АКЦИОНЕРНОЕ ОБЩЕСТВО «Метролог»

ИНСТРУКЦИЯ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Резервуары стальные шаровые РШС-2000 Методика поверки

MΠ 0001/1-2018

Начальник ЦАиЭ Игршин Е.К.

Предисловие

1 РАЗРАБОТАНА Акционерным обществом «Метролог» (АО «Метролог»)

ИСПОЛНИТЕЛИ: М. В. Матвеев, В. В. Цуканов

2 УТВЕРЖДЕНА АО «Метролог» 30 сентября 2018 г.

3 ВВЕДЕНА ВПЕРВЫЕ

СОДЕРЖАНИЕ

1	Область применения	1
2	Нормативные ссылки	1
3	Термины и определения	2
4	Метод поверки	3
5	Технические требования	3
	5.1 Требования к точности измерений параметров резервуара	3
	5.2 Требования по применению рабочих эталонов и вспомогательных средств	3
	5.3 Требования к условиям поверки	4
6	Требования к организации проведения поверки	5
7	Требования к квалификации специалистов, проводящих поверку и требован	ΙИЯ
	безопасности	5
8	Подготовка к проведению поверки	6
9	Операции поверки	6
10	0 Проведение поверки резервуара	7
	10.1 Внешний осмотр	7
	10.2 Измерения линейного расстояния между станциями, горизонтальных углов	
	опорных точек	7
	10.3 Измерения базовой высоты и координаты точки отсчета	12
	10.4 Измерение высоты «мертвой» полости резервуара	12
	10.5 Измерения толщины стенки резервуара	12
	10.6 Измерение избыточного давления пара	13
	10.7 Измерение температуры окружающего воздуха	13
11	1 Обработка результатов измерений	13
	11.1 Обработка результатов измерений	13
	11.2 Составление градуировочной таблицы	13
	2 Оформление результатов поверки	
П	риложение А	15
П	риложение Б	21
П	риложение В	23
П	риложение Г	31
П	риложение Д	33
Б	ΝΕΠΛΟΓΡΑΦΙΑ	34

Государственная система обеспечения единства измерений

Резервуары стальные шаровые РШС-2000

Методика поверки

MΠ 0001/1-2018

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая методика поверки (далее - методика) распространяется на стальные шаровые резервуары, номинальной вместимостью 2000 м³ №№ 1 - 11, применяемых для хранения и измерения объема и массы жидких углеводородных расположенных территории акционерного общества АО «Роспан сред, на Интернешнл», Восточно-Уренгойское ЛУ, терминал Коротчаево и устанавливает первичной периодической поверок методику И геометрическим методом (триангуляции).

2 НОРМАТИВНЫЕ ССЫЛКИ

R dactodilian matoring accordance colin	MA LO COONVIOLLIMO CTOUNONTLI
В настоящей методике использованы ссыл	м па следующие стапдарты.

ГОСТ 12.0.004—2015	ке использованы ссылки на следующие стандарты. Система стандартов безопасности труда. Организация						
1001 12.0.004 2010	обучения безопасности труда. Общие положения						
ΓΟCT 12.1.005—88	Система стандартов безопасности труда. Общие санитарно						
	гигиенические требования к воздуху рабочей зоны						
ΓΟCT 12.4.087—84	Система стандартов безопасности труда. Строительство. Каски строительные. Технические условия						
FOOT 40 4 407 0004	·						
ΓΟCT 12.4.137—2001	Обувь специальная с верхом из кожи для защиты от нефти,						
	нефтепродуктов, кислот, щелочей, нетоксичной и						
	взрывоопасной пыли. Технические условия						
ΓΟCT 12.4.310—2016	Система стандартов безопасности труда. Одежда специальная						
	для защиты работающих от воздействия нефти,						
	нефтепродуктов. Технические требования						
ГОСТ 7502—98	Рулетки измерительные металлические. Технические условия						
ΓΟCT 10528—90	Нивелиры. Общие технические условия						
ГОСТ 21830—76	Приборы геодезические. Термины и определения						
ГОСТ 22268—76	Геодезия. Термины и определения						
ГОСТ 28243—96	Пирометры. Общие технические требования						
FOCT 28498—90	Термометры жидкостные стеклянные. Общие технические						
ГОСТ 28498—90	Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний.						
FOCT 28498—90 FOCT P 51774—2001	Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний. Тахеометры электронные. Общие технические условия						

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В настоящей инструкции применяют следующие термины с соответствующими определениями:

- 3.1 **базовая высота р**езе**рвуара**: Расстояние по вертикали от нижней точки отсчета до верхнего края измерительного люка или до риски направляющей планки измерительного люка.
- 3.2 вместимость резервуара: Внутренний объем резервуара с учетом объема внутренних деталей (незаполненных), который может быть наполнен жидкостью до определенного уровня.
- 3.3 геометрический метод поверки: Метод, заключающийся в определении вместимости резервуара по результатам измерений его геометрических параметров.
- 3.4 **горизонтально**е **проложени**е: Проекция измеренного наклонного расстояния на горизонтальную плоскость.
- 3.5 **градуировочная таблица:** Зависимость вместимости от высоты уровня наполнения резервуара при нормированном значении температуры, равной 20 °C.

Примечание — Таблицу прилагают к свидетельству о поверке резервуара и применяют для определения в нем объема жидкости.

- 3.6 **градуировка р**езе**рвуара:** Операция по установлению зависимости вместимости резервуара от уровня его наполнения, с целью составления градуировочной таблицы.
- 3.7 **действительная (фактическая) полная в**ме**стимость р**езе**рвуара:** Вместимость резервуара, соответствующая предельному уровню его наполнения, установленная при его поверке.
- 3.8 **коэффициент в**ме**стимости**: Вместимость, приходящаяся на 1 мм высоты наполнения.
- 3.9 максимальный уровень: Максимально допустимый уровень наполнения резервуара жидкостью при его эксплуатации, установленный технической документацией на резервуар.
- 3.10 **номинальная вместимость р**езервуара: Вместимость резервуара, соответствующая предельному уровню наполнения его, установленная нормативным документом для конкретного типа резервуара.
- 3.11 **посантиметровая вместимость р**езе**рвуара:** Вместимость резервуара, соответствующая высоте уровня (далее уровень) налитых в него доз жидкости, приходящихся на 1 см высоты наполнения.
 - 3.12 превышение: Разность высот точек (по ГОСТ 22268).
 - 3.13 нивелирование: Определение превышений (по ГОСТ 22268).
 - 3.14 станция съемки: Точка стояния тахеометра во время проведения измерений.
- 3.15 **тах**еоме**тр**: Геодезический прибор, предназначенный для измерения горизонтальных и вертикальных углов, длин линий и превышений по ГОСТ 21830.

- 3.16 точка начала отсчета: Точка в нижней части обечайки резервуара, которой касается груз измерительной рулетки при измерении базовой высоты резервуара и от которой проводят измерение уровня жидких углеводородных сред при эксплуатации резервуара. Она является исходной точкой при составлении градуировочной таблицы резервуара.
- 3.17 **тригон**оме**трическ**ое **нивелировани**е: Нивелирование при помощи геодезического прибора с наклонной визирной осью (по ГОСТ 22268).
- 3.18 э**кватор р**езе**рвуара:** Окружность, расположенная на секущей горизонтальной плоскости, проходящей через центр резервуара, сферической наружной поверхности.

4 МЕТОД ПОВЕРКИ

- 4.1 Поверку резервуара проводят методом триангуляции с применением тахеометра с различных установок станций съемки.
- 4.2 Определяют диаметр резервуара по его экватору (рисунок А.2) по результатам угловых измерений координат опорных точек, расположенных на касательной вертикальной плоскости и линейных расстояний между станциями съемки.

5 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

5.1 Требования к точности измерений параметров резервуара

5.1.1 Пределы допускаемой погрешности измерений параметров резервуара приведены в таблице 1.

Таблица 1

	Пределы допускаемой
Наименование параметра	погрешности измерений
	параметров резервуара
Угол горизонтальный, сек. угл.	± 5,0"
Расстояние между установками станций, мм	± 4
Толщина стенки резервуара, мм	± 0,2
Температура воздуха, °С	± 2,0

5.1.2 При соблюдении, указанных в таблице 1, пределов допускаемой погрешности измерений погрешность определения вместимости резервуара находится в пределах± 0,20 %.

5.2 Требования по применению рабочих эталонов и вспомогательных средств

При поверке резервуара применяют следующие рабочие эталоны и вспомогательные средства.

- 5.2.1 Рулетки измерительные с грузом 3-го класса точности с верхними пределами измерений: 10, 20 и 30 м по ГОСТ 7502.
- 5.2.2 Тахеометр электронный по ГОСТ Р 51774, с пределами: средней квадратичной погрешности измерений расстояний одним приемом: в отражательном режиме: ±(2+2x10-6 D)) мм; в безотражательном режиме: ±(3+2x10-6 D) мм,

диапазоном измерений расстояний в безотражательном режиме от 1,5 до 120 м; угловых измерений ±5".

