## **УТВЕРЖДАЮ**



М.п.

# Модули измерения типа «Радуга»

Методика поверки

ИЦРМ-МП-196-18

## Содержание

| 1 Вводная часть                         | . 3 |
|-----------------------------------------|-----|
| 2 Операции поверки                      |     |
| 3 Средства поверки                      | . 4 |
| 4 Требования к квалификации поверителей | . 4 |
| 5 Требования безопасности               | .4  |
| 6 Условия поверки                       | . 5 |
| 7 Подготовка к поверке                  | . 5 |
| 8 Проведение поверки                    | . 5 |
| 9 Оформление результатов поверки        | . 7 |

### 1 ВВОДНАЯ ЧАСТЬ

- 1.1 Настоящая методика поверки распространяется на модули измерения типа «Радуга» (далее по тексту модули) и устанавливает методы, а также средства их первичной и периодической поверок.
- 1.2 На первичную поверку следует предъявлять модули до ввода в эксплуатацию и после ремонта.
- 1.3 На периодическую поверку следует предъявлять модули в процессе эксплуатации и/или хранения.
- 1.4 Допускается проведение поверки отдельных измерительных каналов СИ в соответствии с заявлением владельца СИ с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.
- 1.5 Периодичность поверки в процессе эксплуатации и хранения устанавливается потребителем с учетом условий и интенсивности эксплуатации, но не реже одного раза в 2 года.
- 1.6 Основные метрологические характеристики модулей приведены в таблице 1.

Таблица 1 – Основные метрологические характеристики модулей

| Измеряемая величина                                       | Диапазон измерений         | Пределы допускаемой относительной погрешности измерений, % |
|-----------------------------------------------------------|----------------------------|------------------------------------------------------------|
| Напряжение постоянного тока: - для канала «напряжение ПП» | от -5 до +5 В              |                                                            |
| - для канала «напряжение ГП»                              | от -5 до +5 В              | ±1                                                         |
| - для канала «ток на шунте»                               | от 3 до 75 мВ              |                                                            |
| - для канала «напряжение»                                 | от 3 до 100 В              |                                                            |
| Количество импульсов, имп.                                | от 1 до 2 <sup>32</sup> -1 | ±1                                                         |

## 2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки выполняют операции, указанные в таблице 2.

Таблица 2

|                                                     | Номер пунк-            | Необходимость<br>выполнения   |                                   |  |
|-----------------------------------------------------|------------------------|-------------------------------|-----------------------------------|--|
| Наименование операции поверки                       | та методики<br>поверки | при пер-<br>вичной<br>поверке | при периоди-<br>ческой<br>поверке |  |
| Внешний осмотр                                      | 8.1                    | Да                            | Да                                |  |
| Опробование                                         | 8.2                    | Да                            | Да                                |  |
| Подтверждение соответствия программного обеспечения | 8.3                    | Да                            | Да                                |  |
| Определение метрологических характеристик           | 8.4                    | Да                            | Да                                |  |

- 2.2 Последовательность проведения операций поверки обязательна.
- 2.3 При получении отрицательного результата в процессе выполнения любой из операций поверки модуль бракуют и его поверку прекращают.

### 3 СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки рекомендуется применять средства поверки, приведённые в таблице 3.
- 3.2 Применяемые средства поверки должны быть исправны, средства измерений поверены и иметь действующие документы о поверке.
- 3.3 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых средств измерений с требуемой точностью.

Таблица 3

| Наименование,<br>обозначение              | Номер<br>пункта<br>Методики | Рекомендуемый тип средства поверки и его ре<br>страционный номер в Федеральном информац<br>онном фонде или метрологические характерис<br>ки                                                           |  |
|-------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                           | Основны                     | е средства поверки                                                                                                                                                                                    |  |
| 1. Калибратор универ-<br>сальный          | 8.2, 8.4.1                  | Калибратор универсальный 9100,<br>рег. № 25985-09                                                                                                                                                     |  |
| 2. Генератор сигналов произвольной формы  | 8.4.2                       | Генератор сигналов произвольной формы 33120A, рег. № 26209-03                                                                                                                                         |  |
|                                           | Вспомогателя                | ьные средства поверки                                                                                                                                                                                 |  |
| 3. Источник питания по-<br>стоянного тока | 8.2, 8.4                    | Источник питания постоянного тока GPR-73060D, per. № 55898-13                                                                                                                                         |  |
| 4. Персональный компью-<br>тер (ПК)       | 8.2, 8.4                    | ПК IBM PC, наличие интерфейса Ethernet; наличие интерфейса USB; объем оперативной памяти не менее 1 Гб; объем жесткого диска не менее 10 Гб; дисковод для чтения CD-ROM; операционная система Windows |  |
| 5. Термогигрометр электронный             | 8.1-8.4                     | Термогигрометр электронный «CENTER 313», рег. № 22129-09                                                                                                                                              |  |

## 4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К проведению поверки допускаются лица, имеющие документ о повышении квалификации в области поверки средств измерений электрических величин.
- 4.2 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением до 1000 В с квалификационной группой по электробезопасности не ниже III.

