пункта методики поверки	первичной поверке	при выпуске из ремонта	периодической поверке	
1. Внешний осмотр	6.1	Да	Да	Да	
2.Проверка идентификационных данных на программное обеспечение «Хромос».	6.2	Да	Да	Да	
3. Опробование	6.3.				
3.1 Проверка прочности электрической изоляции	6.3.1.1.	Да	Да*	Нет	
3.2 Проверка сопротивления электрической изоляции	6.3.1.2.	Да	Да*	Нет	
3.3 Проверка качества заземления	6.3.1.3	Да	Да*	Да*	
3.4 Определение уровня шумов и дрейфа нулевого сигнала	6.3.3	Да	Да*	Да ¹⁾	
3.5 Определение предела детектирования	6.3.4	Да	Да	Да ¹⁾	
4.Определение метрологических характеристик:	6.4.				
4.1.Определение относительного среднего квадратического отклонения выходного сигнала	6.4.1.	Да	Да	Да ¹⁾	

4.2.Определение изменения выходного сигнала за 48ч непрерывной работы хроматографа	6.4.2.	Нет	Да	Да ¹⁾
4.3.Определение показателей точности результатов измерений, установленных в НД на методику измерений	6.4.3.	Нет	Нет	Да ²⁾

¹⁾⁻ при отсутствии НД на методику измерений, аттестованную в установленном порядке по ГОСТ 8.563

2. СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки применяют средства поверки (приборы, вспомогательное оборудование, реактивы и материалы), указанные в таблице 2.

Таблица 2-Средства поверки

Номер пункта	Наименование и тип (условное обозначение) основного или		
методики поверки	вспомогательного средства поверки, обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки		
6.3.1.1	Прибор для испытания электрической прочности УПУ-10, ПГ-4%, (0-10) кВ		
6.3.1.2	Мегаомметр М4100/4 по ТУ 24-04-2130-78 ,к.т.1,(5-3.10 ⁶) кОм, рег.№ в ФИФ 3424-73.		
6.3.1.3	Мультиметр цифровой APPA-105N , пределы измерений переменного напряжения (4-400)В, погрешность ±(0,005 · X + 5к), предел измерения переменного тока (40 мА- 10 А), погрешность ±(0,02 · X + 5к). Рег.№ в ФИФ 21501-07.		
	Прибор комбинированный Testo 622: диапазон измерения абсолютного давления 300 до 1200 гПа, погрешность± 5 гПа, диапазон измерения температур от (-10°С) до (+60 °С), абс. погрешность ±0,4 °С, диапазон измерения влажности от 10 до 95%, абс.погрешность ± 3%. Рег.№ в ФИФ 53505-13		
	Весы лабораторные электронные ME 235 S, погрешность ± (0,00002-0,00024)г, рег.№ 21464-07		
	Термометр лабораторный электронный ЛТ-300, диапазон температур от -50 °C до +300 °C, цена деления 0,1°C, абс.погрешность ±0,05 °C, рег.№ в ФИФ – 61806-15.		
	Колбы мерные, класс точности 2, вместимостью 10,25,100,250,500 см ³ , ГОСТ 1770-74		
	Пипетки, класс точности 2, вместимостью 1 см ³ , ГОСТ 29227-91		

²⁾- при наличии НД на методику измерений, аттестованную в установленном порядке

^{* -} если производился ремонт электрических цепей

6.3.3 – 6.4	Колонка стальная, длина 1 м, сорбент: хроматон N-AW-HMDS или N-AW-DMCS (зернение 0,16-0,20 мм), пропитанный 5% силикона SE-30 или аналог.		
6.3.3 – 6.4	Колонка стальная, длина 1м, сорбент: окись алюминия активная, фракция 0,2-0,35 мм или аналог.		
6.3.3 – 6.4	Колонка капиллярная длиной 5-100 метров, диаметром 0,25-0,53 мм, типа DB-1, HP-5, VB-5 или аналогичная.		
6.3.3 – 6.4	Колонка стальная, длина 1-4 м, сорбент: молекулярные сита NaX или CaA, фракция 0,2-0,35мм или аналог.		
6.3.3 – 6.4	Аргон газообразный высший сорт ГОСТ 10157-76, объемная доля аргона не менее 99,993%.		
6.3.3 – 6.4	Гелий газообразный, марка A, объемная доля гелия не менее 99,995% ТУ9271-135-31323949-2005.		
6.3.3 – 6.4	Азот повышенной чистоты, объемная доля основного вещества не менее 99,95%, ГОСТ 9293-74.		
6.3.3 – 6.4	Водород технический, марка А, объемная доля основного вещества не менее 99,99%, ГОСТ 3022-80.		
6.3.3 – 6.4	СО состава газовой смеси пропан в гелии, объемная доля пропана от 0,1 % до 0,5%, ГСО 10655-2015.		
6.3.3 – 6.4	СО состава газовой смеси пропан-азот, объемная доля пропана от 0,1% до 0,5%, ГСО 10651-2015.		
6.3.3 – 6.4	СО состава газовой смеси азот – гелий, объемная доля азота от 0,1% до 0,5%, ГСО 10532-2014.		
6.3.3 – 6.4	СО состава газовой смеси: водород-азот, объемная доля водорода от 0,6% до 1,0%, ГСО 10532-2014.		
6.3.3 – 6.4	СО состава сероводород-азот, массовая концентрация сероводорода от 9 мг/м ³ до 13 мг/м ³ , ГСО 10537-2014.		
6.3.3 – 6.4	СО состава сероводород-метан, массовая концентрация сероводорода от 4 мг/м ³ до 20 мг/м ³ , ГСО 10538-2014.		
6.3.3 – 6.4	Гептан эталонный, массовая доля основного вещества не менее 99 %, ГОСТ 25828-83.		
6.3.3 – 6.4	СО состава кислород- аргон, массовая доля кислорода от 0,01% до 0,02%, ГСО 10611-2015.		
6.3.3 – 6.4	Бензол х.ч., массовая доля основного вещества не менее 99,4%, ГСО 7141-95		

Применяемые при поверке средства измерений должны быть поверены в соответствии с приказом Минпромторга № 1815 от 02.07.2015г; материалы и реактивы должны соответствовать требованиям, указанным в соответствующих сертификатах.