- 5.2.3 Пирометр по ГОСТ 28243, с диапазоном измерений температуры от минус $10~^{\circ}$ С до плюс $65~^{\circ}$ С, показателем визирования не менее 16:1, имеющий функцию фокусирования объекта измерений, с пределами допускаемой абсолютной погрешности: $\pm 2~^{\circ}$ С.
- 5.2.4 Толщиномер ультразвуковой по ГОСТ Р 55614, с диапазоном измерений (0,6 30) мм и пределами допускаемой погрешности ±0,1 мм.
 - 5.2.5 Термометр с ценой деления 0,5°C по ГОСТ 28498.
- 5.2.6 Рейка нивелирная с номинальной длины шкалы 1500, 3000 мм по ГОСТ 10528.
 - 5.2.7 Вспомогательные средства:
 - штатив геодезический не менее 2 шт.;
- отражатель призменный типа RT-50 (рисунок A.1)стрегером стандарта WILD, адаптером для установки не менее 2 шт.;
 - переносной компьютер;
 - маркер, мел;
 - переносные светильники (прожекторы) во взрывозащищенном исполнении.
- 5.2.6 Рабочие эталоны должны быть аттестованы в установленном порядке, средства измерений поверены в установленном порядке.
- 5.2.7 Допускается применение других, вновь разработанных или находящихся в эксплуатации эталонов и средств измерений, удовлетворяющих по точности и пределам измерений требованиям настоящей методики поверки.

5.3 Требования к условиям поверки

При проведении поверки соблюдают следующие условия:

- 5.3.1 Температура окружающего воздуха:.....от 5°С до 35 °С .
- 5.3.2 Относительная влажность воздуха:...... не более 95 %.
- 5.3.3 Атмосферное давление...... от 84,0 до 106,7 кПа.
 - П р и м е ч а н и е Условия окружающей среды должны соответствовать значениям, приведенным в описании типа, применяемого эталона (далее средство измерений).
- 5.3.5 Допуск к производству работ осуществляется по наряду-допуску организации владельца резервуара.
- 5.3.6 Для проведения измерений базовой высоты резервуара, координаты точки начала отсчета, высоты «мертвой» полости резервуар должен быть освобожден и очищен от остатков хранившейся в резервуаре жидкости.
- 5.3.7 При наличии данных, указанных в 5.3.6, допускается проведение измерений геометрических параметров (снаружи) при наличии жидкости в резервуаре.
- 5.3.8 Вместимость резервуара при проведении первичной/внеочередной поверке определяют при избыточном давлении в резервуаре равном нулю.
- 5.3.9 При наличии избыточного давления (по 5.3.7) в резервуаре вместимость резервуара определяют с учетом поправки на избыточное давление.

5.3.10 Загазованность в воздухе вблизи или внутри резервуара не более ПДК вредных веществ, установленных по ГОСТ 12.1.005 и соответствующей гигиеническим нормативам ГН 2.2.5.3532-18 [1].

6 ТРЕБОВАНИЯ К ОРГАНИЗАЦИИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 6.1 Поверку резервуаров проводят юридические лица и индивидуальные предприниматели (далее организация) аккредитованные в соответствующем порядке на право проведения поверки.
 - 6.2Поверки резервуара проводят:
- первичную после завершения строительства резервуара или капитального ремонта и его гидравлических испытаний перед вводом его в эксплуатацию;
 - периодическую по истечении срока интервала между поверками;
- внеочередную в случаях изменения базовой высоты резервуара более чем на 0,1 % по 10.7; при внесении в резервуар конструктивных изменений, влияющих на его вместимость и после очередного полного технического диагностирования.
- 6.3Интервал между поверками определяется при утверждении типа средства измерений.

7 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ СПЕЦИАЛИСТОВ, ПРОВОДЯЩИХ ПОВЕРКУ И ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 7.1 Измерения параметров при поверке резервуара проводит группа лиц (не менее двух человек), включая не менее одного специалиста, прошедшего курсы повышения квалификации, и других лиц (при необходимости), аттестованных в области промышленной безопасности в соответствии с РД-03-20 [2].
- 7.2 К проведению работ допускают лиц, изучивших настоящий документ, техническую документацию на резервуар и его конструкцию, средства измерений и прошедших инструктаж по безопасности труда в соответствии с ГОСТ 12.0.004, по промышленной безопасности в соответствии с РД-03-20.
- 7.3 Лица, проводящие работы, используют спецодежду по ГОСТ Р 12.4.310, спецобувь по ГОСТ 12.4.137, строительную каску по ГОСТ 12.4.087.
- 7.4 Предельно допустимая концентрация (ПДК) вредных паров и газов в воздухе, измеренная газоанализатором внутри резервуара на высоте 2000 мм, не должна превышать ПДК, определенной по ГОСТ 12.1.005 и соответствующей гигиеническим нормативам ГН 2.2.5.3532-18.
- 7.5 Для освещения при проведении измерений параметров резервуара применяют светильники во взрывозащитном исполнении.
 - 7.6 Перед началом работ проверяют исправность:
 - лестниц с поручнями и подножками;
 - помостов с ограждениями.
- 7.7При измерении базовой высоты (ежегодном) избыточное давление в незаполненном (газовом) пространстве резервуара должно быть равно нулю.

8ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ

При подготовке к поверке проводят следующие работы.

- 8.1 Изучают техническую документацию на резервуар.
- 8.2 Подготавливают рабочие эталоны и вспомогательные средства согласно технической документации на них, утвержденной в установленном порядке.
- 8.3 Проводят предварительную разбивку станций полигона (рисунок А.3). Количество станций должно не менее 5.

Разбивку проводят в следующей последовательности.

8.3.1 На расстоянии 10-15 метров от резервуара устанавливают штатив № 1 (станция Т1). При этом расположение станции Т1 должно обеспечивать видимость точек т. А и т. Б (рисунок А.4).

Устанавливают на штатив тахеометр. Приводят в горизонтальное положение. Формируют файл записи данных.

8.3.2 Устанавливают штатив № 2 (станция Т2) на расстоянии 16 – 18 метров от станции № 1 и на расстоянии 10-15 метров от резервуара.). Расположение станции Т2 должно обеспечивать видимость аналогичных точек т. А и т. Б (рисунок А.4).

Устанавливают призменный отражатель (далее – призма) на штатив № 2.

- 8.3.3 Аналогичным образом проводят разметку установок станций Т3, Т4, Т5. Проводят разметку установок станций (допустим колышками или каким-либо иным способом).
- 8.4 Проводят измерение температуры стенки резервуара с применением пирометра (5.2.3). Измерение температуры стенки резервуара проводят на 4 равноудаленных меридианах резервуара в районе экватора резервуара.

Значение температуры стенки принимают как среднее арифметическое значение измеренных значений.

Результаты измерений вносят в протокол, форма которого приведена в приложении Б (таблица Б.2¹).

- 8.5При проведении работ внутри резервуара получают следующие документы, выданные соответствующими службами владельца резервуара:
 - акт на зачистку резервуара;
- заключение лаборатории о состоянии воздуха внутри резервуара, о соответствии концентрации вредных веществ нормам ГОСТ 12.1.005;
 - наряд-допуск на проведение работ с повышенной опасностью.

9ОПЕРАЦИИ ПОВЕРКИ

9.1 При проведении поверки должны быть выполнены операции, указанные в таблице 2.

¹Здесь и далее буквенное обозначение в наименовании таблицы указывает на соответствующее Приложение к настоящей методике

Таблица 2

Наименование операции	Номер пункта инструкции
Внешний осмотр	10.1
Измерения линейного расстояния между станциями, горизонтальных углов между опорными точками	10.2
Измерения базовой высоты резервуара и координаты точки отсчета	10.3
Измерение высоты ««мертвой» полости резервуара	10.4
Измерения толщины стенки резервуара	10.5
Измерения избыточного давления пара	10.6
Измерение температуры окружающего воздуха	10.7

10 ПРОВЕДЕНИЕ ПОВЕРКИ РЕЗЕРВУАРА

10.1 Внешний осмотр

- 10.1.1 При внешнем осмотре резервуара проверяют:
- соответствие конструкции и внутренних деталей резервуара технической документации на него (паспорту, технологической карте на резервуар);
 - наличие необходимой арматуры и оборудования;
 - исправность лестниц и перил;
 - чистоту внутренней/наружной поверхности резервуара.

10.2 Измерения линейного расстояния между станциями, горизонтальных углов опорных точек

После проведения подготовительных операций по разделу 8 проводят измерения:

- линейного расстояния между станциями съемки;
- горизонтального угла от станциидо опорной точки на экваторе;
- горизонтального угла между опорными точками на экваторе.

