OKMU Macrop

Закрытое Акционерное Общество «АКТИ-Мастер» **АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ И ИНФОРМАТИКА**

127254, Москва, Огородный проезд, д. 5, стр. 5 тел./факс (495)926-71-85 E-mail: post@actimaster.ru http://www.actimaster.ru

УТВЕРЖДАЮ

Генеральный директор ЗАО «АКТИ-Мастер»

В.В. Федулов

« 14// февраля 2019 г.

Государственная система обеспечения единства измерений

Генераторы-анализаторы цифровых сигналов с параметрическим измерителем модульные M9195B

> Методика поверки М9195В/МП-2019

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

160

Д.Р. Васильев

Настоящая методика поверки распространяется на генераторы-анализаторы цифровых сигналов с параметрическим измерителем модульные M9195B (далее – модули), изготовленные компанией "Keysight Technologies Malaysia Sdn. Bhd." (Малайзия) с серийными номерами MY58140168, MY58140169, и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование операции	Номер пункта	-	Проведение операции при поверке	
	методики	первичной	периодической	
Внешний осмотр и подготовка к поверке	6	да	да	
Опробование и функциональное тестирование	7.2	да	да	
Определение погрешности установки и измерения напряжения параметрическими измерителями в режиме источника напряжения	7.3	да	да	
Определение погрешности установки и измерения силы тока параметрическими измерителями в режиме источника тока	7.4	да	да	
Определение погрешности установки постоянного напряжения драйверами	7.5	да	да	
Определение погрешности порогов срабатывания компараторов	7.6	да	да	

1.2 Если поверяемый модуль используется не на всех измерительных каналах, не для всех измеряемых величин и/или диапазонах измерений, то по письменному запросу пользователя периодическая поверка может быть выполнена по указанным в таблице 1 операциям для определенных каналов, величин и/или диапазонов, при этом должна быть сделана соответствующая запись в свидетельстве о поверке.

2 СРЕДСТВА ПОВЕРКИ

- 2.1 Рекомендуется применять средства поверки, указанные в таблице 2.
- 2.2 Средства измерений должны быть исправны, поверены и иметь документы о поверке.
- 2.3 Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых модулей с требуемой точностью.
- 2.4 Переходной кабель поз. 2.5 таблицы 2 должен быть сделан из двух отрезков многожильного изолированного провода длиной (400 ... 500) mm. На одном из концов кабеля нужно припаять к проводам миниатюрный разъем DS1071-1х2, на другом конце кабеля припаять к проводам вилки banana(m), обозначив полярность (соответствие гнезд разъема и вилок banana).

Таблица 2 – Средства поверки

	олица 2 – Средо Наименование	Номер	Требуемые	Рекомендуемый тип
№	средства	пункта	технические	средства поверки,
	поверки	методики	характеристики	рег. номер реестра
1	2	3	4	5
			1. Средства измерений	
1.1	Измеритель	7.3	абсолютная погрешность измерения	
	постоянного	7.5	постоянного напряжения	
	напряжения		от -2 до $+6$ V не более ± 1 mV	Мультиметр
				Agilent 3458A
1.2	Измеритель	7.4	относительная погрешность	рег. № 25900-03
	постоянного		измерения силы постоянного тока	
	тока		от 2 μ A до 40 mA не 5олее $\pm 0,2$ %	
1.3	Калибратор	7.6	абсолютная погрешность установки	Калибратор универсальный
	постоянного		постоянного напряжения	Fluke 9100
	напряжения		от 1 до 2 V не более ±1 mV	рег. № 25985-09
		2. Вспо	могательные средства и принадлежнос	ти
2.1	Шасси	Разделы	не менее 8-х слотов РХІе	Keysight M9018A
	PXI Express	6, 7		Reysight W17010/1
2.2	Модуль	Разделы	PXI Express	Keysight M9037A
	контроллера	6, 7	1 At Express	Reysight W17037A
2.3	Плата	раздел 7	коммутация 16 каналов модуля	Keysight Y1253A
	коммутации	раздел /	коммутация то каналов модуля	Reysight 11255A
2.4	Кабель	раздел 7	коммутация 16 каналов модуля	Keysight Y1246A
	соединительный		коммутация то каналов модуля	Reysignt 1124071
2.5	Монитор,	Разделы		
	клавиатура,	6, 7	_	_
	манипулятор		-	_
	«мышь»			
2.6	Кабель	7.3 - 7.6	присоединение канала модуля к	указания в пункте 2.4
	переходной	7.5	средству поверки	JAGJUNIA D HYRKIC 2.4
			3. Программное обеспечение	
3.1	Операционная	Разделы	управление работой модуля	Windows 7 (32/64)
	система	6, 7	Jupublishe puoton Mogylin	,
3.2	Драйвер	Разделы	управление работой модуля	MDsr версии 2.1.118.0 и
	модуля	6, 7	управление расстои подум	выше