Допускается использовать другие средства поверки, метрологические и технические характеристики которых соответствуют указанным в методике поверки.

* При наличии нормативной документации на МВИ по ГОСТ 8.563-96 технические характеристики колонок должны соответствовать требованиям раздела о средствах измерений МВИ.

Жидкие контрольные смеси для поверки изготавливаются объемно-весовым методом на основе указанных ГСО по прилагаемой инструкции (см. приложение Б настоящей МП).

2.2 Расчет уровня шумов, дрейфа нулевого сигнала, предела детектирования и метрологических характеристик проводится с использованием программного обеспечения «Хромос», окно "Поверка". Отчет "Поверка» является основанием для выдачи свидетельства о поверке.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 Работы с хроматографом должны проводится в соответствии с требованиями эксплуатационной документации и следующих документов:
- ГОСТ 30852.16-2002. Электрооборудование взрывозащищенное. Часть 17. Проверка и техническое обслуживание электроустановок во взрывоопасных зонах (кроме подземных выработок);
- ПБ 09-540-2003. Общие правила взрывобезопасности для взрывоопасных химических и нефтехимических производств;
- ОНТП 51-1-85. Магистральные трубопроводы.
- 3.2 При поверке хроматографа должны соблюдаться действующие "Правила устройства электроустановок" (ПУЭ), "Правила эксплуатации электроустановок потребителей" (ПЭЭП), "Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок" (ПОТ РМ-016-2001), "Правила устройства и безопасной эксплуатации сосудов, работающих под давлением".
 - 3.3 Источниками опасности хроматографа являются:
- токоведущие части, находящиеся под напряжением;
- газовые магистрали высокого давления (0,4 МПа);
- внутренние поверхности термостатов хроматографа комплекса, имеющие высокую температуру;
 - 3.4 Все составные части хроматографа, имеющие силовые цепи, должны быть заземлены.
- 3.5 При проведении анализов горючих, взрывоопасных, вредных и агрессивных веществ должны соблюдаться меры пожарной безопасности и правила техники безопасности, предусмотренные в специальных инструкциях, разрабатываемых потребителем в соответствии со спецификой применяемых веществ.

4 УСЛОВИЯ ПОВЕРКИ

При проведении первичной и периодической поверки должны быть соблюдены следующие условия:

- температура окружающей среды (20±5)°С;
- относительная влажность от 30 % до 80 %;
- атмосферное давление от 84 до 106 кПа (от 630 до 800 мм рт.ст.), изменяющееся в процессе поверки не более чем на ± 5 кПа ($\pm 3,75$ мм рт.ст.);
 - напряжение питания (230±23) В;
 - -частота напряжения переменного тока $-(50\pm0,1)$ Гц;
- -механические воздействия, внешние электрические и магнитные поля, влияющие на работу комплекса, должны отсутствовать.

5. ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением периодической поверки должны быть выполнены следующие подготовительные работы:

- включают приточно-вытяжную вентиляцию;
- подготавливают хроматограф в соответствии с НД;
- подготавливают колонки в соответствии с нормативной документацией по проведению
- проводят проверку герметичности газовых линий согласно руководству по эксплуатации на хроматограф;

- средства поверки и поверяемые хроматографы подготавливают к работе в соответствии с требованиями их технической документации;
- ГСО состава газовых смесей в баллонах выдерживают в помещении, в котором проводят поверку, в течение 24 часов;
- пригодность ГСО должна быть подтверждена паспортами на них.

При наличии нормативной документации на МВИ по ГОСТ 8.563-96 подготовительные работы должны быть проведены в соответствии с требованиями раздела о подготовке к проведению измерений МВИ.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

Первичная поверка проводится в объеме и последовательности, указанных в таблице 1.

6.1 Внешний осмотр

При внешнем осмотре устанавливают следующее:

- соответствие комплектности хроматографа и номеров блоков паспортным данным;
- исправность механизмов и крепежных деталей;
- четкость маркировки.
- 6.2 Проверка идентификационных данных на программное обеспечение «Хромос».

Для проверки идентификационного наименования и номера версии программного обеспечения необходимо выполнить следующую последовательность операций:

- включить персональный компьютер и дать время для загрузки операционной системы;
- после запуска ПО «Хромос» и отображения главного окна, нужно выбрать меню "Справка" "О программе".
 - В окне "О программе" отобразится требуемая информация.

Идентификационные данные программного обеспечения должны соответствовать таблице 3.

Таблица 3 - Идентификационные данные программного обеспечения

Наименование программного обеспечения	Хромос
Идентификационное наименование программного обеспечения	Модуль CalcModule.dll
Номер версии (идентификационный номер) программного обеспечения	1.2
Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	37c2b7ab

При опробовании проверяется правильность прохождения теста при включении прибора, идентификации программного обеспечения. Результаты опробования считаются положительными, если по окончании времени тестирования хроматографа, отсутствует сообщение о неисправности и появляются идентификационные данные программного обеспечения.

6.3. Опробование

6.3.1.Опробование осуществляют в соответствии с требованиями НД на хроматограф.

Проверка качества электрической изоляции включает в себя проверку прочности изоляции и измерение сопротивления изоляции хроматографа.

6.3.1.1.Прочность изоляции силовых цепей проверяется на пробойной установке УПУ-10 испытательным напряжением 1500В, частотой 50Гц.

Испытательное напряжение прикладывается между соединенными вместе контактами сетевой вилки хроматографа и клеммой заземления.