Примечания:

- 1) точность отсчета линейных расстояний (горизонтальных проложений) 1 мм;
- 2) точность отсчета горизонтальных углов: угл. секунда, 0,0001° при отсчете в десятичных градусах;
- 3) с целью упрощения расчетов, при наличии соответствующей функции в тахеометре, рекомендуется проводить отсчет в десятичных градусах,

Измерения проводят в следующей последовательности.

- 10.2.1 Измерение линейного расстояния между станциями съемки Т1 и Т2 (рисунок А.3).
- 10.2.1.1 Тахеометр переводят в отражательный режим измерений горизонтальных проложений HD и горизонтальных углов («правый круг») H_z (рисунок A.5).
- 10.2.1.2 Устанавливают начало отсчета в горизонтальной плоскости со станции Т1, для этого сетку нитей визирной трубы наводят на центр призмы (станция

- Т2). Ориентируют горизонтальных круг (в меню настроек величину горизонтального угла устанавливают $H_z = 0^0 00^\circ 00^\circ$).
- 10.2.1.3 В меню настроек тахеометра именуют (маркируют) точку измерения линейного расстояния «L12» между станциями T1 и T2.

Проводят измерение линейного расстояния L12, мм, как горизонтальное проложение.

Результаты измерения автоматически фиксируется в файле проекта.

Измерения проводят два раза. Расхождение между результатами измерений не должно превышать 2 мм. В случае расхождения результатов измерений более 2 мм измерения повторяют дважды.

- 10.2.1.4 При оформлении протокола измерений результаты измерений вносят в таблицу Б.3 в соответствующую графу.
- 10.2.2 Измерение горизонтального угла от станции Т1 до опорной точки на экваторе.
- 10.2.2.1 В меню настроек тахеометра именуют (маркируют) точку измерения горизонтального угла «alfa12».
- 10.2.2.2 Поворачивая алидаду тахеометра в горизонтальной плоскости по часовой стрелке («правый круг») наводят сетку нитей визира на опорную точку А (рисунок А.4,
- А.6), проводят измерение и считывают показания горизонтального угла $^{\text{Cl}_{12}}$, ", (рисунок А.7)

Примечание – Так как, значение горизонтального угла измеряется в режиме реального времени операция измерения необходима для записи результата в файл проекта.

Измерения проводят два раза. Расхождение между результатами измерений не должно превышать 5 угловых секунд. В случае расхождения результатов измерений более 2 мм измерения повторяют дважды.

- 10.2.2.3 При оформлении протокола измерений результаты измерений вносят в таблицу Б.4 в соответствующую графу.
- 10.2.3 Измерение горизонтального угла между опорными точками на экваторе со станции Т1.
- 10.2.3.1 В меню настроек тахеометра именуют (маркируют) точку измерения горизонтального угла «2teta1».
- 10.2.3.2 Поворачивая алидаду тахеометра в горизонтальной плоскости по часовой стрелке («правый круг») наводят сетку нитей визира на опорную точку В (рисунок А.6), проводят измерение и считывают показания горизонтального угла $^{2\Theta_1}$, ", (рисунок А.7)

Примечание – Так как, значение горизонтального угла измеряется в режиме реального времени операция измерения необходима для записи результата в файл проекта.

Измерения проводят два раза. Расхождение между результатами измерений не должно превышать 5 угловых секунд. В случае расхождения результатов измерений более 5 угловых секунд измерения повторяют дважды.

- 10.2.3.3 При оформлении протокола измерений результаты измерений вносят в таблицу Б.5 в соответствующую графу.
- 10.2.4 Оставляя неизменным положения штатива № 1 и № 2, тахеометр переустанавливают на штатив № 2 станции Т2, а призму со штатива №2 переустанавливают на штатив № 1 станции Т1.
- 10.2.5 Измерение линейного расстояния между станциями съемки Т2 и Т1 (рисунок A.3).
- 10.2.5.1 Устанавливают начало отсчета в горизонтальной плоскости со станции Т2, для этого сетку нитей визирной трубы наводят на центр призмы (станция Т1, рисунок А.7). Ориентируют горизонтальных круг («левый круг», в меню настроек величину горизонтального угла устанавливают $H_z = 0^0 00^\circ 00^\circ$).
- 10.2.5.2 В меню настроек тахеометра именуют (маркируют) точку измерения линейного расстояния «L21» между станциями Т2 и Т1.

Проводят измерение линейного расстояния L21, мм, как горизонтальное проложение.

Результаты измерения автоматически фиксируется в файле проекта.

Измерения проводят два раза. Расхождение между результатами измерений не должно превышать 2 мм. В случае расхождения результатов измерений более 2 мм измерения повторяют дважды.

- 10.2.5.3 При оформлении протокола измерений результаты измерений вносят в таблицу Б.3 в соответствующую графу.
- 10.2.6 Измерение горизонтального угла от станции Т2 до опорной точки на экваторе.
- 10.2.6.1 В меню настроек тахеометра именуют (маркируют) точку измерения горизонтального угла «betta12».
- 10.2.6.2 Поворачивая алидаду тахеометра в горизонтальной плоскости против часовой стрелки («левый круг») наводят сетку нитей визира на опорную точку С (рисунок А.7), проводят измерение и считывают показания горизонтального угла $^{\beta}$ 12 ,

", (рисунок A.7)

Примечание – Так как, значение горизонтального угла измеряется в режиме реального времени операция измерения необходима для записи результата в файл проекта.

Измерения проводят два раза. Расхождение между результатами измерений не должно превышать 5 угловых секунд. В случае расхождения результатов измерений более 2 мм измерения повторяют дважды.

- 10.2.6.3 При оформлении протокола измерений результаты измерений вносят в таблицу Б.4 в соответствующую графу.
- 10.2.7 Измерение горизонтального угла между опорными точками на экваторесо станции T2.
- 10.2.7.1 В меню настроек тахеометра именуют (маркируют) точку измерения горизонтального угла «2teta2».

10.2.7.2 Поворачивая алидаду тахеометра в горизонтальной плоскости против часовой стрелки («левый круг») наводят сетку нитей визира на опорную точку D (рисунок A.6), проводят измерение и считывают показания горизонтального угла $^{2\Theta_2}$, ", (рисунок A.7)

Примечание – Так как, значение горизонтального угла измеряется в режиме реального времени операция измерения необходима для записи результата в файл проекта.

Измерения проводят два раза. Расхождение между результатами измерений не должно превышать 5 угловых секунд. В случае расхождения результатов измерений более 5 угловых секунд измерения повторяют дважды.

- 10.2.7.3 При оформлении протокола измерений результаты измерений вносят в таблицу Б.5 в соответствующую графу.
- 10.2.8 Устанавливают станцию № 3. Для этого штатив станции № 1 переносят на ранее размеченное место установки станции № 3 (рисунок А.8).

Размещают на штативе призму и горизонтируют штатив.

- 10.2.9 Измерение линейного расстояния между станциями съемки Т2 и Т3 (рисунок А.3).
- 10.2.9.1 Устанавливают начало отсчета в горизонтальной плоскости со станции Т2, для этого сетку нитей визирной трубы наводят на центр призмы (станция Т2, рисунок А.8). Ориентируют горизонтальных круг («правый круг» , в меню настроек величину горизонтального угла устанавливают $H_z = 0^0 00^\circ 00^\circ$).
- 10.2.9.2 В меню настроек тахеометра именуют (маркируют) точку измерения линейного расстояния «L23» между станциями Т2 и Т3.

Проводят измерение линейного расстояния L23, мм, как горизонтальное проложение (рисунок A.3, A.8).

Результаты измерения автоматически фиксируется в файле проекта.

Измерения проводят два раза. Расхождение между результатами измерений не должно превышать 2 мм. В случае расхождения результатов измерений более 2 мм измерения повторяют дважды.

- 10.2.9.3 При оформлении протокола измерений результаты измерений вносят в таблицу Б.3 в соответствующую графу.
- 10.2.10 Измерение горизонтального угла от станции T2 до опорной точки на экваторе (т. D).
- 10.2.10.1 В меню настроек тахеометра именуют (маркируют) точку измерения горизонтального угла «alfa23».
- 10.2.10.2 Поворачивая алидаду тахеометра в горизонтальной плоскости по часовой стрелке («правый круг») наводят сетку нитей визира на опорную точку D
- (рисунок А.8), проводят измерение и считывают показания горизонтального угла $^{\mathrm{C23}}$, (рисунок А.8)

Примечание — Так как, значение горизонтального угла измеряется в режиме реального времени операция измерения необходима для записи результата в файл проекта.

Измерения проводят два раза. Расхождение между результатами измерений не должно превышать 5 угловых секунд. В случае расхождения результатов измерений более 2 мм измерения повторяют дважды.