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области электрических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.
- 4.2 Во избежание несчастного случая и для предупреждения повреждения модуля необходимо обеспечить выполнение следующих требований:
- подсоединение шасси с модулем и средств поверки к сети должно производиться с помощью сетевых кабелей из комплекта шасси и комплектов средств поверки;
- заземление шасси и средств поверки должно производиться посредством заземляющих контактов сетевых кабелей:

Keysight M9195B	Методика поверки М9195В/МП-2019	стр. 3 из 22
-----------------	---------------------------------	--------------

- соединения модуля и средств поверки следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах модуля и средств поверки);
 - запрещается работать с модулем при наличии в воздухе взрывоопасных веществ;
 - запрещается работать с модулем в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ± 3) °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

- 6.1.1 При проведении внешнего осмотра проверяются:
- чистота и исправность разъемов модуля;
- отсутствие механических повреждений корпуса модуля и элементов плат;
- правильность маркировки и комплектность модуля.
- 6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого модуля, его следует направить в сервисный центр для проведения ремонта.

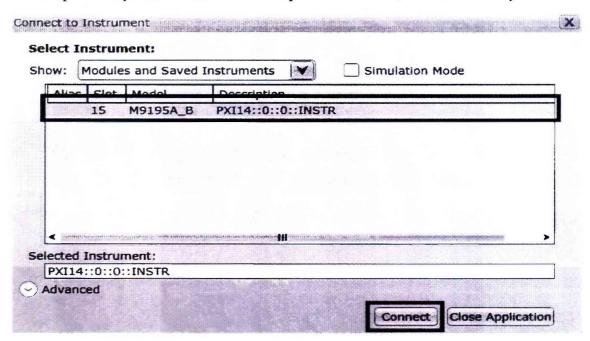
6.2 Подготовка к поверке

- 6.2.1 Перед началом работы следует изучить руководство по эксплуатации модуля, а также руководства по эксплуатации применяемых средств поверки.
 - 6.2.2 Выполнить установку контроллера и модуля:
 - 1) установить в 4 левых слота шасси РХІе модуль контроллера;
 - 2) присоединить к контроллеру монитор, клавиатуру и мышь;
 - 3) подсоединить шасси и монитор к сети 220 V/50 Hz;
 - 4) установить поверяемый модуль в слот шасси РХІе;
 - 5) включить шасси и контроллер, дождаться загрузки Windows.
- 6.2.3 Если на контроллере не установлен драйвер "MDsr, следует инсталлировать его в соответствии с указаниями руководства по эксплуатации модуля.
- 6.2.4 Подготовить к работе средства поверки в соответствии с руководствами по эксплуатации.
- 6.2.5 Выдержать модуль и средства поверки во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева модуля 30 min.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Общие указания по проведению поверки

В процессе выполнения операций результаты заносятся в протокол поверки.


Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах раздела 7. При получении отрицательных результатов необходимо повторить операцию. При повторном отрицательном результате модуль следует направить в сервисный центр для проведения регулировки или ремонта.

7.2 Опробование и функциональное тестирование

7.2.1 Запустить виртуальную панель модуля "MDsr SFP", для чего выбрать:

Меню Пуск > Keysight > MDsr > MDsr SFP

7.2.2 Выбрать модуль для подключения через "MDsr SFP", нажать клавишу "Connect".

- 7.2.3 В появившемся окне кликнуть на вкладке Help, выбрать пункт About.
- 7.2.4 Записать номер версии (Driver Revision) в таблицу 7.2.
- 7.2.5 Закрыть окно.

Таблица 7.2 – Опробование и функциональное тестирование

Содержание проверки	Результат проверки	Критерии проверки
идентификация версии ПО		MDsr 2.1.118.0 или выше

7.3 Определение погрешности установки и измерения напряжения параметрическими измерителями в режиме источника напряжения

- 7.3.1 Выбрать на мультиметре режим DCV, NDIG5, NPLC20.
- 7.3.2 Используя переходной кабель, подключить на плате коммутации контакты поверяемого канала модуля к гнездам "Input HI", "Input LO" мультиметра, соблюдая полярность.
 - 7.3.3 Создать профиль PPMU, для чего во вкладке PpmuSites нажать клавишу Add Site.
 - 7.3.4 Сконфигурировать профиль PPMU для требуемых каналов в окне Add Site

Starting Channel Number: 0 Number of Signals: 16

- 7.3.5 Активировать профиль клавишей Activate
- 7.3.6 На вкладке Test Site выбрать в поле Measurement: Force Voltage Measure Voltage, установить усреднения Averaging: Window 50 Hz.