На цепь, подвергаемую проверке, подать рабочее напряжение и увеличивать его плавно за время 5-10 секунд до величины испытательного напряжения и выдержать в течение 1 минуты. Хроматограф считать выдержавшим испытания, если отсутствует пробой или поверхностный разряд.

6.3.1.2 .Измерение сопротивления изоляции следует проводить мегаомметром М4100/4 при испытательном напряжении 500В.

Сопротивление изоляции хроматографа измеряется между соединенными вместе контактами сетевой вилки и клеммой заземления. Сетевой тумблер на хроматографе поставить в положение "ВКЛ."

Величина сопротивления изоляции должна быть не менее 20 МОм во всем диапазоне температур окружающей среды.

- 6.3.1.3.Проверка качества заземления хроматографа производится измерением сопротивления между заземляющей клеммой и любой доступной прикосновению металлической нетоковедущей частью хроматографа, которая может оказаться под напряжением. Измеренное сопротивление должно быть не более 0,1 Ом.
- 6.3.2. Для поверки в качестве газа-носителя используются любые газы, указанные в таблице 2. Время выхода на рабочий режим для всех детекторов составляет 1,5 часа.

Условия проведения поверки детекторов хроматографа приведены в таблице 4.

Таблица 4-Условия проведения поверки

Детектор	Наименование параметров режима	Значение параметра	Применяемая колонка
пид	Температура термостатов, °C:	парамогра	Колонка стальная, длина 1 м, сорбент хроматон N-AW-HMDS или N-AW-
	-колонок	100±50	DMCS (зернение 0,16-0,20 мм).
	-дозатор	180±50	пропитанный 5% силикона SE-30 или
	- крана	80±10	аналог.
	-детектора	180±10	Колонка стальная, длина 1м, сорбент:
	Расходы, см ³ /мин:	100-10	окись алюминия активная, фракция 0,2-
			0,35 мм или аналог.
			Колонка капиллярная длиной 5-100
	-газ-носитель	20±10	метров, диаметром 0,25-0,53 мм, типа
	-водород	25±5	DB-1, HP-5, VB-5 или аналогичная
	-воздух	250±50	
	- газ поддува	25±5	
ПФД-Ѕ	Температура термостатов,		Колонка капиллярная длиной 5-100
. ,	°C:		метров, диаметром 0,25-0,53 мм, типа
	-колонок	50±20	DB-1, HP-5, VB-5 или аналогичная
	-кран	80±10	
	-дозатор	80±10	
	-детектора	140±10	
	Расходы, см ³ /мин:		
	-газ-носитель	20±10	
	-водород	140±10	
	-воздух	90±10	
	-поддув (азот, аргон)	90±10	
ДТП	Температура термостатов,		Колонка стальная, длина 1м, сорбент:
	°C:		окись алюминия активная, фракция 0,2-
	-колонок	100±50	0,35 мм или аналог

	-дозатора -крана	150±50 100 ±50	Колонка стальная, длина 1 м, сорбент: хроматон N-AW-HMDS или N-AW-
	-детектора Расходы, см ³ /мин:	150±50	DMCS (зернение 0,16-0,20 мм), пропитанный 5% силикона SE-30 или
	-газ-носитель - сравнительный газ Напряжение моста, В	20±5 20±5 6	аналог.
ТХД	Температура термостатов, °C:		Колонка стальная, длина 1-4 м, сорбент: молекулярные сита NaX или
	-колонок	50±50	СаА, фракция 0,2-0,35мм или аналог
	-крана-дозатора	100 ± 50	
	-детектора	50±10	
	Расход, см ³ /мин:		1
	-газ-носитель	15±5	
	Ток моста, мА	120±10	

6.3.3. Для определения уровня флуктуационных шумов и дрейфа нулевого сигнала после выхода прибора на режим записывают и сохраняют хроматограмму длительностью 1 час.

Для измерения уровня шумов и дрейфа на полученной хроматограмме выделяют участок хроматограммы не менее 10 минут, который не содержит одиночных выбросов длительностью более 1с. Выделенный участок хроматограммы сохраняется в виде самостоятельной хроматограммы.

При определении флуктуационных шумов, дрейфа, предела детектирования с помощью ПО «Хромос» в разделе «Поверка» указанные выше расчеты проводятся автоматически.

Значение уровня флуктуационных шумов нулевого сигнала $\Delta' x$ для детекторов ПИД, ПФД-S (в амперах (A)) рассчитывается ПО «Хромос» по формуле :

$$\Delta' x = \Delta x$$
. Knp

 Δx — максимальное значение амплитуды повторяющихся колебаний нулевого сигнала в милливольтах (мВ) с полупериодом (длительностью импульса), не превышающее 10с, рассчитанное ПО «Хромос» в разделе «Поверка».

Значение уровня флуктуационных шумов нулевого сигнала $\Delta' x$ для детекторов ДТП, ТХД (в вольтах (B)), рассчитывается ПО «Хромос» в разделе «Поверка».

Значение дрейфа нулевого сигнала $\Delta' y$ детекторов ПИД, ПФД-S (в амперах в час (А/ч)) определяется по формуле:

$$\Delta' y = \Delta y \cdot \mathsf{Knp}$$

Δу _ смещение уровня нулевого сигнала детектора, зарегистрированное ПО «Хромос», мВ/ч. Кпр - коэффициент преобразования усилителя выходного сигнала для расчета уровня шумов и дрейфа для детекторов:

Уровень флуктуационных шумов и дрейфа нулевого сигнала детекторов не должны превышать значений, указанных в таблице 5.