#### 5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.3.019-80, «Правилами техники безопасности, при эксплуатации электроустановок потребителей», «Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок». Должны быть соблюдены также требования безопасности, изложенные в эксплуатационных документах на модули и применяемые средства поверки.

5.2 Средства поверки, которые подлежат заземлению, должны быть надежно заземлены. Подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение – после всех отсоединений.

#### 6 УСЛОВИЯ ПОВЕРКИ

- 6.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха (25±10) °С;
- относительная влажность воздуха от 45 до 80 %.
- 6.2 Для контроля температуры окружающей среды и относительной влажности воздуха использовать термогигрометр электронный «CENTER» модель 313.

## 7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- изучить эксплуатационные документы на поверяемые модули, а также руководства по эксплуатации на применяемые средства поверки;
- выдержать модуль в условиях окружающей среды, указанных в п. 6.1, не менее
   2 ч, если он находился в климатических условиях, отличающихся от указанных в п.6.1;
- подготовить к работе средства измерений, используемые при поверке, в соответствии с руководствами по их эксплуатации.

### 8 ПРОВЕДЕНИЕ ПОВЕРКИ

## 8.1 Внешний осмотр

При проведении внешнего осмотра модуля проверяют:

- соответствие комплектности перечню, указанному в руководстве по эксплуатации;
- отсутствие механических повреждений и внешних дефектов корпуса, печатной платы и разъемов;
  - отсутствие потеков воды;
  - отсутствие пыли на внешней поверхности модуля;
  - маркировку и наличие необходимых надписей на модуле.

Результат внешнего осмотра считают положительным, если соблюдаются вышеупомянутые требования.

#### 8.2 Опробование

Опробование проводят в следующей последовательности:

- 1) собирают схему, представленную на рисунке А.1 Приложения А;
- 2) с помощью калибратора универсального 9100 (далее по тексту калибратор) последовательно воспроизводят значения напряжения постоянного тока плюс 5 B; плюс 2,5 B; 0 B; минус 2,5 B; минус 5 B;
- 3) убеждаются на ПК, что выходной сигнал модуля изменяется пропорционально величине входного сигнала.

Результаты считают положительными, если выходной сигнал модуля изменяется пропорционально величине входного сигнала.

#### 8.3 Подтверждение соответствия программного обеспечения

Идентификация программного обеспечения (далее  $-\Pi O$ ) осуществляется по номеру версии  $\Pi O$  в окне интерфейса внешнего  $\Pi O$  при подключении модуля к  $\Pi K$ .

Результат проверки считают положительным, если номер версии ПО не ниже указанного в описании типа.

- 8.4 Определение метрологических характеристик
- 8.4.1 Определение относительной погрешности измерений напряжения постоянного тока проводят в следующей последовательности:
- 1) собирают одну из схем, представленных на рисунках А.1 А.3 Приложения А (в зависимости от типа поверяемого канала);
- 2) при помощи калибратора воспроизводят пять испытательных сигналов напряжения постоянного тока для каждого поверяемого канала в соответствии с таблицей 4;

Таблица 4 – Испытательные сигналы

| Поверяемый канал      | Значения напряжения постоянного тока, воспроиз<br>калибратором |       |       |       |       |
|-----------------------|----------------------------------------------------------------|-------|-------|-------|-------|
| канал «напряжение ПП» | +5 B                                                           | +3 B  | -1 B  | -3 B  | -5 B  |
| канал «напряжение СП» | +5 B                                                           | +3 B  | -1 B  | -3 B  | -5 B  |
| канал «ток на шунте»  | 3 мВ                                                           | 10 мВ | 30 мВ | 50 MB | 75мВ  |
| канал «напряжение»    | 3 B                                                            | 25 B  | 50 B  | 75 B  | 100 B |

- 3) считывают с ПК значение напряжения постоянного тока, измеренное модулем;
- 4) рассчитывают относительную погрешность измерений  $\delta$ , %, по формуле

$$\delta = \frac{U_H - U_o}{U_o} \cdot 100 \tag{1}$$

где:  $U_H$  – значение напряжения постоянного тока, измеренное модулем, В (мВ);

 $U_o$  — значение напряжения постоянного тока, воспроизведенное калибратором, В (мВ).

Результаты считают положительными, если полученные значения относительной погрешности измерений напряжения постоянного тока не превышают указанных в таблице 1.