Keysight M9195B	Методика поверки М9195В/МП-2019	стр. 5 из 22
110	The topping the first section in the	0.p. 0 110 ==

7.3.7 Установить в поле Force Voltage первое значение напряжения U_S из столбца 1 таблицы 7.3, после чего нажать на кнопку Continuous.

Измеряемые модулем значения напряжения отображаются в нижней части поля Test Site.

- 7.3.8 Записать отсчет напряжения на мультиметре Um в столбец 2 таблицы 7.3, а измеряемое значение U_P на канале модуля в столбец 5 таблицы 7.3.
 - 7.3.9 Вычислить значение абсолютной погрешности установки напряжения $\Delta_S = (Um U_S)$, занести его в столбец 2 таблицы 7.3.
 - 7.3.10 Вычислить значение абсолютной погрешности измерения напряжения $\Delta_M = (U_P U_m)$, занести его в столбец 5 таблицы 7.3.
- 7.3.11 Выполнить действия по пунктам 7.3.7 7.3.10 для остальных значений напряжения, указанных в столбце 1 таблицы 2.
- 7.3.12 Выполнить действия по пунктам 7.3.2, 7.3.7 7.3.10 для остальных поверяемых каналов модуля из 0-15.
 - 7.3.13 Отсоединить переходной кабель от мультиметра.

Таблица 7.3 – Погрешность установки и измерения напряжения параметрическими измерителями PPMU в режиме источника напряжения

Установленное РРМU значение U _S , V	Измеренное мультнметром значение Um, V	Абсолютная погрешность установки (Um – U _S), V	Пределы допуска погрешности установки, V	Измеренное РРМU значение U _P , V	Абсолютная погрешность измерения (U _P – Um), V	Пределы допуска погрешности измерения, V
1	2	3	4	5	6	7
+6.500			±0.010			±0.010
-2.000			±0.010			±0.010
+0.000			±0.010			±0.010

7.4 Определение погрешности установки и измерения силы тока параметрическими измерителями в режиме источника тока

- 7.4.1 Выбрать на мультиметре режим DCI, NDIG5, NPLC20.
- 7.4.2 Используя переходной кабель, подключить на плате коммутации контакты поверяемого канала модуля к гнездам "Input I", "Input LO" мультиметра, соблюдая полярность.
- 7.4.3 На вкладке Test Site выбрать в поле Measurement: Force Current Measure Current, установить усреднения Averaging: Window 50 Hz.
- 7.4.4 Установить в поле Force Current первое значение силы тока I_S из столбца 1 таблицы 7.4, после чего нажать на кнопку Continuous.

Измеряемые модулем значения силы тока отображаются в нижней части поля Test Site. Примечания:

- 1) Поскольку измерительная цепь замкнута только для выбранного канала, значение измеряемой силы тока отображается в соответствующей номеру канала строке поля Test Site.
- 2) Для установки значений µА следует вводить их в mA (например, для установки 2 µА надо ввести 0,002 mA, для установки 0 µА надо ввести 0,000 mA).
- 7.4.5 Записать отсчет силы тока на мультиметре Im в столбец 2 таблицы 7.4, а измеряемое значение I_P на канале модуля в столбец 5 таблицы 7.4.

Keysight M9195B	Методика поверки М9195В/МП-2019	стр. 6 из 22
Reysight M19193D	Meloduka nobepku M19193B/M11-2019	Стр. 6 из 22

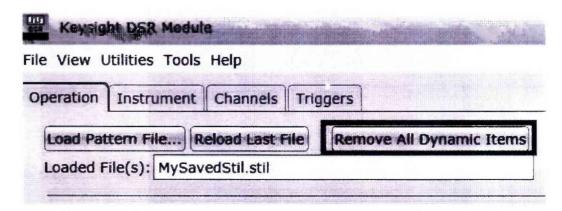

- 7.4.6 Вычислить значение абсолютной погрешности установки силы тока $\Delta_S = (\text{Im} \text{I}_S)$, занести его в столбец 2 таблицы 7.4.
- 7.4.7 Вычислить значение абсолютной погрешности измерения силы тока $\Delta_{\rm M} = (I_{\rm P} {\rm Im})$, занести его в столбец 6 таблицы 7.4.
- 7.4.8 Выполнить действия по пунктам 7.4.4 7.4.7 для остальных значений силы тока, указанных в столбце 1 таблицы 3.
- 7.4.9 Выполнить действия по пунктам 7.4.2, 7.4.4 7.4.7 для остальных поверяемых каналов модуля из 0 15.
 - 7.4.10 Отсоединить переходной кабель от мультиметра.