Таблица 5 – Уровень флуктуационных шумов и дрейфа нулевого сигнала с детекторами

Детектор	Уровень шума	Уровень дрейфа
пид	2,0·10 ⁻¹⁴ A	5,0·10 ⁻¹² А/ч

6.3.3 – 6.4	Колонка стальная, длина 1 м, сорбент: хроматон N-AW-HMDS или N-AV DMCS (зернение 0,16-0,20 мм), пропитанный 5% силикона SE-30 или анало	
6.3.3 – 6.4	Колонка стальная, длина 1м, сорбент: окись алюминия активная, фракция 0,2-0,35 мм или аналог.	
6.3.3 – 6.4	Колонка капиллярная длиной 5-100 метров, диаметром 0,25-0,53 мм, типа DB-1, HP-5, VB-5 или аналогичная	
6.3.3 – 6.4	Колонка стальная, длина 1-4 м, сорбент: молекулярные сита NaX или CaA, фракция 0,2-0,35мм или аналог	
6.3.3 – 6.4	Аргон газообразный высший сорт ГОСТ 10157-76, объемная доля аргона не менее 99,993%	
6.3.3 – 6.4	Гелий газообразный, марка A, объемная доля гелия не менее 99,995% ТУ9271-135-31323949-2005	
6.3.3 - 6.4	Азот повышенной чистоты, объемная доля основного вещества не менее 99,95%, ГОСТ 9293-74	
6.3.3 – 6.4	Водород технический, марка А, объемная доля основного вещества не менее 99,99%, ГОСТ 3022-80	
6.3.3 – 6.4	СО состава газовой смеси пропан в гелии, объемная доля пропана от 0,1 до 0,5%, ГСО 10655-2015	
6.3.3 - 6.4	СО состава газовой смеси пропан-азот, объемная доля пропана от 0,1 до 0,5%, ГСО 10651-2015	
6.3.3 – 6.4	СО состава газовой смеси азот – гелий, объемная доля азота от 0,1 до 0,5% , Γ CO 10532-2014	
6.3.3 – 6.4	СО состава газовой смеси: водород-азот, объемная доля водорода от 0,6 до 1,0%, ГСО 10532-2014	
6.3.3 – 6.4	СО состава сероводород-азот, массовая концентрация сероводорода от 9 до 13 мг/м ³ , ГСО 10537-2014	
6.3.3 – 6.4	СО состава сероводород-метан, массовая концентрация сероводорода от 4 до 20 мг/м ³ , ГСО 10538-2014	
6.3.3 – 6.4	Гептан эталонный, массовая доля основного вещества не менее 99 %, ГОСТ 25828-83	
6.3.3 – 6.4	СО состава кислород- аргон, массовая доля кислорода от 0,01 до 0,02%, ГСО 10611-2015	
6.3.3 – 6.4	Бензол х.ч., массовая доля основного вещества не менее 99,4%, ГСО 7141-95	

Применяемые при поверке средства измерений должны быть поверены в соответствии с приказом Минпромторга № 1815 от 02.07.2015г; материалы и реактивы должны соответствовать требованиям, указанным в соответствующих сертификатах.

Допускается использовать другие средства поверки, метрологические и технические характеристики которых соответствуют указанным в методике поверки.

* При наличии нормативной документации на МВИ по ГОСТ 8.563-96 технические характеристики колонок должны соответствовать требованиям раздела о средствах измерений МВИ.

Жидкие контрольные смеси для поверки изготавливаются объемно-весовым методом на основе указанных ГСО по прилагаемой инструкции (см. приложение Б настоящей МП).

2.2 Расчет уровня шумов, дрейфа нулевого сигнала, предела детектирования и метрологических характеристик проводится с использованием программного обеспечения «Хромос», окно "Поверка". Отчет "Поверка» является основанием для выдачи свидетельства о поверке.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 Работы с хроматографом должны проводится в соответствии с требованиями эксплуатационной документации и следующих документов:
- ГОСТ 30852.16-2002. Электрооборудование взрывозащищенное. Часть 17. Проверка и техническое обслуживание электроустановок во взрывоопасных зонах (кроме подземных выработок);
- ПБ 09-540-2003. Общие правила взрывобезопасности для взрывоопасных химических и нефтехимических производств;
- ОНТП 51-1-85. Магистральные трубопроводы.
- 3.2 При поверке хроматографа должны соблюдаться действующие "Правила устройства электроустановок" (ПУЭ), "Правила эксплуатации электроустановок потребителей" (ПЭЭП), "Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок" (ПОТ РМ-016-2001), "Правила устройства и безопасной эксплуатации сосудов, работающих под давлением".
 - 3.3 Источниками опасности хроматографа являются:
- токоведущие части, находящиеся под напряжением;
- газовые магистрали высокого давления (0,4 MПа);
- внутренние поверхности термостатов хроматографа комплекса, имеющие высокую температуру;
 - 3.4 Все составные части хроматографа, имеющие силовые цепи, должны быть заземлены.
- 3.5 При проведении анализов горючих, взрывоопасных, вредных и агрессивных веществ должны соблюдаться меры пожарной безопасности и правила техники безопасности, предусмотренные в специальных инструкциях, разрабатываемых потребителем в соответствии со спецификой применяемых веществ.

4 УСЛОВИЯ ПОВЕРКИ

При проведении первичной и периодической поверки должны быть соблюдены следующие условия:

- температура окружающей среды (20±5)°С;
- относительная влажность от 30 % до 80 %;
- атмосферное давление от 84 до 106 кПа (от 630 до 800 мм рт.ст.), изменяющееся в процессе поверки не более чем на ± 5 кПа ($\pm 3,75$ мм рт.ст.);
 - напряжение питания (230±23) В;
 - -частота напряжения переменного тока $-(50\pm0,1)$ Γ ц;
- -механические воздействия, внешние электрические и магнитные поля, влияющие на работу комплекса, должны отсутствовать.

5. ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением периодической поверки должны быть выполнены следующие подготовительные работы:

- включают приточно-вытяжную вентиляцию;
- подготавливают хроматограф в соответствии с НД;
- подготавливают колонки в соответствии с нормативной документацией по проведению анализа;
- проводят проверка герметичности газовых линий согласно руководству по эксплуатации на хроматограф;

- средства поверки и поверяемые хроматографы подготавливают к работе в соответствии с требованиями их технической документации;
- ГСО состава газовых смесей в баллонах выдерживают в помещении, в котором проводят поверку, в течение 24 часов;
- пригодность ГСО должна быть подтверждена паспортами на них.

