ФГУП ««ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» ФГУП «ВНИИМС»

СОГНАСОВАНО
Генеральный директор
АО фирма ТВЕМА»
В.Ф. Тарабрин

DVICERCIALONA 20 18 r.

УТВЕРЖДАЮ

Заместитель директора

ФГУЛ «ВНИИМС»

« С. » октора 20 18 г.

КОМПЛЕКСЫ АВТОМАТИЗИРОВАННЫЕ КОНТРОЛЯ ГАБАРИТА ПРИБЛИЖЕНИЯ СТРОЕНИЙ «ГАБАРИТ-С»

Методика поверки

ВДМА.663500.182 МП

Настоящая методика распространяется на комплексы автоматизированные контроля габарита приближения строений «Габарит-С» (далее по тексту – комплексы) производства АО «Фирма ТВЕМА», г. Москва, и устанавливает методы и средства их первичной и периодической поверок.

Комплексы предназначены для сканирования окружающего пространства с целью определения негабаритных объектов.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

При проведении поверки должны быть выполнены операции и применены средства поверки, указанные в таблице 1.

Таблица 1 – Операции, выполняемые при поверке

№ п/п		Номера пунктов методики поверки	Проведение операции при:	
	Наименование операции		первичной поверке	периодической поверке
1	Внешний осмотр	5.1	да	да
2	Опробование	5.2	да	да
3	Измерение сопротивления изоляции	5.3	да	да
4	Проверка идентификационных данных программного обеспечения	5.4	да	да
5	Определение метрологических характеристик	5.5	да	да

В случае отрицательного результата при проведении одной из операций, поверку прекращают, а комплексы признают не прошедшими поверку.

2. СРЕДСТВА ПОВЕРКИ

Для поверки приборов применяют средства измерений, указанные в таблице 2 Таблица 2 - Средства поверки

Номер	Наименование и обозначение средств поверки и вспомогательного					
пункта	оборудования; основные технические и метрологические характеристики					
методики	средства поверки					
	- мегаомметр ЭС0202/2-Г, рег. № 14883-95, диапазон измерений от 0 до					
	10000 МОм, пределы допускаемой относительной погрешности ±15%;					
	- дальномер GLM 150, per. № 44551-10, диапазон измерений от 0,05 до 150 м,					
	дискретность отчета 0,1 м, пределы допускаемой погрешности					
	$\pm (1,0+0,05\cdot D\cdot 10-3)$, где D – измеряемое расстояние (мм);					
5.5	- штангенциркуль ШЦ-I-150-0,1 диапазон измерений от 0 до 150 мм, цена					
	деления $0,1$ мм, пределы допускаемой абсолютной погрешности $\pm 0,05$ по					
	ГОСТ 166-89;					
	Вспомогательное оборудование:					
	- Приспособление ДКП.030.17.013.00;					
	- Вспомогательное оборудование ВО-2.170					

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Перечисленные средства измерений должны работать в нормальных для них условиях, оговоренных в соответствующей нормативной документации.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки комплексов должны соблюдаться следующие требования:

- требования безопасности определяются технической документацией на комплексы;
- все работы следует проводить в строгом соответствии с эксплуатационной документацией на комплексы;
- при работе со средствами измерений в ходе поверки должны соблюдаться меры безопасности, предусмотренные руководствами по эксплуатации соответствующих средств измерений;
- персонал, допущенный к участию в поверке, должен пройти инструктаж по технике безопасности.

4. УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки систем должны соблюдаться следующие внешние условия:

температура окружающего воздуха, °С

 20 ± 15 ;

относительная влажность воздуха, %, не более

80.

5. МЕТОДИКА ПРОВЕДЕНИЯ ПОВЕРКИ

5.1 Подготовка к поверке

Перед проведением поверки комплексы и средства поверки должны быть приведены в рабочее состояние в соответствии с технической документацией на них и выдержаны при условиях проведения поверки (раздел 4) не менее 2 часов.