Таблица 7.4 – Погрешность установки и измерения силы тока параметрическими измерителями PPMU в режиме источника тока

Установленное	Измеренное мультнметром значенне Im, V	Абсолютная погрешность установки (Im – I _S)	Пределы допуска погрешности установки	Измеренное РРМІ значение І _Р	Абсолютная погрешность измерения (I _P – Im)	Пределы допуска погрешности измерения
1	2	3	4	5	6	7
+40.000 mA			±0.400 mA			±0.400 mA
-40.000 mA			±0.400 mA			±0.400 mA
+1.000 mA			±0.010 mA			±0.010 mA
-1.000 mA			±0.010 mA			±0.010 mA
+100.00 μA			±1.000 μA			±1.000 μA
-100.00 μA			±1.000 μA			±1.000 μA
+10.000 μA			±0.100 μA			±0.100 μA
-10.000 μA			±0.100 μΑ			±0.100 μA
+2.000 μΑ			±0.020 μA			±0.020 μA
-2.000 μA			±0.020 μΑ			±0.020 μA

7.5 Определение погрешности установки постоянного напряжения драйверами

- 7.5.1 Выбрать на мультиметре режим DCV, NDIG5, NPLC20.
- 7.5.2 Используя переходной кабель, подключить на плате коммутации контакты первого поверяемого канала модуля к гнездам "Input HI", "Input LO" мультиметра, соблюдая полярность.
 - 7.5.3 Сбросить плату на стандартные настройки кнопкой Remove All Dynamic Items.

7.5.4 Для установки уровня логической единицы +5 V загрузить файл «5V.stil», нажав на кнопку Load Pattern File. Следует указать путь к папке, в которой находится файл (например, C:\Users\Administrator\Desktop\M9195). Файл «5V.stil» приведен в Приложении.

- 7.5.5 Проверить, правильность загрузки файла. Для этого в поле STIL Components VIEW выбрать вкладку Pattern и убедиться, что отображается состояние «все единицы».
 - 7.5.6 В поле Active Sites развернуть меню PatternSites Properties и выбрать Retain Last Level. Нажать кнопку Activate.
 - 7.5.7 В поле Activated PatternSites нажать кнопку Initiate.
 - 7.5.8 Записать измеренное мультиметром значение Um в столбец 2 таблицы 7.5
 - 7.5.9 Вычислить значение абсолютной погрешности установки напряжения $\Delta_S = (Um U_S)$, занести его в столбец 3 таблицы 7.5.
- 7.5.10 Пересоединять разъем переходного кабеля на контакты следующих поверяемых каналов модуля из 0-15 и выполнять действия по пунктам 7.5.8, 7.5.9.
- 7.5.11 Присоединить разъем переходного кабеля к контактам первого поверяемого канала модуля.
 - 7.5.12 Сбросить плату на стандартные настройки кнопкой Remove All Dynamic Items.
- 7.5.13 Для установки уровня логического нуля +100 mV загрузить файл «100mV.stil», нажав на кнопку Load Pattern File. Следует указать путь к папке, в которой находится файл (например, C:\Users\Administrator\Desktop\M9195). Файл «100mV.stil» приведен в Приложении.
- 7.5.14 Проверить, правильность загрузки файла. Для этого в поле STIL Components VIEW выбрать вкладку Pattern и убедиться, что отображается состояние «все нули».
 - 7.5.15 Выполнить действия по пунктам 7.5.6 7.5.10 для уровня логического нуля +100 mV.
 - 7.5.16 Отсоединить переходной кабель от мультиметра.

Таблица 7.5 – Погрешность установки постоянного напряжения драйверами

Установленное значение U _S , V	Измеренное значенне Um, V	Абсолютная погрешность (Um – U _S), V	Пределы допуска погрешности, V
1	2	3	4
+5 V			±0.025
+0,1 V			±0.025

7.6 Определение погрешности порогов срабатывания компараторов

- 7.6.1 Выбрать на калибраторе режим DCV.
- 7.6.2 Используя переходной кабель, подключить на плате коммутации контакты первого поверяемого канала модуля к гнездам "HI", "LO" калибратора, соблюдая полярность.
 - 7.6.3 Сбросить плату на стандартные настройки кнопкой Remove All Dynamic Items.
- 7.6.4 Для установки порога «High» +1.7 V загрузить файл «1_7V.stil», нажав на кнопку Load Pattern File. Следует указать путь к папке, в которой находится файл (например, C:\Users\Administrator\Desktop\M9195). Файл «1 7V.stil» приведен в Приложении.
- 7.6.5 Проверить, правильность загрузки файла. Для этого в поле STIL Components VIEW выбрать вкладку Pattern и убедиться, что отображается состояние «все высокий».
 - 7.6.6 В поле Active Sites развернуть меню PatternSites Properties и установить What to Log: Every Cycle with Compare. Нажать кнопку Activate.