При наличии нормативной документации на МВИ по ГОСТ 8.563-96 подготовительные работы должны быть проведены в соответствии с требованиями раздела о подготовке к проведению измерений МВИ.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

Первичная поверка проводится в объеме и последовательности, указанных в таблице 1.

6.1 Внешний осмотр

При внешнем осмотре устанавливают следующее:

- соответствие комплектности хроматографа и номеров блоков паспортным данным;
- исправность механизмов и крепежных деталей;
- четкость маркировки.
- 6.2 Проверка идентификационных данных на программное обеспечение «Хромос».

Для проверки идентификационного наименования и номера версии программного обеспечения необходимо выполнить следующую последовательность операций:

- включить персональный компьютер и дать время для загрузки операционной системы;
- после запуска ПО «Хромос» и отображения главного окна, нужно выбрать меню "Справка" "О программе".
 - В окне "О программе" отобразится требуемая информация.

Идентификационные данные программного обеспечения должны соответствовать таблице 3.

Таблица 3 - Идентификационные данные программного обеспечения

Наименование программного обеспечения	Хромос
Идентификационное наименование программного обеспечения	Модуль CalcModule.dll
Номер версии (идентификационный номер) программного обеспечения	1.2
Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	37c2b7ab

При опробовании проверяется правильность прохождения теста при включении прибора, идентификации программного обеспечения. Результаты опробования считаются положительными, если по окончании времени тестирования хроматографа, отсутствует сообщение о неисправности и появляются идентификационные данные программного обеспечения.

6.3. Опробование

6.3.1.Опробование осуществляют в соответствии с требованиями НД на хроматограф.

Проверка качества электрической изоляции включает в себя проверку прочности изоляции и измерение сопротивления изоляции хроматографа.

6.3.1.1.Прочность изоляции силовых цепей проверяется на пробойной установке УПУ-10

испытательным напряжением 1500В, частотой 50Гц.

Испытательное напряжение прикладывается между соединенными вместе контактами сетевой вилки хроматографа и клеммой заземления.

На цепь, подвергаемую проверке, подать рабочее напряжение и увеличивать его плавно за время 5-10 секунд до величины испытательного напряжения и выдержать в течение 1 минуты. Хроматограф считать выдержавшим испытания, если отсутствует пробой или поверхностный разряд.

6.3.1.2 .Измерение сопротивления изоляции следует проводить мегаомметром M4100/4 при испытательном напряжении 500В.

Сопротивление изоляции хроматографа измеряется между соединенными вместе контактами сетевой вилки и клеммой заземления. Сетевой тумблер на хроматографе поставить в положение "ВКЛ."

Величина сопротивления изоляции должна быть не менее 20 МОм во всем диапазоне температур окружающей среды.

- 6.3.1.3.Проверка качества заземления хроматографа производится измерением сопротивления между заземляющей клеммой и любой доступной прикосновению металлической нетоковедущей частью хроматографа, которая может оказаться под напряжением. Измеренное сопротивление должно быть не более 0,1 Ом.
- 6.3.2. Для поверки в качестве газа-носителя используются любые газы, указанные в таблице
 2. Время выхода на рабочий режим для всех детекторов составляет 1,5 часа.
 Условия проведения поверки детекторов хроматографа приведены в таблице 4.

Таблица 4-Условия проведения поверки

Детектор	Наименование параметров режима	Значение параметра	Применяемая колонка
ПИД	Температура термостатов, °C: -колонок -дозатор - крана -детектора Расходы, см ³ /мин:	100±50 180±50 80±10 180±10	Колонка стальная, длина 1 м, сорбент: хроматон N-AW-HMDS или N-AW-DMCS (зернение 0,16-0,20 мм), пропитанный 5% силикона SE-30 или аналог. Колонка стальная, длина 1м, сорбент: окись алюминия активная, фракция 0,2-0,35 мм или аналог. Колонка капиллярная длиной 5-100
	-газ-носитель -водород -воздух - газ поддува	20±10 25±5 250±50 25±5	метров, диаметром 0,25-0,53 мм, типа DB-1, HP-5, VB-5 или аналогичная

ПФД-S	Температура термостатов, °C:		Колонка капиллярная длиной 5-100 метров, диаметром 0,25-0,53 мм, типа
	-колонок	50±20	DB-1, HP-5, VB-5 или аналогичная
	-кран	80±10	
	-дозатор	80±10	
	-детектора	140±10	
	Расходы, см ³ /мин:		
	-газ-носитель	20±10	
	-водород	140±10	
	-воздух	90±10	
	-поддув (азот, аргон)	90±10	
ДТП	Температура термостатов,		Колонка стальная, длина 1м, сорбент:
	°C:		окись алюминия активная, фракция 0,2-
	-колонок	100±50	0,35 мм или аналог
	-дозатора	150±50	Колонка стальная, длина 1 м, сорбент:
	-крана	100 ± 50	хроматон N-AW-HMDS или N-AW-
	-детектора	150±50	DMCS (зернение 0,16-0,20 мм),
	Расходы, см ³ /мин:		пропитанный 5% силикона SE-30 или
	-газ-носитель	20±5	аналог.
	- сравнительный газ	20±5	
	Напряжение моста, В	6	
ТХД	Температура термостатов,		Колонка стальная, длина 1-4 м,
	°C:		сорбент: молекулярные сита NaX или
	-колонок	50±50	СаА, фракция 0,2-0,35мм или аналог
	-крана-дозатора	100 ± 50	
	-детектора	50±10	
	Расход, см ³ /мин:		
	-газ-носитель	15±5	
	Ток моста, мА	120±10	

6.3.3. Для определения уровня флуктуационных шумов и дрейфа нулевого сигнала после выхода прибора на режим записывают и сохраняют хроматограмму длительностью 1 час.