- 10.2.10.3 При оформлении протокола измерений результаты измерений вносят в таблицу Б.4 в соответствующую графу.
- 10.2.11 Оставляя неизменным положения штатива № 1 и № 2, тахеометр переустанавливают на штатив № 2 станции Т3, а призму со штатива №2 переустанавливают на штатив № 1 станции Т2.
- 10.2.12 Измерение линейного расстояния между станциями съемки Т3 и Т2 (рисунок А.3).
- 10.2.12.1 Устанавливают начало отсчета в горизонтальной плоскости со станции Т3, для этого сетку нитей визирной трубы наводят на центр призмы (станция Т2, рисунок А.8). Ориентируют горизонтальных круг («левый круг» , в меню настроек величину горизонтального угла устанавливают $H_z = 0^0 00'00''$).
- 10.2.12.2 В меню настроек тахеометра именуют (маркируют) точку измерения линейного расстояния «L32» между станциями Т3 и Т2.

Проводят измерение линейного расстояния L32, мм, как горизонтальное проложение (рисунок A.8).

Результаты измерения автоматически фиксируется в файле проекта.

Измерения проводят два раза. Расхождение между результатами измерений не должно превышать 2 мм. В случае расхождения результатов измерений более 2 мм измерения повторяют дважды.

- 10.2.12.3 При оформлении протокола измерений результаты измерений вносят в таблицу Б.3 в соответствующую графу.
- 10.2.13 Измерение горизонтального угла от станции Т3 до опорной точки на экваторе (т. Е рисунок А.8).
- 10.2.13.1 В меню настроек тахеометра именуют (маркируют) точку измерения горизонтального угла «betta23».
- 10.2.13.2 Поворачивая алидаду тахеометра в горизонтальной плоскости против часовой стрелки («левый круг») наводят сетку нитей визира на опорную точку Е

(рисунок А.8), проводят измерение и считывают показания горизонтального угла $^{\beta_{23}}$, (рисунок А.8)

Примечание — Так как, значение горизонтального угла измеряется в режиме реального времени операция измерения необходима для записи результата в файл проекта.

Измерения проводят два раза. Расхождение между результатами измерений не должно превышать 5 угловых секунд. В случае расхождения результатов измерений более 2 мм измерения повторяют дважды.

- 10.2.13.3 При оформлении протокола измерений результаты измерений вносят в таблицу Б.4 Приложения Б в соответствующую графу.
- 10.2.14 Измерение горизонтального угла между опорными точками на экваторесо станции Т3.

- 10.2.14.1 В меню настроек тахеометра именуют (маркируют) точку измерения горизонтального угла «2teta3».
- 10.2.14.2 Поворачивая алидаду тахеометра в горизонтальной плоскости против часовой стрелки («левый круг») наводят сетку нитей визира на опорную точку F (рисунок A.8), проводят измерение и считывают показания горизонтального угла $2\Theta_3$, ", (рисунок A.8)

Примечание — Так как, значение горизонтального угла измеряется в режиме реального времени операция измерения необходима для записи результата в файл проекта.

Измерения проводят два раза. Расхождение между результатами измерений не должно превышать 5 угловых секунд. В случае расхождения результатов измерений более 5 угловых секунд измерения повторяют дважды.

- 10.2.14.3 При оформлении протокола измерений результаты измерений вносят в таблицу Б.5 в соответствующую графу.
- 10.2.15 Устанавливают станцию № 4. Для этого штатив станции № 2 переносят на ранее размеченное место установки станции № 4 (рисунок А.3). Проводят аналогичные операции по 10.2.9 10.2.14 для станции Т3-Т4.
 - 12.2.16 Проводят аналогичные процедуры по 12.15 для станций Т4-Т5, Т5-Т1.

10.3 Измерения базовой высоты и координаты точки отсчета

- 10.3.1 Базовую высоту резервуара $H_{\bar{6}}$, мм, измеряют измерительной рулеткой с грузом (рисунок A.9).
- 10.3.1.1 Измерительную рулетку с грузом опускают с верхней точки отсчета значений уровня (фланца уровнемера) до точки отсчета (пункт 3.3) и размечают мелом на обечайке.
- 10.3.1.2 Отсчитывают показания рулетки по верхнему краю фланца уровнемера с точностью до 1 мм. Измерения проводят не менее двух раз. Расхождение между результатами двух измерений должно быть не более ± 2 мм.
 - 10.3.1.3 Результаты измерений, вносят в графу 1таблицы Б.6.
- 10.3.2 Координату точки отсчета измеряют как высоту превышения от нижней точки резервуара до точки начала отсчета (рисунок А.10).
- 10.3.2.1 Нижнюю точку резервуара определяют нивелированием с применением тахеометра и рейки и размечают мелом на обечайке.
- 10.3.2.2 Переустанавливают рейку в точку начала отсчета и проводят нивелирование. Вычисляю расстояние $f_{\it П}$, мм, по результатам нивелирования.
 - 10.3.2.3 Результат вычисления $f_{\mathcal{I}}$ вносят в графу 2 таблицы Б.6.

10.4 Измерение высоты «мертвой» полости резервуара

- 10.4.1 Высоту «мертвой» полости резервуара измеряют как высоту превышения от точки начала отсчета до нижнего среза расходного патрубка (рисунок А.11).
 - 10.4.2Устанавливают рейку в точку начала отсчета и проводят измерение высоты.

- 10.4.3 Переустанавливают рейку в точку нижнего среза расходного патрубка и проводят измерение высоты превышения. Вычисляют расстояние H_{MR} , мм, по результатам нивелирования.
 - 10.4.4 Результат вычисления $H_{\text{MП}}$ вносят в графу3 таблицы Б.6.

10.5 Измерения толщины стенки резервуара

10.5.1 Измеряют толщину стенки резервуара $^{\delta_{\text{ст}}}$, мм, ультразвуковым толщиномером с верхней и нижней площадок обслуживания. Показания толщиномера отсчитывают с точностью до 0,1 мм.

Измерения проводят не менее двух раз. Расхождение между результатами двух измерений должно быть не более \pm 0,2 мм.

10.5.2 Результаты измерений $^{\delta_{ exttt{ct}}}$ вносят в таблицу Б.7.

10.6 Измерение избыточного давления пара

- 10.6.1 При наличии жидкости в резервуаре на момент проведения измерений избыточное давление пара *P*, МПа, измеряют манометром (штатным), смонтированным на резервуаре.
- 10.6.2 Избыточное давление измеряют перед проведением измерений геометрических параметров резервуара до P_1 и после завершения измерений P_2 .
 - 10.6.3 Результаты измерений P вносят в таблицу Б.8.

10.7 Измерение температуры окружающего воздуха

 $t_{\rm B}$, °C, измеряют термометром стеклянным по ГОСТ 28498. Показания термометра отсчитывают с точностью до 1 °C. Измерения проводят не менее двух раз. Расхождение между результатами двух измерений должно быть не более 1°C. Результаты измерений вносят в таблицу Б.2.

11 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

11.1 Обработка результатов измерений

Обработку результатов измерений проводят в соответствии с приложением В.

11.2 Составление градуировочной таблицы

11.2.1 Градуировочную таблицу составляют, используя формулы Error: Reference source not found, Error: Reference source not found, Error: Reference source not found, Error: Reference source not found приложения B, c шагом $\Delta H = 1$ см, начиная от точки начала отсчета

(пункт 3.15) до высоты «мертвой» полости резервуара и далее до предельного уровня наполнения $H_{\mathsf{пp}}$, вычисляемого по формуле

$$H_{\mathsf{np}} = 2R - f_{\mathsf{n}},\tag{1}$$

- где R радиус резервуара, вычисляемый по формуле Error: Reference source not found, мм;
 - $f_{\it П}$ высота превышения от нижней точки резервуара до точки начала отсчета вычисляемая по формуле Error: Reference source not found, мм.
 - 11.2.2 Порядок расчета при составлении градуировочной таблицы.
- 11.2.2.1 Обработка результатов поверки может быть проведена ручным способом или с использованием ЭВМ.

При применении ЭВМ должна быть разработана программа расчета градуировочной таблицы и аттестована в установленном порядке.

- 11.2.2.2 Результаты измерений оформляют протоколом поверки.
- 11.2.2.3 Протокол поверки является входящим документом при расчете градуировочной таблицы.
 - 11.2.2.4 Требования к машинному алгоритму обработки результатов измерений:
- вместимость резервуара, приходящуюся на 1 см высоты наполнения, вычисляют последовательно суммированием значений вместимостей, приходящихся на 1 мм высоты наполнения;
- последовательно суммируя значения вместимостей каждого миллиметра наполнения, вычисляют вместимость резервуара с интервалом 1 см.

