ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии»

Государственный научный метрологический центр

ФГУП «ВНИИР»

УТВЕРЖДАЮ

Заместитель директора по развитию ФГУП «ВНИИР»

А.С. Тайбинский

2016 г.

Государственная система обеспечения единства измерений

ПРЕОБРАЗОВАТЕЛЬ РАСХОДА ТУРБИННЫЙ ГЕЛИКОИДНЫЙ ТПР-400-1,6 Методика поверки

MΠ 0500-14-2016

Начальник НИО-14 ФГУП «ВНИИР»

Р.Н. Груздев

Тел.: (843) 299-72-00

г. Казань 2016 РАЗРАБОТАНА

ФГУП «ВНИИР»

ИСПОЛНИТЕЛЬ

Груздев Р.Н., Черепанов М.В.

УТВЕРЖДЕНА

ФГУП «ВНИИР»

Настоящая методика поверки (далее - методика) распространяется на преобразователь расхода турбинный геликоидный ТПР-400-1,6 с заводским номером 01, эксплуатируемый в составе СИКН, и устанавливает порядок его первичной и периодической поверок на месте эксплуатации.

Интервал между поверками – 12 месяцев.

Примечание - На основании письменного заявления владельца допускается проводить поверку ПР в меньшем диапазоне расхода, чем указано в описании типа.

1 Нормативные ссылки

В настоящей методике использованы ссылки на нормативные документы:

ГОСТ Р 8.654-2015 ГСИ. Требования к программному обеспечению средств измерений. Основные положения

ГОСТ Р 8.736-2011 ГСИ. Измерения прямые многократные. Методы обработки результатов наблюдений. Основные положения

ГОСТ 33-2000 (ИСО 3104-94) Нефтепродукты. Прозрачные и непрозрачные жидкости. Определение кинематической вязкости и расчёт динамической вязкости

ГОСТ 1756-2000 Нефтепродукты. Определение давления насыщенных паров

ГОСТ 2477-14 Нефть и нефтепродукты. Метод определения содержания воды

ГОСТ 2517-2012 Нефть и нефтепродукты. Методы отбора проб

ГОСТ 30852.0-2002 Электрооборудование взрывозащищенное. Часть 0. Общие требования

Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке (утвержден приказом Минпромторга России от 02 июля 2015 г. № 1815. Зарегистрировано в Минюсте России, регистрационный номер 38822 от 4 сентября 2015 г.)

Р 50.2.075-2010 ГСИ. Нефть и нефтепродукты. Лабораторные методы измерения плотности, относительной плотности и плотности в градусах API

Р 50.2.076-2010 ГСИ. Плотность нефти и нефтепродуктов. Методы расчета. Программа и таблицы приведения

МИ 2174-91 ГСИ. Аттестация алгоритмов и программ обработки данных при измерениях. Основные положения

МИ 2676-2001 ГСИ. Методика метрологической аттестации алгоритмов и программ обработки данных результатов измерений при определении массы нефти и нефтепродуктов. Общие положения

МИ 2955-2010 Рекомендация. ГСИ. Типовая методика аттестации программного обеспечения средств измерений

Примечание — при пользовании настоящей методикой следует в установленном порядке проверить действие нормативных документов, перечисленных в разделе 1. Если нормативный документ заменен или частично изменен, то следует руководствоваться положениями действующего взамен или частично измененного документа.

- 2 Термины и определения, принятые сокращения
- 2.1 В настоящей методике приняты следующие термины с определениями:
- 2.1.1 время одного измерения (одно измерение):
- время прохождения шаровым поршнем поверочной установки ПУ её

калиброванного участка (от детектора «пуск» до детектора «стоп») - при применении однонаправленной ПУ;