Для измерения уровня шумов и дрейфа на полученной хроматограмме выделяют участок хроматограммы не менее 10 минут, который не содержит одиночных выбросов длительностью более 1с. Выделенный участок хроматограммы сохраняется в виде самостоятельной хроматограммы.

При определении флуктуационных шумов, дрейфа, предела детектирования с помощью ПО «Хромос» в разделе «Поверка» указанные выше расчеты проводятся автоматически.

Значение уровня флуктуационных шумов нулевого сигнала $\Delta' x$ для детекторов ПИД, ПФД-S (в амперах (A)) рассчитывается ПО «Хромос» по формуле :

$$\Delta' x = \Delta x \cdot \text{Knp}$$

 Δx — максимальное значение амплитуды повторяющихся колебаний нулевого сигнала в милливольтах (мВ) с полупериодом (длительностью импульса), не превышающее 10с, рассчитанное ПО «Хромос» в разделе «Поверка».

Значение уровня флуктуационных шумов нулевого сигнала $\Delta' x$ для детекторов ДТП, ТХД (в вольтах (B)), рассчитывается ПО «Хромос» в разделе «Поверка».

Значение дрейфа нулевого сигнала $\Delta' y$ детекторов ПИД, ПФД-S (в амперах в час (A/ч)) определяется по формуле:

$$\Delta' y = \Delta y \cdot \text{Knp}$$

 Δy - смещение уровня нулевого сигнала детектора, зарегистрированное ПО «Хромос», мВ/ч. Кпр - коэффициент преобразования усилителя выходного сигнала для расчета уровня шумов и дрейфа для детекторов:

пид, пфд-S

ДТП, ТХД

 $K\pi p = 10^{-5} \, B/MB$

Уровень флуктуационных шумов и дрейфа нулевого сигнала детекторов не должны превышать значений, указанных в таблице 5.

Таблица 5 – Уровень флуктуационных шумов и дрейфа нулевого сигнала с детекторами

Детектор	Уровень шума	Уровень дрейфа	
пид	2,0·10 ⁻¹⁴ A	5,0·10 ⁻¹² А/ч	
ДТП	1,6·10 ⁻⁷ B	1,0·10-4 В/ч	
ПФД-S	5,0·10 ⁻¹² A	1,0·10 ⁻¹⁰ А/ч	
ТХД	1,0·10 ⁻⁵ B	1,0·10-4 В/ч	

6.3.4 Для определения предела детектирования краном-дозатором вводят в хроматограф контрольные смеси в соответствии с таблицей 6.

Режимы поверки и газ-носитель — в соответствии с п.6.3.2.

Таблица 6 – Контрольные смеси

Детектор	Контрольная смесь	Насадочный вариант		Капиллярный вариант	
		Концентрация вещества в контрольной смеси	Объем пробы	Концентрация вещества в контрольной смеси	Объем пробы
дтп	Водород в азоте	от 0,6 до 1,0 %	от 0,01 до 2 см ³	-	-
	Бензол в нонане	$1\cdot10^{-4} \text{ r/cm}^3$	от 0,1 до 1 см ³	-	-
	Гептан в нонане	2,73·10 ⁻³ г/см ³	от 0,1 до 1 см ³	-	-
	Азот в гелии	от 0,1 до 0,5 %	от 0,01 до 2см ³	-	-
	Пропан в гелии	от 0,1 до 0,5 %	от 0,01 до 2см ³	-	-
ПИД	Бензол в нонане	$2,5\cdot10^{-3} \text{ г/см}^3$	от 0,1 до 1 см ³	2,5·10-3 г/см ³	1·10 ⁻³ см ³
	Гептан в нонане	2,73·10 ⁻³ г/см ³	от 0,1 до 1 см ³	2,73·10 ⁻³ г/см ³	1·10 ⁻³ см ³
	Пропан в гелии	от 0,1 до 0,5 %	от 0,01 до 2 см ³	от 0,1 до 0,5 %	от 0,01 до 2 см ³

пФД-Ѕ	Сера в сероводороде	-	-	от 2 до 50 мг/м ³	от 1 до 0,25 см ³
тхд	Кислород в аргоне	от 0,01 до 0,02 %	от 0,1 до 1 см ³	-	-

Для ПИД, ПФД-S предел детектирования J_{min} , г/с, рассчитывают по формуле:

$$J_{min} = \frac{2\Delta x * m}{S cp * 60}$$

Для ДТП, ТХД предел детектирования C_{min} , г/см 3 -по формуле: $C_{min} = \frac{2\Delta x*m}{Scp*VrH}$

$$C_{min} = \frac{2\Delta x * m}{Scp * VrH}$$

где Δx - максимальное значение амплитуды повторяющихся колебаний нулевого сигнала в милливольтах (мВ) с полупериодом (длительностью импульса), не превышающее 10с, рассчитанное ПО «Хромос» в разделе «Поверка»:

m - масса контрольного вещества, Γ ;

Scp. - среднее арифметическое значение площадей пика контрольного вещества, мВ·мин;

Vгн - расход газа-носителя, см 3 /мин

60 - коэффициент пересчета времени, с/мин

Массу контрольного вещества (m, Γ) при использовании раствора определяют по формуле:

$$m = V * C * K$$

где V — объем раствора, см³:

C — концентрация контрольного вещества, г/см³;

К - коэффициент принимают равным единице.