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 12.1 Положительные результаты поверки резервуара оформляют свидетельством о поверке в соответствии с Приказом Минпромторга России от 02.07.2015 N 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
 - 12.2 К свидетельству о поверке прилагают:
 - а) градуировочную таблицу;
- б) протокол поверки (оригинал прикладывают к первому экземпляру градуировочной таблицы);
 - в) эскиз резервуара.
 - г) протокол обработки результатов измерений.
- 12.3 Формы титульного листа градуировочной таблицы и градуировочной таблицы приведены в приложении Г. Форма протокола поверки резервуара приведена в приложении Б. Форма протокола обработки результатов измерений приведена в приложении Д.

Протокол поверки, титульный лист и последнюю страницу градуировочной таблицы подписывает поверитель. Подпись поверителя заверяют знаком поверки.

Протокол поверки подписывает поверитель и лица, принявшие участие в проведении измерений параметров резервуара.

- 12.4 На каждом листе документации (по перечислениям а, б, в пункта 12.2) должен быть проставлен порядковый номер листа.
- 12.5 Градуировочную таблицу на резервуары утверждает руководитель организации, аккредитованной на право проведения поверки.

ПРИЛОЖЕНИЕ А

(справочное)

Схема оборудования и измерения параметров при поверке

Рисунок А.1 – Веха телескопическая с призменным отражателем

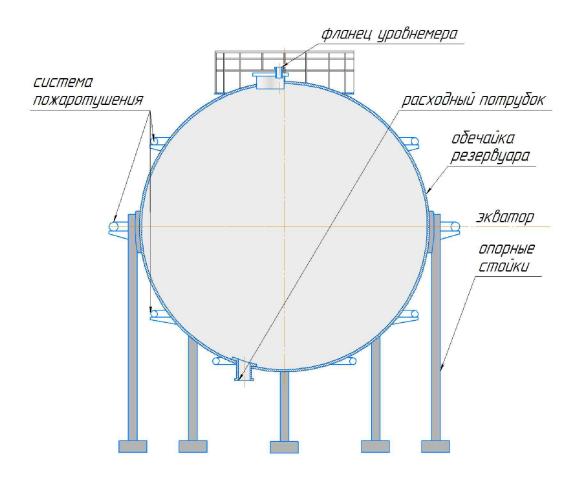


Рисунок А.2 – Схема резервуара шарового РШС-2000

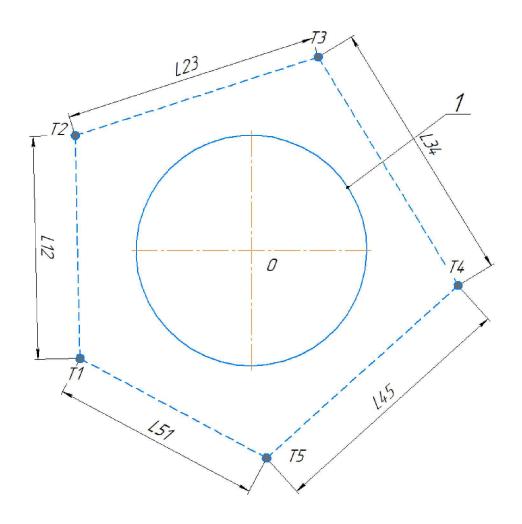


Рисунок А.3 – Расположение станций съемки

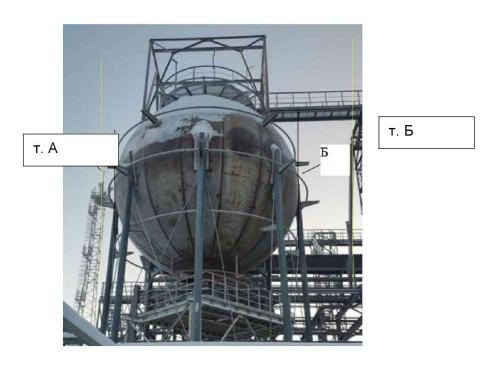
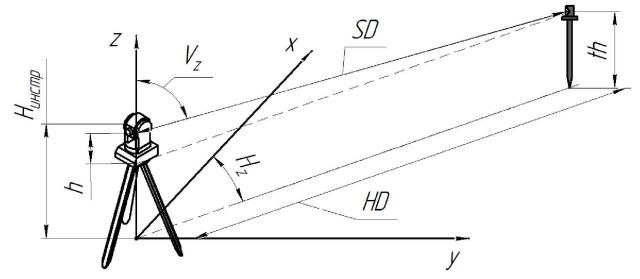
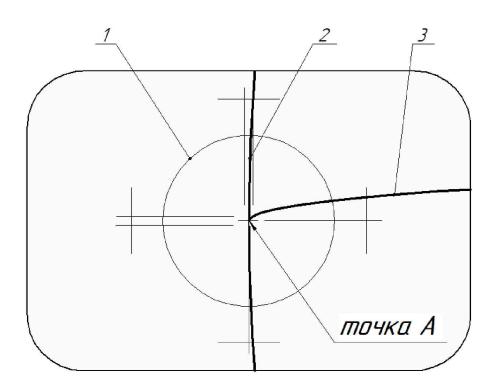




Рисунок А.4 – Точки измерений на экваторе

x, y, z — локальная система координат; SD — наклонное линейное расстояние; HD — горизонтальное проложение; h— высота превышения; Hz — горизонтальный угол; Vz — вертикальный (зенитный) угол

Рисунок А.5 – Схема параметров измерений тахеометром

1 – сетка нитей визира; 2 – наружная поверхность сферы; 3 – экватор

Рисунок А.6 – Схема позиционирования линии визирования по вертикальной касательной плоскости к экватору резервуара