Поверку следует производить на испытательном участке пути КД ЦП 539.000, при необходимости, в качестве участка для поверки следует применять участок пути длиной не менее $10\,$ м, с возвышением $(0\pm1)\,$ мм, располагающийся на малодеятельных железнодорожных путях, условия работы на котором отвечают требованиям техники безопасности и производственной санитарии на железнодорожном транспорте.

В ходе поверки применяется приспособление ДКП.030.17.013.00 для проверки расстояния от оси пути до конструктивных элементов железнодорожной инфраструктуры, представляющее собой стойку в виде щита с опорой, устанавливаемую параллельно оси пути на расстоянии от оси пути, соответствующему диапазону измерений (Рисунок 1).

Ось пути определяется с помощью вспомогательного оборудования ВО-2.170 (далее – оборудование ВО-2.170), которое представляет собой балку для установки на головки рельсов с перемещаемой по вертикальной штанге площадкой (Рисунок 1), на которую устанавливается дальномер GLM 150 (далее – дальномер) для измерений расстояния от оси пути до приспособления ДКП.030.17.013.00 (далее – стойка).

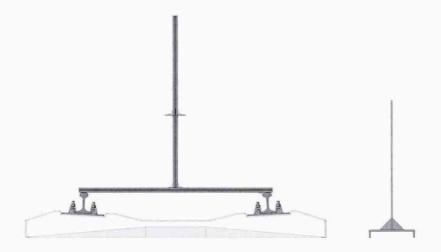


Рисунок 1— Приспособление ДКП.030.17.013.00 (справа) и вспомогательное оборудование BO-2.170 (слева)

5.2 Внешний осмотр и опробование комплексов

Внешний осмотр комплексов производится визуально.

При внешнем осмотре должно быть установлено:

- соответствие комплектности поверяемого комплекса технической документации;
- отсутствие видимых повреждений и дефектов окраски, ведущих к коррозии металлических деталей комплекса;
- наличие надписей, знаков, табличек в местах, предусмотренных эксплуатационной документацией.

При опробовании следует:

- подключить питание к датчикам;
- убедиться в исправности датчиков по индикаторам состояния;
- подключить датчики к компьютеру;
- запустить программное обеспечение «ИНТЕГРАЛ»;
- убедиться в наличии данных на экране отображения информации с датчиков;
- убедиться в наличии данных на экране отображения информации с датчиков.

Комплексы считаются прошедшими поверку, если при внешнем осмотре и опробовании установлено соответствие комплектности, маркировки, внешнего вида и функционирования оборудования в соответствии с эксплуатационной документацией.

5.3 Измерение сопротивления изоляции

ВНИМАНИЕ: ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ПРОИЗВОДИТЬ ПРИ ВЫКЛЮЧЕННОМ ПИТАНИИ!

При измерении сопротивления изоляции следует:

- установить комплекс на изолирующую поверхность;
- клеммы мегаомметра присоединить к левому и правому колесам, произвести измерение. Повторить измерение не менее 3-х раз.

Комплексы считаются прошедшими поверку, если величина измеренного сопротивления не превышает 10 МОм. В противном случае, поверка прекращается, комплекс признаётся негодным.

5.4 Подтверждение соответствия программного обеспечения

Подтверждение соответствия программного обеспечения комплексов выполняется двумя способами:

- запустить программное обеспечение (далее ПО), на экране загрузки программного обеспечения считать идентификационное наименование и номер версии;
- если программное обеспечение запущено, следует открыть в основном меню ПО вкладку «Справка», считать идентификационное наименование и номер версии программного обеспечения в пункте «О программе».

Комплексы считаются прошедшими поверку, если полученные результаты соответствуют требованиям, приведенным в 1.

Таблица 1 – Идентификацион	нные ланные ПО
----------------------------	----------------

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ПО «ИНТЕГРАЛ»
Номер версии (идентификационный номер) ПО	Не ниже 1.1.20
Цифровой идентификатор ПО	_

5.5 Определение метрологических характеристик

5.5.1. Проведение измерений расстояния до оси пути

Установить комплекс на участке пути, соответствующем требованиям пункта 5.1, отметить мелом на рельсах положение измерительного датчика. Установить и зафиксировать приспособление ДКП.030.17.013.00 на участке пути на расстоянии 1 м от оси пути таким образом, чтобы середина стойки соответствовала отметке на рельсах. Измерить комплексом и занести в протокол поверки расстояние от оси пути до верхнего края стойки, откатить комплекс.