- суммарное время прохождения шаровым поршнем ПУ её калиброванного участка туда и обратно (т.е. от детектора «пуск» до детектора «стоп» и обратно) без учета времени, необходимого для изменения направления потока рабочей жидкости через ПУ при применении двунаправленной ПУ.
- 2.1.2 градуировочная характеристика: Функция, описывающая зависимость коэффициента преобразования ПР (K, имп./м³) от измеряемого расхода (Q, м³/ч), или от выходной частоты ПР (f, Γ ц).
 - 2.2 В настоящей методике приняты следующие сокращения:
 - АРМ оператора автоматизированное рабочее место оператора;
 - БИК блок измерений показателей качества;
 - ГХ градуировочная характеристика;
 - ИЛ измерительная линия;
 - MX метрологическая характеристика;
 - ПП преобразователь плотности;
 - ПР преобразователь расхода турбинный геликоидный ТПР-400-1,6;
 - ПУ поверочная установка;
 - ПСП приемо-сдаточный пункт;
- СИКН система измерений количества и показателей качества нефти/ нефтепродуктов;
 - СОИ система обработки информации;
 - УОИ устройство обработки информации.

Примечание — Под сокращением БИК в настоящей методике подразумевают блок измерений физико-химических параметров рабочей жидкости, входящий в состав СИКН, под сокращением ПСП - приемо-сдаточный пункт нефти и нефтепродуктов.

- 3 Операции и средства поверки
- 3.1 При проведении поверки выполняют следующие операции:
- внешний осмотр (7.1);
- опробование (7.2);
- определение метрологических характеристик (7.3).
- 3.2 При поверке применяют следующие средства поверки:
- $3.2.1~\Pi \text{У}~1$ -го разряда с пределами допускаемой относительной погрешности $\pm 0.05~\%$.
- 3.2.2 Преобразователи давления с электрическим выходным сигналом с пределами допускаемой приведенной погрешности 0,5 %. Допускается применять манометры класса точности 0,6.
- 3.2.3 Преобразователи температуры (термометры сопротивления класса A (не хуже) в комплекте с измерительными преобразователями), пределы допускаемой абсолютной погрешности комплекта не более $\pm 0,2$ °C. Допускается применять термометры с пределами допускаемой абсолютной погрешности $\pm 0,2$ °C.

Примечание — Диапазоны измерений применяемых средств поверки должны обеспечивать проведение поверки ПР в условиях, соответствующих условиям эксплуатации ПР.

- 3.2.4 Устройство обработки информации (УОИ):
- 3.2.4.1 Обеспечивающее выполнение функций:
- прием и обработку частотных сигналов от ПР и поточного ПП;
- прием и обработку токовых сигналов от преобразователей давления и температуры, установленных на ИЛ, ПУ и в БИК;
- индикацию текущих значений расхода, измеряемого поверяемым ПР (м³/ч), плотности (кг/м³), вязкости (сСт), объемной доли воды в нефти (%), измеряемых поточным ПП, преобразователем вязкости и поточным влагомером, соответственно;
- измерение количества импульсов (в том числе долей периодов, если количество импульсов менее 10000), выдаваемых поверяемым ПР за одно измерение;
- измерение (при необходимости вычисление) времени прохождения поршнем калиброванного участка ПУ за одно измерение (c).
- 3.2.4.2 Пределы допускаемой относительной погрешности УОИ при вычислениях коэффициентов преобразования ПР (имп./м 3) ± 0.025 %.
- 3.2.4.3 В качестве УОИ применяют или СОИ, входящую в состав СИКН, или отдельный контроллер-вычислитель (применяют только при поверочных работах), или контроллер-вычислитель, входящий в состав ПУ.
- 3.2.4.4 УОИ имеет аттестованные по МИ 2955, МИ 2676 (или МИ 2174) алгоритмы обработки результатов измерений, разработанные согласно настоящей методике с учетом требований ГОСТ Р 8.654.

Примечание - При отсутствии УОИ, соответствующей требованиям 3.2.4.5 (в основном на СИКН, введенных в эксплуатацию до 90-х годов прошлого века и не обеспеченных соответствующей реконструкцией в последующие годы), допускается применять:

- частотомер электронно-счетный с диапазоном измерений от 1 Γ ц до 100 к Γ ц, измеряющий частоты, интервалы времени и периода с пределами допускаемой основной относительной погрешности \pm 2,5×10⁻⁷ %;
- счетчик импульсов с диапазоном частот входных сигналов от 1 Γ ц до 100 к Γ ц и пределами допускаемой абсолютной погрешности \pm 1 имп.
- 3.2.5 Поточный ПП, входящий в состав СИКН. Допускается применение лабораторного плотномера или средств измерений плотности согласно Р 50.2.075.
- 3.2.6 Поточный преобразователь вязкости, входящий в состав СИКН для высоковязких нефтепродуктов. Допускается применение средств измерений вязкости нефти по ГОСТ 33.
- 3.2.7 Поточный преобразователь влагосодержания, входящий в состав СИКН. Допускается применение средств измерений объемной доли воды в нефти по ГОСТ 2477.
- 3.2.8 APM оператора, имеющее аттестованные по МИ 2955, МИ 2676 (или МИ 2174) алгоритмы для обработки результатов измерений, разработанные по настоящей методике с учетом требований ГОСТ Р 8.654, если APM оператора предусмотрено рабочим проектом СИКН.
- 3.2.9 Все средства измерений (кроме APM оператора) должны быть поверены и иметь действующие свидетельства о поверке или знаки поверки.
- 3.2.10 Допускается применение других средств поверки, технические и метрологические характеристики которых удовлетворяют требованиям настоящей методики.
 - 4 Требования безопасности, охраны труда и квалификации поверителей
 - 4.1 При проведении поверки соблюдают требования, определяемые:

- «Правила безопасности в нефтяной и газовой промышленности» (приказ Ростехнадзора от 12.03.2013 № 101), «Рекомендации по устройству и безопасной эксплуатации технологических трубопроводов» (приказ Федеральной службы по экологическому, технологическому и атомному надзору от 27.12.2012 г. № 784), а также другие действующие отраслевые НД;
- правилами безопасности при эксплуатации используемых СИ, приведенными в их эксплуатационной документации;
 - правилами технической эксплуатации электроустановок;
- правилами техники безопасности при эксплуатации электроустановок потребителей.
- 4.2 При поверочных работах поверяемый ПР, ПУ и другое технологическое оборудование не эксплуатируют при давлении рабочей жидкости, превышающем рабочее давление, указанное в их паспортах или эксплуатационной документации.
- 4.3 При применении передвижной ПУ для её технологической обвязки с СИКН используют оборудование, имеющее соответствующие разрешительные документы на его применение и свидетельство о гидроиспытаниях с действующим сроком.
- 4.4 Средства измерений и электрооборудование, установленные на технологической части СИКН и на ПУ, имеют взрывозащищенное исполнение и обеспечивают уровень взрывозащиты, соответствующий классу зоны В-1а, а вид взрывозащиты по категории взрывоопасной смеси к группе Т3 в соответствии с классификацией ГОСТ 30852.0.
- 4.5 К средствам измерений и оборудованию, требующим обслуживания при поверке, обеспечивают свободный доступ. При необходимости предусматривают соответствующие требованиям безопасности лестницы, площадки и переходы с ограничениями.
- 4.6 К эксплуатации (обслуживанию) преобразователя и средств поверки (оборудования) допускают лиц, прошедших соответствующее обучение и проверку знаний в установленной форме.
- 4.7 К проведению поверки допускают лиц, прошедших соответствующее обучение, изучивших эксплуатационную документацию на поверяемый ПР, ПУ, настоящую методику и прошедших инструктаж по технике безопасности.
- 4.8 При появлении течи жидкости, загазованности и других ситуаций, препятствующих нормальному (безопасному) ходу поверочных работ, поверку прекращают.

5 Условия поверки

5.1 Поверку ПР проводят на месте эксплуатации в комплекте с элементами измерительной линии (струевыпрямителем, прямыми участками до и после преобразователя, фильтром, если он установлены) при условиях указанных в таблице 1.