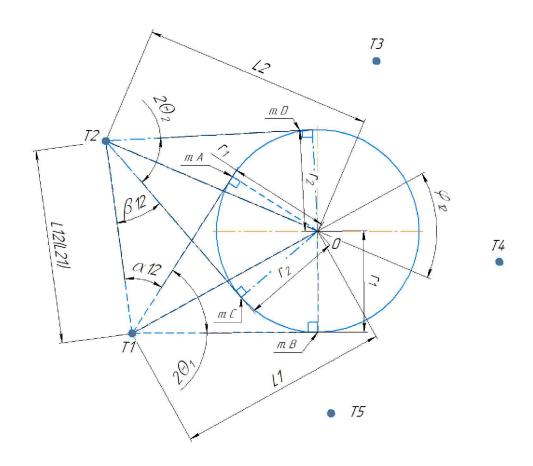


Рисунок A.7 – Схема измерений параметров на станциях T1 и T2

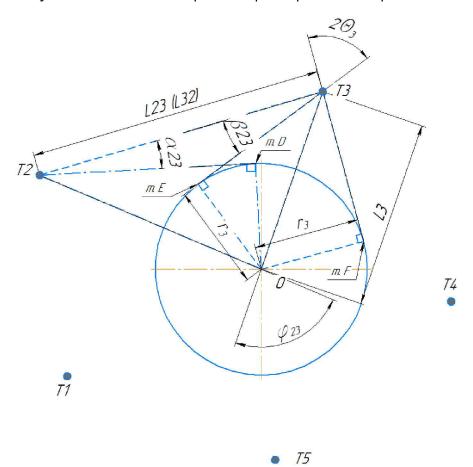


Рисунок A.8 – Схема измерений параметров на станциях T2 и T3

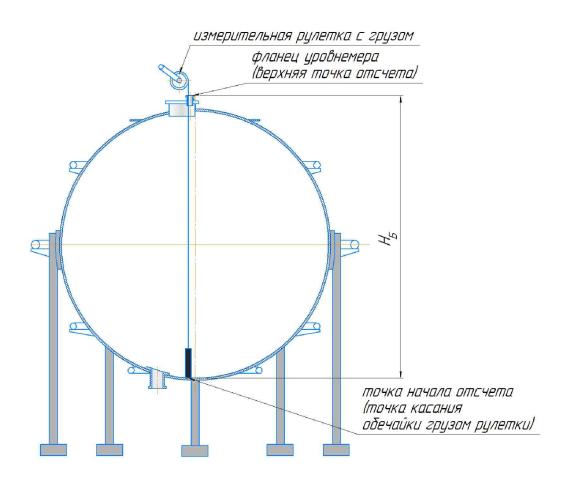


Рисунок А.9 – Схема измерений базовой высоты резервуара

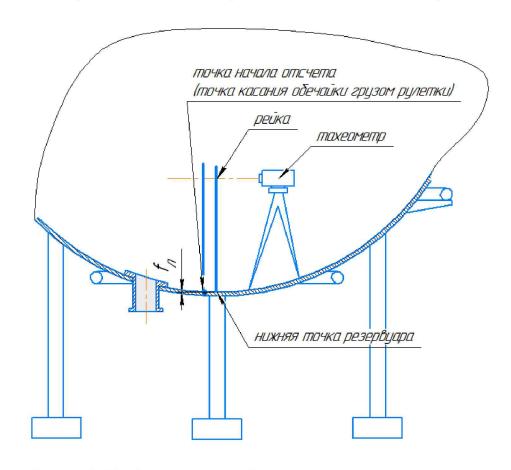


Рисунок А.10 – Схема измерений координаты точки начала отсчета

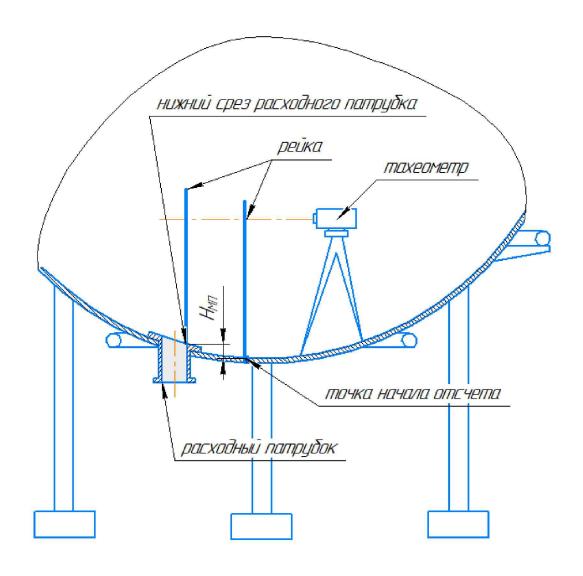


Рисунок А.11 – Схема измерений высоты «мертвой» полости резервуара

ПРИЛОЖЕНИЕ Б

(обязательное)

ПРОТОКОЛ

измерений параметров резервуара

Таблица Б.1 – Общие данные

	Do-140-10 04 14 04 14 14	Дата			Основание для
Код документа	Регистрационный номер	число	месяц	год	проведения поверки
					первичная,
					периодическая,
					внеочередная

Продолжение таблицы Б.1

Место проведения поверки	Средство измерения		

Окончание таблицы Б.1

Резервуар						
			Погрешность			
Тип	Номер	Назначение	определения			
IVIII			вместимости			
			резервуара, %			
РШС			± 0,2			

Таблица Б.2 – Условия проведения измерений

Температура воздуха, °С	Температура стенки	Загазованность,	
температура воздуха, С	резервуара, °С	м г/ м ³	
22	19	0,0000	

Таблица Б.3 – Расстояние междустанциями

В миллиметрах

Nº	Значение горизонтального проложения									
изм.	L12	L21	L23	L32	L34	L43	L45	L54	L15	L51
1										
2										

Таблица Б.4 – Горизонтальные углыВ град⁰

Nº	Отсчет от станции до опорной точки на экваторе							
изм.	α ₁₂	β ₁₂	β ₂₃	α_{34}	β ₃₄			
1								
2								

продолжение таблицы Б.4

Nº	№ Отсчет от станции до опорной точки на экваторе							
изм.	α ₄₅	β_{45} α_{51}		β ₅₁				
1								
2								

Таблица Б.5 – Горизонтальные углы

В град ⁰

	Отсчет между опорным точками				
№ изм.	2Θ ₁	2Θ ₂	2⊖ ₃	2Θ ₄	2Θ ₅
1					
2					

Таблица Б.6 – Результаты измерений высотВ миллиметрах

		Высота	
№ изм.	H_{6}	$f_{_{I\!I}}$	$H_{M\Pi}$
	1	2	3
1			
2			

Таблица Б.7 – Толщина стенки резервуараВ миллиметрах

1-е измерение	2-е измерение

Таблица Б.8 – Избыточное давление пара в резервуаре

В МПа

Отсчет по манометру		
P_1	P_2	

Должности

Подписи и знак поверки

Инициалы, фамилии

ПРИЛОЖЕНИЕ В

(обязательное)

Обработка результатов измерений

В.1 Вычисления радиуса резервуара

В.1.1 В соответствии с правилом синусов [3] по рисунку В.1:

$$\frac{L_{12}}{\sin \varphi_{12}} = \frac{L_1}{\sin(\beta_{12} + \Theta_2)} = \frac{L_2}{\sin(\alpha_{12} + \Theta_1)}.$$
(B.)

$$L_{2} = \frac{\sin(\alpha'_{12} + \Theta'_{1})}{\sin\varphi_{12}} \cdot L_{12};$$
22* MERGEFORMAT (B.)

$$L_{1} = \frac{\sin(\beta_{12}' + \Theta_{2}')}{\sin \varphi_{12}} \cdot L_{12} ,$$
33* MERGEFORMAT (B.)

где $\alpha_{12}^{'},\,\beta_{12}^{'},\,\phi_{12}^{'},\,\Theta_{1}^{'},\,\Theta_{2}^{'}$ – горизонтальные углы, рад;

0 – центр резервуара;

 L_1 , L_2 — линейные расстояния от станций съемки Т1, Т2 до центра резервуара 0, мм.

В.1.2 Значения углов $\alpha_{12}^{'}$, $\beta_{12}^{'}$, $\phi_{12}^{'}$, $\phi_{12}^{'}$, $\phi_{2}^{'}$, рад, вычисляют по формулам:

$$\alpha_{12}^{'} = \alpha_{12} \cdot \left(\frac{\pi}{180}\right); \quad \beta_{12}^{'} = \beta_{12} \cdot \left(\frac{\pi}{180}\right); \quad \phi_{12} = \pi - \left(\alpha_{12}^{'} + \beta_{12}^{'} + \Theta_{1}^{'} + \Theta_{2}^{'}\right);$$
* MERGEFORMAT (B.)

где α_{12} , β_{12} — значения горизонтальных углов, принимаемые по таблице Б.4 соответственно, ";

$$\Theta_1' = (2\Theta_1) \cdot \left(\frac{\pi}{360}\right); \qquad \Theta_2' = (2\Theta_2) \cdot \left(\frac{\pi}{360}\right),$$

$$MERGEFORMAT (B.)$$
55*

где $^{2\Theta_1,\ 2\Theta_2}$ — значения горизонтальных углов, принимаемые по таблице, Б.5 соответственно, $^{\circ}$.

В.1.3 Наружные радиусы резервуара $^{r_1, r_2}$, (рисунок В.1), мм, вычисляют по формулам:

$$r_1 = L_1 \cdot \sin \Theta_1$$
; 66* MERGEFORMAT (B.)

$$r_2 = L_2 \cdot \sin \Theta_2$$
, 77* MERGEFORMAT (B.)

где L_1 , L_2 — линейные расстояния от станций съемки Т1, Т2 до центра резервуара 0, вычисляемые по формулам Error: Reference source not found, Error: Reference source not found соответственно, мм;

 Θ_1 , Θ_2 — значения горизонтальных углов, вычисляемые по формулам Error: Reference source not found, рад.

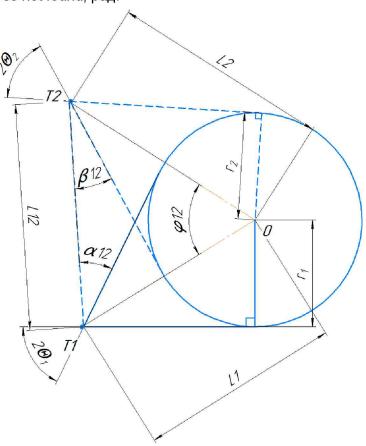


Рисунок В.1 – Схема параметров измерений и вычислений со станций Т1-Т2

В.1.4 Наружные радиусы при измерениях на оставшихся станциях Т3, Т4, Т5 вычисляют аналогично по формуле

$$r_i = L_i \cdot \sin \Theta_i$$
, 88* MERGEFORMAT (B.)

где i – номер станции, выбирают из ряда: 1, 2, ..., 5;

 Θ_i – горизонтальный угол, вычисляемый по формуле Error: Reference source not found, для соответствующей станции.

В.1.5 Средний наружный радиус резервуара вычисляют по формуле

$$r = \frac{1}{n_1} \sum_{j=1}^{n_1} r_j,$$
99* MERGEFORMAT (B.)

где ј — номер станции, выбирают из ряда: $1,2,...,n_1$;

 n_1 – число станций.

В.1.6 Внутренний радиус резервуара с учетом поправок R , мм, вычисляют по формуле

$$R = r \left[1 + \alpha_{\text{cT}} \left(20 - t_{\text{cT}} \right) \right] - \Delta R_p - \delta_{\text{cT}},$$
 1010* MERGEFORMAT (B.)

где r — наружный диаметр резервуара, вычисляемый по формуле Error: Reference source not found, мм:

 $^{
m CCT}$ — температурный коэффициент линейного расширения материала стенки резервуара, 1/°C;

 $t_{ exttt{c} exttt{T}}$ – температура стенки резервуара, принимая по таблице Б.2, °C;

 ΔR_p – поправка к значению наружного радиуса резервуара за счет влияния избыточного давления пара в резервуаре (при наличии).