- 7.6.7 Установить на калибраторе значение напряжения +1.700 V.
- 7.6.8 В поле Activated PatternSites нажать кнопку Initiate, затем View Results
- 7.6.9 В появившемся окне Results View выбрать Binary.
- 7.6.10 В окне Results View нажать на кнопку Fetch Results.

Результат компарирования отобразится в строке Result, нумерация каналов справа налево.

- 7.6.11 Выполнить определение порога срабатывания «High» следующим образом. Например, подключен канал с номером «7», как показано на рисунках выше и ниже.
- 1) Если значение бита на канале равно «1», как показано на рисунке выше, следует увеличить напряжение на калибраторе на шаг 4 mV, т.е. установить значение +1.704 V.

Если значение бита на канале равно **«0»**, как показано на рисунке ниже, следует **уменьшить** напряжение на калибраторе на шаг 4 mV, т.е. установить значение +1.696 V.

- 2) Выполнить новое компарирование, для чего:
- закрыть окно Results View
- выполнить действия по пунктам 7.6.8, 7.6.10.
- 3)Если значение бита на канале не изменилось, повторить действия по пунктам 1) и 2).

Если значение бита изменилось, то выполнять действия по пунктам 1) и 2) сначала с шагом 2 mV, а затем с шагом 1 mV.

- 4) Значение напряжения калибратора, при котором «1» меняется на «0», принимается за порог срабатывания «High». Записать это значение в столбец 2 таблицы 7.6.
- 7.6.12 Пересоединять разъем переходного кабеля на контакты следующих поверяемых каналов модуля из 0 15 и для каждого канала выполнять действия:
 - закрыть окно Results View
 - выполнить пункты 7.6.8, 7.6.10, 7.6.11.
 - 7.6.13 Присоединить разъем переходного кабеля к контактам первого поверяемого канала.
- 7.6.14 Выполнить действия по пунктам 7.6.3 7.6.12 для порога срабатывания «Low» со следующими изменениями:
- в пункте 7.6.4 для установки порога «Low» +1.6 V загрузить файл «1_6V.stil». Следует указать путь к папке, в которой находится файл (например, :\Users\Administrator\Desktop\M9195). Файл «1 6V.stil» приведен в Приложении.
 - в пункте 7.6.5 должно отображаться состояние «все низкий».
 - в пункте 7.6.7 установить на калибраторе значение напряжения +1.600 V
 - в пункте 7.6.11.1):

Если значение бита на канале равно «1», как показано на рисунке выше, следует **уменьшить** напряжение на калибраторе на шаг 4 mV, т.е. установить значение +1.596 V.

Если значение бита на канале равно «**0**», как показано на рисунке ниже, следует **увеличить** напряжение на калибраторе на шаг 4 mV, т.е. установить значение +1.604 V.

- в пункте 6.11.4):

Значение напряжения калибратора, при котором «1» меняется на «0», принимается за порог срабатывания «Low». Записать это значение в столбец 2 таблицы 7.6.

7.6.15 Отсоединить кабель от калибратора.

Таблица 7.6 – Погрешность установки порогов срабатывания компараторов

Установленное значение порога \mathbf{U}_{T} , \mathbf{V}	Значеине напряжения на калибраторе U _C , V	Абсолютная погрешность порогов (U _C – U _T), mV	Пределы допуска погрешностн, mV	
1	2	3	4	
+1.700 (High)			±0.020	
+1.600 (Low)			±0.020	

Keysight M9195B	Manager MO105D A (T) 2010	0 22
Versight Malaba	Методика поверки М9195В/МП-2019	стр. 9 из 22
7.6	1	e1p. > 113 aa

ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:

- полное наименование аккредитованной на право поверки организации;
- номер и дата протокола поверки
- наименование и обозначение поверенного средства измерения
- заводской (серийный) номер;
- обозначение документа, по которому выполнена поверка;
- наименования, обозначения и заводские (серийные) номера использованных при поверке средств измерений, сведения об их последней поверке;
 - температура и влажность в помещении;
 - фамилия лица, проводившего поверку;
- результаты определения метрологических характеристик по форме таблиц раздела 7 настоящего документа.

Допускается не оформлять протокол поверки отдельным документом, а результаты поверки (метрологические характеристики) указать в обобщенном виде (с приведением качественных результатов измерений) на оборотной стороне свидетельства о поверке.