При использовании газовой пробы массу контрольного вещества (т, г) определяют по формуле:

$$m = \frac{V_{\pi} * C * M * 0.01 * P * 10^{-3} * K}{R(T_{\kappa}p + 273)}$$

где Vд — объем дозы крана, см 3 ;

С — объемная доля контрольного вещества в газовой смеси, %об;

P — давление в дозе, мм.рт.ст;

R – газовая постоянная R = 62,364 мм.рт.ст ·дм³/(моль·К);

 10^{-3} - коэффициент пересчета объема дозы $V_{\rm Д}({}_{\rm cm}{}^3) = V_{\rm Д}({}_{\rm дm}{}^3) 10^{-3}$;

T- температура крана (дозы), °С.

М - молярная масса контрольного вещества (для справки: M пропана 44г/моль,

 $M_{\text{водорода}} = 2 \Gamma / \text{моль}; M_{\text{сероводорода}} = 34 \Gamma / \text{моль};$

К - коэффициент, учитывающий содержание углерода в пропане равный 0,82.

Для остальных контрольных веществ K=1.

Если в паспорте на $\Pi\Gamma C$ указана концентрация компонента в мг/м³ или в долях на миллион (ppm), необходимо пересчитать концентрации в $\%_{06}$ исходя из того, что

$$C\%_{\text{of}} = \frac{C_{\text{K}}}{p_{\text{K}}} * 100\%$$

$$C\%_{o6} = C_{ppm} * 10^{-4}$$

где $C_{\rm K}$ – концентрация компонента в ПГС, мг/м³;

 $\frac{c_{\kappa}}{n}$. $C_{\text{об.доля}}$ – концентрация компонента в ПГС, объемных долях;

 p_{κ} -плотность компонента, мг/м³.

Масса вещества, попадающего в детектор в режиме со сбросом пробы $m_{\rm д}$ рассчитывается по формуле:

$$m_{\rm A} = \frac{m_u}{K}$$

где m_u - масса контрольного компонента, вводимого в испаритель,

К - коэффициент деления пробы.

Коэффициент K равен:

$$K=1+\frac{Q_{\rm c6}}{Q_{\kappa}}$$

где Q_{κ} - расход газа-носителя через капиллярную колонку, см³/мин;

- расход газа-носителя по линии сброса пробы, см³/мин.

Полученные значения предела детектирования не должны превышать значений, указанных в таблице 7.

Таблица 7- Пределы детектирования детекторов

Детектор	Значение предела детектирования	
ПИД, по гептану (бензолу) или пропану, гС/с	4,0.10-12	
ДТП, гептану, пропану, азоту, водороду г/см ³	3,0·10 ⁻⁹	
ПФД-S, по сере в сероводороде, г/с	4,0.10-12	
TXД, по кислороду, г/см ³	1,5·10 ⁻¹⁰	

6.4 Определение метрологических характеристик

6.4.1 Определение относительного среднего квадратического отклонения (ОСКО) выходных сигналов

Определение относительного среднего квадратического отклонения (ОСКО) выходных сигналов проводить в изотермическом режиме при условиях работы хроматографа, указанных в п.3.2.3.

Относительное среднее квадратическое отклонение (ОСКО) выходного сигнала определяют для всех нормируемых информативных параметров выходного сигнала: времени удерживания t и площади пика s , регистрируемых программой «Хромос».

В качестве контрольных образцов используются ГСО 10532-2014, ГСО 10655-2015, ГСО 10651-2015, ГСО 10538-2014, ГОСТ 25828-83, ГСО 10611-2015, ГСО 7141-95.

В хроматограф вводят контрольный образец 10 раз. Определяют значения выходного сигнала (t,s), находят их средние арифметические значения.

Значения относительного среднего квадратического отклонения (ОСКО) G_t , G_s определяют по формулам:

$$G_{t} = \frac{100}{t_{cp}} * \sqrt{\frac{\sum_{i=1}^{n} (t_{i} - t_{cp})^{2}}{n-1}}$$

$$G_{s} = \frac{100}{s_{cp}} * \sqrt{\frac{\sum_{i=1}^{n} (s_{i} - s_{cp})^{2}}{n-1}}$$

где ${\bf n}$ -число результатов измерений, полученное после исключения выбросов (по ГОСТ Р ИСО 5725-2).

Значение ОСКО времени удерживания и площадей пиков в изотермическом режиме при дозировании краном для ДТП не должно превышать значений, указанных в таблице 8.

Таблица 8 – Пределы допускаемого значения относительного среднего квадратического отклонения (ОСКО) выходного сигнала (площади, времени удерживания) в изотермическом режиме

режине					
Детектор		ОСКО по	ОСКО по площади, %		
	времени удерживания,	Дозирование газа	Дозирование жидкости		
			%	Насадочная колонка	Капиллярная колонка
ПИД		1	1	2	4
ДТП		1	1	2	-
ПФД-Ѕ		1	3	-	-
ТХД		1	2	-	

6.4.2. Относительное изменение параметров выходного сигнала за 48 часов непрерывной работы определяют следующим образом.

Проводят операции по п.3.3.1, и определяют средние арифметические значения информативных параметров выходного сигнала - \mathbf{X}_{cp} ($^{t}_{cp}t_{cp}$, $^{s}_{cp}s_{cp}$). Через 48 часов непрерывной работы снова проводят операции по п.3.3.1, и определяют средние арифметические значения информативных параметров выходного сигнала - \mathbf{X}_{cpt} ($^{t}_{cpt}t_{cpt}$, $^{s}_{cpt}s_{cpt}$).

Относительное изменение параметров выходного сигнала δt ,% за 48 часов определяют по формуле:

$$\delta t = \frac{(X c p_t - X c p) * 100}{X c p}$$

Полученные значения изменения параметров выходного сигнала δ_t не должны превышать значений, указанных в таблице 9.

Таблица 9 - Пределы допускаемого значения относительного изменения выходного сигнала (плошадей) от первоначального значения за 48 ч непрерывной работы

Детектор	ОСКО по площади, %		
ПИД, ДТП	±5		
ПФД-Ѕ, ТХД	±10		

6.4.3 При проведении периодической поверки хроматографов, эксплуатируемых по НД на методики измерений, отвечающим требованиям ГОСТ Р 8.563 проверяют показатели точности результатов измерений в соответствии с нормативами контроля, установленными в НД на методики измерений.