Величину ${}^{\Delta R_p}$, мм, при наличии на момент проведения наружных измерений вычисляют по формуле

$$\Delta R_p = \frac{P \cdot R_0^2}{2 \cdot E \cdot \delta_{cr}},$$
1111* MERGEFORMAT (B.)

где P — избыточное давление пара в резервуаре, Па;

 R_0 – радиус резервуара, мм;

E – модуль упругости материала стенки резервуара, Па (для стали E = 2,1 · 10 11 Па);

 $\delta_{ extsf{ct}}$ $_{-}$ толщина стенки резервуара, мм.

Внутренний диаметр резервуара D, мм, вычисляют по формуле

$$D = 2R$$
, 1212* MERGEFORMAT (B.)

где R- внутренний радиус резервуара, вычисляемый по формуле Error: Reference source not found, мм.

Результаты вычисления D, мм, вносят в «Журнал обработки результатов измерений», форма которого приведена в приложении Д.

В.1.6.1 Толщину стенки резервуара $^{\mathfrak{d}_{\mathsf{CT}}}$, мм, вычисляют по формуле

$$\delta_{\text{cT}} = \frac{\left(\delta_{\text{cT}}\right)_{1} + \left(\delta_{\text{cT}}\right)_{2}}{2},$$
1313* MERGEFORMAT (B.)

где $(\delta_{\rm cr})_1, (\delta_{\rm cr})_2$ — результаты измерений толщины стенки резервуара, принимаемые по таблице Б.7, мм.

В.1.6.2 Избыточное давление пара в резервуаре Р, МПа, вычисляют по формуле

$$P = \frac{P_1 + P_2}{2}$$
, 1414* MERGEFORMAT (B.)

где P_1, P_2 – результаты измерений избыточного давления пара, принимаемые по таблице Б.8, МПа.

В.2 Вычисление высот параметров резервуара

В.2.1 Базовую высоту резервуара H_6 , мм, вычисляют по формуле

$$H_6 = \frac{H_6' + H_6''}{2}$$
, 1515* MERGEFORMAT (B.)

где $H_{6}^{'}$, $H_{6}^{''}$ – результаты измерений базовой высоты резервуара, принимаемые по таблице Б.8 (графа 1), мм.

Результаты вычисления H_6 , мм, вносят в «Журнал обработки результатов измерений», форма которого приведена в приложении Д.

В.2.2 Координату точки отсчета, как высоту превышения от нижней точки резервуара до точки начала отсчета вычисляют по формуле

$$f_{\Pi} = \frac{f'_{\Pi} + f''_{\Pi}}{2}$$
, 1616* MERGEFORMAT (B.)

где $f_{\pi}^{'}$, $f_{\pi}^{''}$ – результаты измерений высоты превышения, принимаемые по таблице Б.8 (графа 2), мм.

Результаты вычисления f_{Π} , мм, вносят в «Журнал обработки результатов измерений», форма которого приведена в приложении Д.

В.2.3 Высоту «мертвой» полости резервуара вычисляют по формуле

$$H_{\text{M\Pi}} = \frac{H'_{\text{M\Pi}} + H''_{\text{M\Pi}}}{2},$$
1717* MERGEFORMAT (B.)

где $H'_{M\Pi}$, $H''_{M\Pi}$ — результаты измерений высоты превышения, принимаемые по таблице Б.8 (графа 3), мм.

Результаты вычисления $H_{\text{мп}}$, мм, вносят в «Журнал обработки результатов измерений», форма которого приведена в приложении Д.

В.3 Вычисление вместимости резервуара

- <u>В.3.1 Вычисление вместимости резервуара в пределах значения радиуса</u> (экватора)
- В.3.1.1 Неизмеряемый объем, как вместимость резервуара от нижней точки резервуара до точки начала отсчета V_0 , м 3 , вычисляют по формуле

$$V_0 = \frac{\pi \cdot f_n^2 (3R - f_n)}{3 \cdot 10^9}$$
, 1818* MERGEFORMAT (B.)

где f_{π} — высота превышения в точке начала отсчета, вычисляемая по формуле Error: Reference source not found, мм;

R – внутренний радиус резервуара, вычисляемый по формуле Error: Reference source not found, мм.

Результаты вычисления V_0 , м 3 , вносят в «Журнал обработки результатов измерений», форма которого приведена в приложении Д.

В.3.1.2 Вместимость «мертвой» полости резервуара $V_{\rm M\Pi}$, м 3 , вычисляют по формуле

$$V_{M\Pi} = \frac{\pi \cdot (f_{\Pi} + H_{M\Pi})^{2} (3R - [f_{\Pi} + H_{M\Pi}])}{3 \cdot 10^{9}},$$
MERGEFORMAT (B.)

где $H_{\text{MП}}$ – высота «мертвой» полости резервуара , вычисляемая по формуле Error: Reference source not found, мм.

Результаты вычисления $V_{\text{мп}}$, м³, вносят в «Журнал обработки результатов измерений», форма которого приведена в приложении Д.

В. 3.1.2 Вместимость резервуара от точки начала отсчета до значения радиуса (экватора) резервуара V(h) , м³, вычисляют по формуле

$$V(h)_1 = \frac{\pi \cdot (h + f_{\pi})^2 (3R - [h + f_{\pi}])}{3 \cdot 10^9},$$
(B.)

где h –текущая высота, отсчитываемая от точки начала отсчета, мм;

R – внутренний радиус резервуара, вычисляемый по формуле Error: Reference source not found, мм.

<u>В.3.2 Вычисление вместимости резервуара выше значения радиуса резервуара</u> (экватора)

В.3.2.1 Вместимость резервуара выше значения радиуса (экватора) резервуара $V(h)_2$, м³, вычисляют по формуле

$$V(h)_{2} = \frac{\pi}{3.10^{9}} \left[4.R^{3} - \left(R - \left[x + f_{n} \right] \right)^{2} \left(2R + \left[x + f_{n} \right] \right) \right],$$
MERGEFORMAT (B.)

где x- уровень жидкости, значение которого принимают через каждое изменение высоты наполнения на 1 см.

В.3.2.3 Полную вместимость резервуара $V_{\rm m}$, м³, вычисляют по формуле

$$V_{\rm m} = \frac{4\pi R^3}{3.10^9}$$
, 2222* MERGEFORMAT (B.)

где R – внутренний радиус резервуара, вычисляемый по формуле Error: Reference source not found, мм.

В.4 Вычисление погрешности определения вместимости резервуара

В.4.1 Расширенную неопределенность (погрешность) вместимости резервуара uV_{m} , %, вычисляют по формуле

$$uV_m = \frac{uV_m}{V_m} = \frac{3 \cdot u(R)}{R} \cdot 100,$$
 (B.19)

где u(R) – расширенная неопределенность внутреннего радиуса резервуара, вычисляемая по формуле Error: Reference source not found мм;

R — наружный радиус резервуара, вычисляемый по формуле Error: Reference source not found, мм.

В.4.2 Вычисление неопределенности измерений внутреннего радиуса резервуара.

В.4.2.1 Радиус $^{\it f}$ 1, мм, вычисляют по формуле Error: Reference source not found

$$r_1 = L_1 \cdot \sin \Theta_1$$
, где $L_1 = \frac{\sin(\beta'_{12} + \Theta'_2)}{\sin \varphi_{12}} \cdot L_{12}$.

Неопределенность внутреннего радиуса $u(r_1)$, мм, при измерениях станции Т1, мм вычисляют по формуле

$$u(r_1) = \sqrt{\left[u(r_1)_{L_1}\right]^2 + \left[u(r_1)_{\Theta_1}\right]^2}.$$

Вычисление параметров, входящих в формулу Error: Reference source not found.

$$\begin{split} u(r_1)_{L_1} &= u(L_1) \cdot \sin \Theta_1 \; ; \quad u(r_1)_{\Theta_1} = L_1 \cdot \cos \Theta_1 \cdot u(\sin \Theta_1) \; , \\ u(L_1) &= \sqrt{\left[u(B_1)\right]^2 + \left[u(L_{12})\right]^2} \; , \qquad \text{где } B_1 = \frac{\sin(\beta_{12}' + \Theta_2')}{\sin \varphi_{12}} \; ; \\ &\qquad \qquad \text{MERGEFORMAT (B.)} \\ u(B_1)_{\beta} &= \frac{\cos(\beta_{12}' + \Theta_2') \cdot \beta_{12}'}{\sin \varphi_{12}} \; ; \qquad u(B_1)_{\Theta} = \frac{\cos(\beta_{12}' + \Theta_2') \cdot \Theta_2'}{\sin \varphi_{12}} ; \\ u(B_1)_{\varphi} &= \frac{\cos \varphi_{12} \cdot \varphi_{12} \cdot \sin(\beta_{12}' + \Theta_2')}{(\sin \varphi_{12})^2} ; \end{split}$$

$$u(B_1) = \sqrt{\left[u(B)_{\beta}\right]^2 + \left[u(B)_{\Theta}\right]^2 + \left[u(B)_{\varphi}\right]^2};$$

где $u(B_1)_{\beta}$, $u(B_1)_{\Theta}$, $u(B_1)_{\phi}$ — расширенная неопределённость горизонтального угла, принимаемая по описанию типа тахеометра, равная 5" (0.000024 рад);

 $u(L_{12})$ — расширенная неопределённость линейного расстояния (горизонтального проложения), принимаемая по описанию типа тахеометра, равная 3 мм.