8.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

Ведущий инженер по метрологии ЗАО «АКТИ-Мастер»

В.А. Казимиров

ПРИЛОЖЕНИЕ. Файлы для выполнения измерений

Файл «5V.stil»

```
STIL 1.0 { Design 2005; DCLevels 2002; }
UserKeywords Site Channels Triggers WatchLoop VCOM VHH VIT VHYST;
Signals {
 ch0 InOut:
 ch1 InOut:
 ch2 InOut:
 ch3 InOut:
 ch4 InOut:
 ch5 InOut;
 ch6 InOut:
 ch7 InOut:
 ch8 InOut;
 ch9 InOut;
 ch10 InOut:
 ch11 InOut:
 ch12 InOut;
 ch13 InOut;
 ch14 InOut;
 ch15 InOut:
Spec MyVars {
  Category ts1 {
   MyPeriod = '100.00000ns';
 }
SignalGroups {
 All = 'ch15 + ch14 + ch13 + ch12 + ch11 + ch10 + ch9 + ch8 + ch7 + ch6 + ch5 + ch4 + ch3 + ch2 + ch1
+ ch0';
Site MySite {
 Channels {
   ch0 0 0;
   ch1 1 1;
   ch2 2 2;
   ch3 3 3:
   ch4 4 4:
   ch5 5 5;
   ch6 6 6:
   ch7 7 7;
   ch8 8 8:
   ch9 9 9:
   ch10 10 10;
   ch11 11 11;
   ch12 12 12;
   ch13 13 13;
   ch14 14 14;
   ch15 15 15;
DCLevels My_Levels {
  All { VIH '5V"; VIL '0.1V'; VOH '1.7V'; VOL '1.6V'; }
Timing {
  WaveformTable MyWFT {
   Period 'MyPeriod';
   Waveforms {
     ch15 {
       0 { '0ns' ForceDown; }
       1 { 'Ons' ForceUp; }
       L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
```

```
H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch14 {
 0 { 'Ons' ForceDown; }
  1 { 'Ons' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch13 {
  0 { '0ns' ForceDown; }
  1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch12 {
 0 { 'Ons' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch11 {
  0 { '0ns' ForceDown; }
  1 { '0ns' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch10 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch9 {
  0 { 'Ons' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch8 {
  0 { '0ns' ForceDown; }
  1 { '0ns' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch7 {
  0 { 'Ons' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch6 {
  0 { 'Ons' ForceDown; }
  1 { '0ns' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch5 {
  0 { 'Ons' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch4 {
  0 { 'Ons' ForceDown; }
  1 { 'Ons' ForceUp; }
```

```
L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     ch3 {
      0 { 'Ons' ForceDown; }
      1 { 'Ons' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
     ch2 {
      0 { '0ns' ForceDown; }
      1 { 'Ons' ForceUp; }
      L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch1 {
      0 { '0ns' ForceDown; }
      1 { 'Ons' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch0 {
      0 { 'Ons' ForceDown; }
      1 { 'Ons' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
  }
 }
PatternBurst "MyBurst" {
 PatList {
   MyPattern;
 }
PatternExec MyPatternExec {
 DCLevels My Levels;
 PatternBurst "MyBurst";
Pattern My Pattern {
 WaveformTable MyWFT;
 V {ch15 = 1; ch14 = 1; ch13 = 1; ch12 = 1; ch11 = 1; ch10 = 1; ch9 = 1; ch8 = 1; ch7 = 1; ch6 = 1; ch5 =
1; ch4 = 1; ch3 = 1; ch2 = 1; ch1 = 1; ch0 = 1; }
}
```