- 8.4.2 Определение относительной погрешности измерений количества импульсов проводят в следующей последовательности:
  - 1) собирают схему, представленную на рисунке А.4 Приложения А;
- 2) в окне интерфейса внешнего ПО устанавливают коэффициент предварительного делителя, равный 2;
  - 3) обнуляют счетчик;
- 4) при помощи генератора сигналов произвольной формы 33120A (далее по тексту генератор сигналов) воспроизводят 50000 импульсов амплитудным значением электрического напряжения 10 В с частотой 300 Гц (длительность импульсного сигнала должна быть не менее 1,5 мс);
  - 5) считывают с ПК количество импульсов, измеренное модулем;
  - 6) рассчитывают относительную погрешность измерений  $\delta$ , %, по

$$\delta = \frac{k \cdot X_H - X_o}{X_o} \cdot 100 \tag{2}$$

где:  $X_{H}$  – количество импульсов, измеренное модулем, имп.;

 $X_0$  – количество импульсов, воспроизведенное генератором сигналов, имп.;

k – коэффициент предварительного делителя.

7) повторяют пункты 2-6, поочередно устанавливая в окне интерфейса внешнего ПО коэффициенты предварительного делителя, равные 10; 100; 1000.

Результаты считают положительными, если полученные значения относительной погрешности измерений количества импульсов не превышают указанных в таблице 1.

### 9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:
  - полное наименование аккредитованной на право поверки организации;
  - номер и дата протокола поверки;
  - наименование и обозначение поверенного средства измерений;
  - заводской (серийный) номер;
  - обозначение документа, по которому выполнена поверка;
- наименования, обозначения и заводские (серийные) номера использованных при поверке средств поверки (со сведениями о поверке последних);
  - температура и влажность в помещении;
  - фамилия лица, проводившего поверку;
  - результаты каждой из операций поверки.

Допускается не оформлять протокол поверки отдельным документом, а результаты операций поверки указывать на оборотной стороне свидетельства о поверке.


- 9.2 При положительном результате поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Министерства промышленности и торговли  $P\Phi$  от 2 июля 2015 г. № 1815.
- 9.3 При отрицательном результате поверки, выявленных при любой из операций поверки, описанных в таблице 2, выдается извещение о непригодности в соответствии с Приказом Министерства промышленности и торговли РФ от 02.07.2015 г. № 1815.

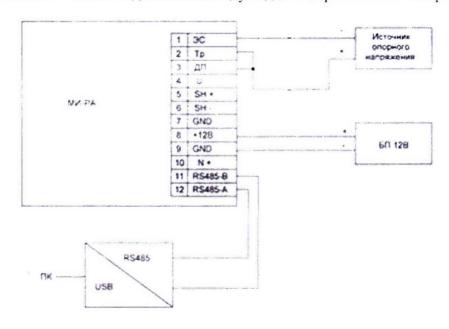
Инженер отдела испытаний ООО «ИЦРМ»

М. М. Хасанова

#### приложение а

#### Схемы подключения модуля




МИ-РА – испытуемый модуль;

БП 12B – источник питания постоянного тока GPR-73060D;

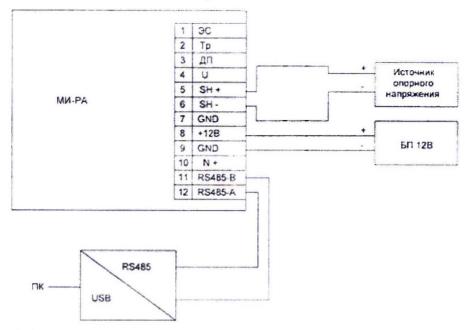
Источник опорного напряжения – калибратор универсальный 9100;

ПК – персональный компьютер.

Рисунок А.1 – Схема подключения модуля для поверки канала «напряжение»



МИ-РА – испытуемый модуль;


БП 12B – источник питания постоянного тока GPR-73060D;

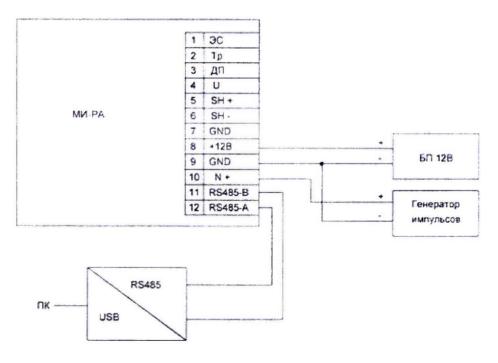
Источник опорного напряжения – калибратор универсальный 9100;

ПК – персональный компьютер.

Рисунок А.2 - Схема подключения модуля для поверки каналов «напряжение ПП» и

## «напряжение СП»




МИ-РА – испытуемый модуль;

БП 12В – источник питания постоянного тока GPR-73060D;

Источник опорного напряжения – калибратор универсальный 9100;

ПК – персональный компьютер.

Рисунок А.3 - Схема подключения модуля для поверки канала «ток на шунте»



МИ-РА – испытуемый модуль;

БП 12В – источник питания постоянного тока GPR-73060D;

Генератор импульсов – генератор сигналов произвольной формы 33120А;

ПК – персональный компьютер.

Рисунок A.4 – Схема подключения модуля для определения погрешности измерений количества импульсов