B.4.2.2 Радиус r_2 , мм, вычисляют по формуле Error: Reference source not found

$$r_2 = L_2 \cdot \sin \Theta_2$$
, где $L_2 = \frac{\sin(\alpha'_{12} + \Theta'_1)}{\sin \varphi_{12}} \cdot L_{12}$;

Неопределенность внутреннего радиуса $u(r_2)$, мм, при измерениях станции T2, мм вычисляют по формуле

$$u(r_2) = \sqrt{\left[u(r_2)_{L_2}\right]^2 + \left[u(r_2)_{\Theta_2}\right]^2};$$

Вычисление параметров, входящих в формулу Error: Reference source not found.

$$\begin{split} u(r_2)_{L_2} &= u(L_2) \cdot \sin \Theta_2 \; ; \quad u(r_2)_{\Theta_2} = L_2 \cdot \cos \Theta_2 \cdot u(\sin \Theta_2) \; , \\ u(L_2) &= \sqrt{\left[u(B_2)\right]^2 + \left[u(L_{12})\right]^2} \; , \quad \text{ где } B_2 = \frac{\sin(\alpha_{12}' + \Theta_1')}{\sin \varphi_{12}} \; ; \\ &\quad \text{MERGEFORMAT (B.)} \end{split}$$

$$u(B_2)_{\beta} &= \frac{\cos(\alpha_{12}' + \Theta_1') \cdot \alpha_{12}'}{\sin \varphi_{12}} \; ; \quad u(B_2)_{\Theta} = \frac{\cos(\alpha_{12}' + \Theta_1') \cdot \Theta_1'}{\sin \varphi_{12}} ; \\ u(B_2)_{\varphi} &= \frac{\cos \varphi_{12} \cdot \varphi_{12} \cdot \sin(\alpha_{12}' + \Theta_1')}{(\sin \varphi_{12})^2} ; \end{split}$$

$$u(B_2) = \sqrt{\left[u(B_2)_\beta\right]^2 + \left[u(B_2)_\Theta\right]^2 + \left[u(B_2)_\varphi\right]^2};$$

В.4.2.3 Неопределенность внутренних радиусов $u(r_3)$ - $u(r_5)$ вычисляют аналогично 4.2.1 – 4.2.2.

В. 4.2.4 Неопределенность внутреннего радиуса резервуара вычисляют по формуле

$$u(r) = \sqrt{\frac{1}{5} \sum_{i=1}^{5} [u(r_i)]^2}$$
, 2525* MERGEFORMAT (B.)

где і-номер станции, выбирают из ряда 1, 2,..., 5;

 $u(r_i)$ – неопределенность радиуса на і станции, мм.

В.4. Вычисление неопределенности наружного радиуса резервуара.

Наружный радиус резервуара R вычисляют по формуле Error: Reference source not found

$$R = r \left[1 + \alpha_{\text{CT}} \left(20 - t_{\text{CT}} \right) \right] - \Delta R_p - \delta_{\text{CT}},$$

$$u(R) = \sqrt{\left[u(R)_r \right]^2 + \left[u(R)_t \right]^2 + \left[u(R)_\alpha \right]^2 + \left[u(R)_\delta \right]^2}.$$
MERGEFORMAT (B.)

Вычисление параметров, входящих в формулуError: Reference source not found.

$$u(R)_{r} = u(r) \cdot [1 - \alpha_{\text{cT}} (t_{\text{cT}} - 20)]; \ u(R)_{\alpha} = -r \cdot (t_{\text{cT}} - 20) \cdot u(\alpha_{\text{cT}});$$

 $u(R)_{t} = -r \cdot \alpha_{\text{cT}} \cdot u(t_{\text{cT}}); \ u(R)_{\delta} = -u(\delta_{\text{cT}}).$

где u(r) – неопределенность внутреннего радиуса, вычисляемая по формуле Error: Reference source not found, мм;

 $u^{(\alpha_{\rm CT})}$ – стандартная неопределенность коэффициента линейного расширения стенки резервуара, вычисляемая по формуле

$$u(\alpha_{\rm cr}) = \frac{e(\alpha_{\rm cr})}{2\sqrt{3}}$$

 $e^{(\alpha_{CT})}$ – максимальная погрешность оценки коэффициента линейного расширения стенки резервуара, принимаемая равной : 2 · 10⁻⁶ 1/°C;

 $u^{(t_{\rm CT})}$ – стандартная неопределенность температуры стенки резервуара, с учетом прямоугольного распределения, вычисляемая по формуле

$$u(t_{\rm ct}) = \frac{e(t_{\rm ct})}{2\sqrt{3}},$$

 $e(t_{p})$ — максимальная погрешность измерения, принимаемая по ОТ пирометра, равная 2 °C;

 $u(\delta_{\mathtt{CT}})$ – стандартная неопределенность толщины стенки резервуара, с учетом прямоугольного распределения, вычисляемая по формуле

$$u(t_{\rm ct}) = \frac{e(t_{\rm ct})}{2\sqrt{3}},$$

 $\mathbf{e}(t_{\mathsf{CT}})$ – расширенная неопределенность толщиномера, принимаемая по ОТ, принимаемая 0,2 мм.

В.5 Составление градуировочной таблицы

В.5.1 Порядок составления градуировочной таблицы приведен в таблице В.1. Т а б л и ц а В.1

Уровень наполнения, см	Вместимость ¹⁾ , м ³	Коэффициент вместимости, м³/мм
0	m1	k1
1	m 2	
2		
H _{мп}		
H_{np}		

¹⁾ Коэффициент вместимости – вместимость одного миллиметра высоты наполнения, $\frac{m2 - m1}{10} = k1 \text{ м}^3/\text{мм}.$ равная, например на уровне от 0 до 1 см:

ПРИЛОЖЕНИЕ Г

(обязательное)

Формы титульного листа градуировочной таблицы и форма градуировочной таблицы Г.1 Форма титульного листа градуировочной таблицы

Титульный лист

УТВЕРЖДАЮ

ГРАДУИРОВОЧНАЯТАБЛИЦА на резервуар стальной шаровой) РШС-2000

	Nº
Организация	
Погрешность определения вместимости	1
г.	
Срок очередной поверки	
	Поверитель
	должность, инициалы, фамилия

Знак поверки

Г.2 Форма градуировочной таблицы

ГРАДУИРОВОЧНАЯТАБЛИЦА

Организация		
Резервуар №	 _	
	лі	ист

Уровень наполнения, см	Вместимость, м ³	Коэффициент вместимости, м³/мм
0		
	•••	
H _{MΠ}	$V_{M\Pi}$	
	•••	
H_{np}		

Приложение Д

(обязательное)

Журнал обработки результатов измерений

Резервуар РШС-2000 № _____ Организация ____

Должности

Параметры резервуара	
Наименование параметра	Значение
Базовая высота, мм	
Внутренний диаметр, мм	
Параметры «мертвой» полости резервуара	
Уровень жидкости в резервуаре, соответствующей высоте «мертвой» полости резервуара , мм	
Вместимость «мертвой» полости резервуара, м³	
Параметры неизмеряемого остатка	
Абсолютная высота неизмеряемого остатка, мм	
Объем неизмеряемого остатка, м³	
Предельная высота наполнения, мм	
Вместимость на предельной высоте наполнения, м³	

<u>Подписи</u>

Инициалы, фамилии

БИБЛИОГРАФИЯ

[1]	Гигиенические нормативы ГН 2.2.5.3532-18	Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны, утвержден Постановлением Главного
		государственного санитарного врача РФ от 13.02.2018 г. №25
[2]	Руководящий документ РД-03-20—2007	Положение об организации обучения и проверки знаний рабочих организаций, поднадзорных федеральной службе по экологическому, технологическому и атомному надзору, утвержден приказом Ростехнадзора от 29.01.2007 № 37
[3]	Международный стандарт ISO 7507-3:2006	Нефть и нефтепродукты. Калибровка вертикальных цилиндрических резервуаров. Часть 3. Методоптическойтриангуляции (Petroleum and liquid petroleum products — Calibration of vertical cylindrical tanks — Part 3: Optical triangulation method)