\mathbf{T}		_					- 1
	0	5	TT	TI	TI	0	1
	71	.,	-11	м		α	- 1

Наименование характеристики	Значение характеристики
Диапазон измерений, м ³ /ч	от 400 до 4000
Максимальное избыточное давление, МПа	1,6
Рабочая жидкость	нефть, нефтепродукты
Параметры рабочей жидкости: - температура, °С - кинематическая вязкость в рабочих условиях, мм²/с (сСт)	от 0 до +40 от 5 до 100

Окончание таблицы 1

Наименование характеристики	Значение характеристики
- плотность при температуре 15° С и избыточном давлении, равном нулю, кг/м ³	от 611,2 до 1163,8
Условия эксплуатации: - температура окружающего воздуха, °С	от -60 до +60

- 5.2 ПУ допускается устанавливать как до поверяемого ПР по потоку рабочей жидкости, так и после него.
- 5.3 Избыточное давление рабочей жидкости при поверке (P_{nos} МПа) после ПУ (преобразователь расположен до ПУ по ходу рабочей жидкости) и после преобразователя (преобразователь расположен после ПУ) устанавливают не менее значения, вычисленного по формуле

$$P_{nos} = 2,06 \cdot P_{nac} + 2 \cdot \Delta P \,, \tag{1}$$

- где P_{nac} давление насыщенных паров, определенное согласно ГОСТ 1756 при максимальной температуре рабочей жидкости, МПа;
 - ΔP перепад давления рабочей жидкости на ПР, МПа (из эксплуатационной документации).

Примечание к 5.3 - Справку с указанием значения P_{nac} представляет испытательная лаборатория СИКН.

- 5.4 Изменение температуры жидкости за время одного измерения не более 0,2 °C.
- 5.5 Отклонение расхода рабочей жидкости за время одного измерения (в точке расхода) не превышает 2,5 % от установленного значения.
- 5.6 Запорная и регулирующая арматура (регулятор расхода при его наличии по проекту), установленные на ИЛ с поверяемым ПР, открыты полностью. Регулятор выведен из автоматического режима регулирования расхода.
- 5.7 Требуемый поверочный расход устанавливают с помощью регулятора расхода (РР1 на рисунке 1, РР1 или РРі на рисунке 2), установленного в конце технологической схемы поверки по потоку рабочей жидкости.

Примечание – требуемый расход допускается устанавливать с помощью задвижки, установленной в конце технологической схемы поверки.

- 5.8 Поверку ПР запрещается проводить при расходе рабочей жидкости ниже значения расход, при котором проведена проверка ПУ на отсутствие протечек $(Q_{npom}, M^3/\Psi)$ и его значение должно быть указано в протоколе последней поверки ПУ.
 - 6 Подготовка к поверке
- 6.1 Поверяемый ПР и ПУ подключают друг с другом последовательно, готовят технологическую схему поверки к гидравлическим испытаниям и проверке на герметичность. Рекомендуемые схемы подключений приведены на рисунках 1, 2.
- 6.2 Применяют один из вариантов подключения поверяемого ПР (условно ПРі на рисунках 1 и 2) к ПУ.

<u>Вариант 1.</u> В составе СИКН имеется резервно-контрольный преобразователь (условно ПР1 на рисунках 1 и 2). Поверяемый ПР и контрольно-резервный преобразователи (ПРі и ПР1) и ПУ подключают последовательно друг с другом. При этом:

- a) если ПУ расположена после поверяемого ПР (рисунок 1): задвижки или шаровые краны [далее задвижка(и)] 3д1, 3д3, 3д4, 3д8, 3д9, 3д10, 3д12 открыты, задвижки 3д2, 3д5, 3д6, 3д7, 3д11 закрыты;
- *б)* если ПУ расположена до поверяемого ПР (рисунок 2): задвижки 3д4, 3д5, 3д8, 3д10, 3д11, 3д12 открыты, задвижки 3д1, 3д2, 3д3, 3д6, 3д9 закрыты.

Примечание — Вариант 1 применяют для измерений количества рабочей жидкости (м³), проходящей через технологическую поверочную схему при поверке ПРі.