Файл «100mV.stil»

```
STIL 1.0 { Design 2005; DCLevels 2002; }
UserKeywords Site Channels Triggers WatchLoop VCOM VHH VIT VHYST;
Signals {
 ch0 InOut:
 ch1 InOut;
 ch2 InOut:
 ch3 InOut;
 ch4 InOut;
 ch5 InOut:
 ch6 InOut:
 ch7 InOut:
 ch8 InOut:
 ch9 InOut;
 ch10 InOut;
 ch11 InOut;
 ch12 InOut;
 ch13 InOut;
 ch14 InOut:
 ch15 InOut;
Spec MyVars {
 Category ts1 {
   MyPeriod = '100.000000ns';
SignalGroups {
 All = 'ch15 + ch14 + ch13 + ch12 + ch11 + ch10 + ch9 + ch8 + ch7 + ch6 + ch5 + ch4 + ch3 + ch2 + ch1
+ ch0';
Site MySite {
 Channels {
   ch0 0 0;
   ch1 1 1;
   ch2 2 2;
   ch3 3 3;
   ch4 4 4;
   ch5 5 5;
   ch6 6 6;
   ch7 7 7:
   ch8 8 8:
   ch9 9 9:
   ch10 10 10;
   ch11 11 11;
   ch12 12 12;
   ch13 13 13:
   ch14 14 14;
   ch15 15 15;
 }
DCLevels My Levels {
 All { VIH '5V'; VIL '0.1V'; VOH '1.7V'; VOL '1.6V'; }
Timing {
 WaveformTable MyWFT {
   Period 'MyPeriod';
   Waveforms {
     ch15 {
       0 { '0ns' ForceDown; }
       1 { 'Ons' ForceUp; }
       L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
       H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
```

```
}
ch14 {
 0 { '0ns' ForceDown; }
 1 { 'Ons' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch13 {
 0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
 L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch12 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch11 {
  0 { '0ns' ForceDown; }
  1 { '0ns' ForceUp; }
  L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch10 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow: }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch9 {
  0 { '0ns' ForceDown; }
  1 { '0ns' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch8 {
  0 { 'Ons' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch7 {
  0 { '0ns' ForceDown; }
  1 { '0ns' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch6 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch5 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
  H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch4 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
```

```
H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
              }
               ch3 {
                    0 { '0ns' ForceDown; }
                    1 { 'Ons' ForceUp; }
                    L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
                    H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
              }
              ch2 {
                    0 { 'Ons' ForceDown; }
                    1 { 'Ons' ForceUp; }
                    L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
                    H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
              }
               ch1 {
                    0 { 'Ons' ForceDown; }
                    1 { 'Ons' ForceUp; }
                    L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
                    H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
              }
               ch0 {
                    0 { 'Ons' ForceDown; }
                    1 { 'Ons' ForceUp; }
                    L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
                    H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
         }
   }
PatternBurst "MyBurst" {
    PatList {
          MyPattern;
    }
PatternExec MyPatternExec {
    DCLevels My_Levels;
    PatternBurst "MyBurst";
Pattern MyPattern {
    WaveformTable MvWFT:
    V \{ ch15 = 0; ch14 = 0; ch13 = 0; ch12 = 0; ch11 = 0; ch10 = 0; ch9 = 0; ch8 = 0; ch7 = 0; ch6 = 0; ch5 = 0; ch14 = 0; ch14 = 0; ch14 = 0; ch15 = 0; ch14 = 0; ch14 = 0; ch14 = 0; ch15 = 0; ch14 = 0; ch15 = 0; ch14 = 0; ch15 = 0; ch16 = 0; ch16 = 0; ch16 = 0; ch16 = 0; ch17 = 0; ch17 = 0; ch18 
0; ch4 = 0; ch3 = 0; ch2 = 0; ch1 = 0; ch0 = 0; }
```

```
STIL 1.0 { Design 2005; DCLevels 2002; }
UserKeywords Site Channels Triggers WatchLoop VCOM VHH VIT VHYST;
Signals {
 ch0 InOut;
 ch1 InOut:
 ch2 InOut:
 ch3 InOut:
 ch4 InOut:
 ch5 InOut:
 ch6 InOut:
 ch7 InOut:
 ch8 InOut;
 ch9 inOut:
 ch10 InOut;
 ch11 InOut:
 ch12 InOut;
 ch13 InOut;
 ch14 InOut;
 ch15 InOut:
Spec MyVars {
 Category ts1 {
   MyPeriod = '100.000000ns';
 }
SignalGroups {
 All = 'ch15 + ch14 + ch13 + ch12 + ch11 + ch10 + ch9 + ch8 + ch7 + ch6 + ch5 + ch4 + ch3 + ch2 + ch1
+ ch0':
Site MySite {
 Channels {
   ch0 0 0;
   ch1 1 1;
   ch2 2 2:
   ch3 3 3:
   ch4 4 4;
   ch5 5 5;
   ch6 6 6;
   ch7 7 7:
   ch8 8 8:
   ch9 9 9;
   ch10 10 10;
   ch11 11 11;
   ch12 12 12:
   ch13 13 13;
   ch14 14 14;
   ch15 15 15;
 }
DCLevels My_Levels {
 All { VIH '2V'; VIL '0V'; VOH '1.7V'; VOL '1.6V'; }
Timing {
 WaveformTable MyWFT {
   Period 'MyPeriod';
   Waveforms {
     ch15 {
       0 { '0ns' ForceDown; }
       1 { 'Ons' ForceUp; }
       L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
       H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
```

```
}
ch14 {
 0 { 'Ons' ForceDown; }