Установить оборудование ВО-2.170 на метку, прижав к левому рельсу (Рисунок 1). Установить дальномер на площадку вертикальной штанги таким образом, чтобы задний торец корпуса дальномера плотно прилегал к упору на площадке, а пузырьковый уровень дальномера находился сверху. При этом необходимо следить с помощью пузырькового уровня, чтобы дальномер находился в горизонтальном положении. При необходимости регулировать горизонтальное положение площадки на вертикальной штанге. Измерить дальномером и занести в протокол поверки расстояние от упора площадки до верхнего края стойки X_1 . Затем развернуть оборудование ВО-2.170 на 180° , прижать к правому рельсу, измерить дальномером и занести в протокол калибровки расстояние от упора площадки до верхнего края стойки X_2 . Измерения проводить не менее 3 раз в каждом положении.

ВНИМАНИЕ! При проведении серии измерений строго следить, чтобы стойка не перемещалась! При измерении дальномером следить, чтобы дальномер находился в горизонтальном положении.

Провести последовательную серию измерений с помощью комплекса, затем с помощью дальномера не менее 3 раз, устанавливая стойку на расстоянии 1 м, 5 м, 10 м от оси пути.

Толщину упора D на площадке – D оборудования BO-2.170 измерить с помощью штангенциркуля ШЦ-1-150-0,1.

5.5.2. Обработка результатов измерений

Рассчитать для каждой серии измерений действительные значения расстояния от оси пути до ребра стойки по формуле:

$$X_{\partial} = \frac{X_1 + X_2}{2} + \frac{D}{2}$$

где X_1 и X_2 – расстояния, измеренные при прилегании к правому и левому рельсам, D – толщина упора для дальномера на площадке оборудования ВО-2.170.

Занести результаты вычислений X_{∂} в первую графу таблицы протокола поверки.

Во вторую графу занести значения измеряемого параметра X, полученные в серии измерений с помощью комплекса.

Рассчитать абсолютную погрешность для каждого измерения по формуле:

$$\Delta_n = X - X_{\partial}$$

Комплекс считается прошедшим поверку с положительным результатом, если каждая вычисленная погрешность измерений находится в диапазоне ± 0.03 м.

6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Результаты поверки оформляют протоколами поверки.

По результатам положительной поверки оформляют свидетельство о поверке по форме, приведенной в приказе Минпромторга № 1815 от 02.07.2015 г.

В случае отрицательных результатов поверки на средство измерений оформляется извещение о непригодности по форме, приведенной в приказе Минпромторга № 1815 от 02.07.2015 г.

Знак поверки в виде оттиска клейма поверителя и/или в виде голографической наклейки наносится на свидетельство о поверке, оформленное в соответствии с формой, утвержденной приказом Минпромторга № 1815 от 02.07.2015 г.

Зам. начальника отдела 203 испытательного центра

Н. А. Табачникова
А. А. Лаврухин

Инженер отдела 203 Испытательного центра

Приложение А

(справочное)

Протокол поверки

комплекса автоматизированного контроля габарита приближения строений «Габарит-С»

№
ОТ
Средство измерений:
наименование, тип, модификация, регистрационный номер в Федеральном информационном фонде по обеспечению средств измерений
Заводской
номер:
Поверено в
соответствии:
с применением средств измерений
при следующих значениях влияющих факторов
перечень влияющих факторов, нормированных в документе на методику поверки, с указанием их величин

Таблица 2 – Таблица результатов обработки метрологических измерений

Значение параметра, измеренное с	Значение параметра, измеренное комплексом Х			Значение погрешности $\max(\Delta_n)$,	Допустимая
помощью средств поверки (эталонов) X_{∂}	измерение 1	измерение 2	измерение п	где <i>n</i> – количество измерений	погрешность (по ТУ)
1	2			3	4