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1. Результаты поверки хроматографов «Хромос ПГХ-1000.1» оформляются свидетельством о поверке, форма которого приведена в приложении 1 к документу «Порядок проведения поверки СИ, требования к знаку поверки и содержание свидетельства о поверке», утвержденному приказом Минпромторга России от 02.07.2015 г. № 1815, и (или) записью в паспорте (формуляре), заверяемой подписью поверителя и знаком поверки.
- 7.2 При отрицательных результатах поверки выпуск в обращение и применение хроматографов запрещается и выдается извещение о непригодности с указанием причин, форма которого приведена в приложении 2 к документу «Порядок проведения поверки СИ, требования к знаку поверки и содержание свидетельства о поверке», утвержденному приказом Минпромторга России от 02.07.2015 г. № 1815.

Приложение A Перечень поверочных газовых смесей, применяемых при поверке хроматографов «Хромос $\Pi\Gamma X$ -1000.1»

ГСО-ПГС	Интервал аттестованных	Относительная	Объем
	значений (X) ^х	расширенная неопределенность (U, %) ^{xx}	вводимой пробы, см ³
	,	При коэффициенте охвата k = 2	CM
СО состава газовой смеси пропан в гелии, ГСО 10655-2015	от 0,1 до 0,5 %	U = -5X + 5,5	от 0,01 до 2
СО состава газовой смеси азот – гелий, ГСО 10532-2014	от 0,1 до 0,5 %	U = -3X + 7	от 0,01 до 2
СО состава газовой смеси: водород-азот, ГСО 10532-2014	от 0,6 до 1,0 %	U = -0.046X + 1.52	от 0,01 до 2
СО состава газовой смеси пропан-азот, ГСО 10651-2015	от 0,1 до 0,5 %	U= -2,5 X+2,75	от 0,01 до 2
СО состава газовой смеси кислород- аргон, ГСО 10611-2015	от 0,01 до 0,02 %	U = от 5 до 8	от 0,1 до 1
СО состава сероводородазот, ГСО 10537-2014	от 9 до 13 мг/м ³	U = от 1 до 0,6	от 0,01 до 2
СО состава сероводород- метан, ГСО 10538-2014	от 4 до 20 мг/м ³	U = от 2 до 2,5	от 0,01 до 2
Гептан эталонный, ГОСТ 25828-83	не менее 99 %		от 0,01 до 2
Бензол х.ч., ГСО 7141-95	не менее 99,4 %		от 0,01 до 2

^х – значение объемной доли определяемого компонента.

 $^{^{}xx}$ - соответствует границам относительной погрешности (± Δ_0) при доверительной вероятности (P=0,95).

Приложение Б (обязательное)

Инструкция по приготовлению контрольных растворов

Настоящая инструкция устанавливает методику приготовления контрольных растворов, предназначенных для проверки метрологических характеристик хроматографа.

Диапазон содержания контрольного вещества - от $5 \cdot 10^{-5}$ до 10 мг/см³. Относительная погрешность аттестованного значения массовой концентрации контрольного компонента не превышает 10%.

Средства измерений, материалы и реактивы приведены в разделе 5.

Б.1 Процедура приготовления растворов

Б.1.1 Растворы массовой концентрацией от 1 до 10 мг/см³ приготавливают объемно-весовым методом. Массовую концентрацию контрольного вещества определяют по формуле:

$$C = \frac{m}{V}$$

где т - масса контрольного вещества, мг;

V- объем приготовленного раствора, см³.

- Б.1.2 Исходные вещества, используемые для приготовления раствора, выдерживают не менее 2 ч в лабораторном помещении.
- Б.1.3 Температура окружающей среды при приготовлении контрольных растворов не должна изменяться более чем на 4 °C.
- Б.1.4 Определяют массу m1 мерной колбы вместимостью 100 см³. Результат взвешивания записывают с точностью до первого десятичного знака.
- Б.1.5 В мерную колбу вносят от 100 до 1000 мг контрольного вещества и вновь взвешивают колбу m2.
- Б.1.6 Вычисляют массу контрольного вещества т, мг, по формуле:

$$m = m_2 - m_1$$

- Б.1.7 В колбу с контрольным веществом вводят от 20 до 25 см³ растворителя, перемешивают содержимое и доводят объем раствора до 100 см³. Тщательно перемешивают раствор.
- Б.1.8 Рассчитывают массовую концентрацию контрольного вещества по Б.1.1.
- Б.1.9 Растворы с содержанием контрольного вещества от $5 \cdot 10^{-5}$ до 1 мг/см³ приготавливают объемным методом путем последовательного разбавления более концентрированных растворов. Массовую концентрацию контрольного вещества C_n рассчитывают по формуле:

$$C_n = \frac{C_{n-1}V_{n-1}}{100}$$

где n- номер ступени разбавления исходного контрольного раствора концентрацией ; V_{n-1} - аликвотная доля раствора с массовой концентрацией C_{n-1} , мг/см³.

- Б.1.10 Перед каждым разбавлением рассчитывают значение аликвотной доли раствора V_{n-1} , исходя из заданного значения концентрации контрольного вещества C_n и концентрации разбавляемого раствора C_{n-1} .
- Б.1.11 В мерную колбу вместимостью 100 см³ вносят аликвотную долю разбавляемого раствора, доводят объем приготавливаемого раствора до 100 см³ и тщательно перемешивают.
- Б.2 Хранение контрольных растворов

Контрольные растворы хранят в чистых сухих склянках с хорошо притертыми пробками вдали от источников огня и нагревательных приборов при температуре от 4 до 8 °C.

Срок хранения исходного раствора - от 3 до 5 сут, смеси меньших концентраций хранению не подлежат.