 1 { 'Ons' ForceUp; }
 L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
 H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
ch13 {
 0 { 'Ons' ForceDown; }
 1 { 'Ons' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch12 {
 0 { 'Ons' ForceDown; }
 1 { 'Ons' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch11 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
ch10 {
 0 { 'Ons' ForceDown; }
  1 { 'Ons' ForceUp; }
 L { 'Ons' ForceOff: 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch9 {
  0 { 'Ons' ForceDown; }
  1 { '0ns' ForceUp; }
 L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch8 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch7 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
  H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch6 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch5 {
  0 { 'Ons' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch4 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
```

```
H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
    }
    ch3 {
      0 { 'Ons' ForceDown; }
      1 { 'Ons' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
    ch2 {
      0 { '0ns' ForceDown; }
      1 { 'Ons' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
    }
    ch1 {
      0 { 'Ons' ForceDown; }
      1 { '0ns' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
    ch0 {
      0 { 'Ons' ForceDown; }
      1 { 'Ons' ForceUp; }
      L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
  }
 }
PatternBurst "MyBurst" {
 PatList {
   MyPattern;
 }
PatternExec MyPatternExec {
 DCLevels My_Levels;
 PatternBurst "MyBurst";
Pattern MyPattern {
 WaveformTable MyWFT;
 V {ch15 = H; ch14 = H; ch13 = H; ch12 = H; ch11 = H; ch10 = H; ch9 = H; ch8 = H; ch7 = H; ch6 = H;
ch5 = H; ch4 = H; ch3 = H; ch2 = 1; ch1 = H; ch0 = H; }
```

```
STIL 1.0 { Design 2005; DCLevels 2002; }
UserKeywords Site Channels Triggers WatchLoop VCOM VHH VIT VHYST;
Signals {
 ch0 InOut;
 ch1 InOut;
 ch2 InOut:
 ch3 InOut;
 ch4 InOut:
 ch5 InOut:
 ch6 InOut:
 ch7 InOut:
 ch8 InOut;
 ch9 InOut;
 ch10 InOut;
 ch11 InOut;
 ch12 InOut:
 ch13 inOut:
 ch14 InOut;
 ch15 InOut;
Spec My Vars {
 Category ts1 {
   MyPeriod = '100.000000ns';
SignalGroups {
 All = 'ch15 + ch14 + ch13 + ch12 + ch11 + ch10 + ch9 + ch8 + ch7 + ch6 + ch5 + ch4 + ch3 + ch2 + ch1
+ ch0';
Site MySite {
 Channels {
   ch0 0 0;
   ch1 1 1;
   ch2 2 2;
   ch3 3 3;
   ch4 4 4;
   ch5 5 5;
   ch6 6 6;
   ch7 7 7;
   ch8 8 8:
   ch9 9 9:
   ch10 10 10;
   ch11 11 11;
   ch12 12 12;
   ch13 13 13;
   ch14 14 14;
   ch15 15 15;
 }
DCLevels My_Levels {
  All { VIH '2V'; VIL '0V'; VOH '1.7V'; VOL '1.6V'; }
Timing {
  WaveformTable MyWFT {
   Period 'MyPeriod';
   Waveforms {
     ch15 {
       0 { '0ns' ForceDown; }
       1 { 'Ons' ForceUp; }
       L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
       H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
```

```
}
ch14 {
 0 { '0ns' ForceDown; }
 1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch13 {
 0 { 'Ons' ForceDown; }
  1 { '0ns' ForceUp; }
 L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
 H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch12 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch11 {
  0 { 'Ons' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch10 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch9 {
  0 { '0ns' ForceDown; }
  1 { '0ns' ForceUp; }
  L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
ch8 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch7 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch6 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch5 {
  0 { '0ns' ForceDown; }
  1 { '0ns' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
  H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
}
ch4 {
  0 { '0ns' ForceDown; }
  1 { 'Ons' ForceUp; }
  L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
```

```
H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch3 {
      0 { '0ns' ForceDown; }
      1 { 'Ons' ForceUp; }
      L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     ch2 {
      0 { '0ns' ForceDown; }
      1 { 'Ons' ForceUp; }
      L { 'Ons' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
     }
     ch1 {
      0 { '0ns' ForceDown; }
      1 { 'Ons' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { 'Ons' ForceOff; 'MyPeriod/2' CompareHigh; }
     ch0 {
      0 { '0ns' ForceDown; }
      1 { 'Ons' ForceUp; }
      L { '0ns' ForceOff; 'MyPeriod/2' CompareLow; }
      H { '0ns' ForceOff; 'MyPeriod/2' CompareHigh; }
  }
 }
PatternBurst "MyBurst" {
 PatList {
   MyPattern;
 }
PatternExec MyPatternExec {
 DCLevels My_Levels;
 PatternBurst "MyBurst";
Pattern MyPattern {
 WaveformTable MyWFT;
 V {ch15 = L; ch14 = L; ch13 = L; ch12 = L; ch11 = L; ch10 = L; ch9 = L; ch8 = L; ch7 = L; ch6 = L; ch5
= L; ch4 = L; ch3 = L; ch2 = L; ch1 = L; ch0 = L; }
```