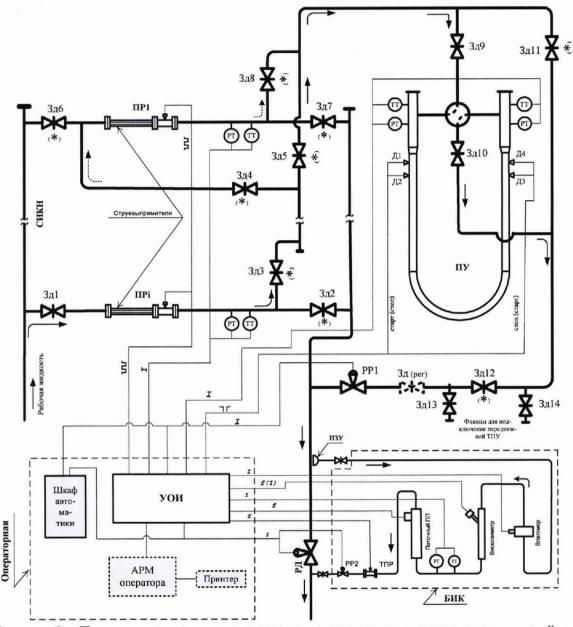


Рисунок 1 — Принципиальная технологическая и электрическая схема соединений средств поверки при расположении ПУ после поверяемого преобразователя

РТ - преобразователь избыточного давления; ТТ - датчик температуры; Д1- Д4 - детекторы ПУ; ПЗУ - пробозаборное устройство; РР1 и РР2 - регуляторы расхода; РД - регулятор давления; 3д1-3д12 - задвижки или шаровые краны; 3д (рег), 3д13 и 3д14 - задвижки.

Примечания

- 1 Остальные средства измерений и технологическое оборудование, установленные (устанавливаемые) на ИЛ, на ПУ и в БИК на рисунке условно не показаны.
- 2 Задвижки (шаровые краны), обозначенные (*): с гарантированным перекрытием потока и устройствами контроля отсутствия протечек.
 - 3 На рисунке (условно): двунаправленная ПУ с двумя парами детекторов: (Д1↔Д3) и (Д2↔Д4).

<u>Вариант 2.</u> В составе СИКН резервно-контрольный преобразователь отсутствует или его (при наличии) не применяют для измерений согласно примечанию к *варианту 1*. При этом:

a) если ПУ расположена после поверяемого ПР (рисунок 1): задвижки 3д1, 3д3, 3д5, 3д9, 3д10, 3д12 открыты, задвижки 3д2, 3д4, 3д6, 3д7, 3д8, 3д11 закрыты.

б) если ПУ расположена до поверяемого ПР (рисунок 2): задвижки 3д5, 3д9, 3д10, 3д11, 3д12 открыты, задвижки 3д1, 3д2, 3д3, 3д4, 3д5 3д6, 3д8 закрыты.



Рисунок 2 — Принципиальная технологическая и электрическая схема соединений средств поверки при расположении ПУ до поверяемого ПР

РТ - преобразователь избыточного давления; ТТ - датчик температуры; Д1-Д4 - детекторы ПУ; ПЗУ - пробозаборное устройство; РР1-РРі, РР - регуляторы расхода; РД - регулятор давления; Зд1-Зд12 - задвижки или шаровые краны.

Примечания

- 1 Остальные средства измерений и технологическое оборудование, установленные (устанавливаемые) на ИЛ и в БИК на рисунке условно не показаны.
- 2 Задвижки (шаровые краны), обозначенные (*): с гарантированным перекрытием потока и устройствами контроля отсутствия протечек.
- 6.3 Технологические переключения по 6.2 проводят с соблюдением требований «Инструкции по эксплуатации СИКН».
- 6.4 Проверяют закрытое положение (при необходимости закрывают) дренажных и воздушных вентилей (кранов), установленных на СИКН и ПУ (при необходимости и в БИК).
- 6.5 Устанавливают любое значение расхода (в пределах рабочего диапазона), в технологической схеме поверки создают максимальное рабочее давление, которое может быть при поверке но не более 1,6 МПа. Технологическую схему считают испытанной на герметичность, если в течение 10 минут после создания давления не наблюдается течи рабочей жидкости через фланцевые соединения, через сальниковые уплотнения задвижек, дренажных и воздушных вентилей (кранов).
- 6.6 Проверяют отсутствие протечек рабочей жидкости через затворы задвижек, на рисунках 1 и 2 обозначенных знаком (*), дренажных и воздушных вентилей (кранов) при их закрытом положении. При отсутствии возможности такой проверки или установлении наличия протечек во фланцевые соединения устанавливают металлические заглушки.
- 6.7 Проверяют отсутствие протечек рабочей жидкости через узел переключения направления потока (четырехходовой кран) ПУ согласно эксплуатационным документам. Для двунаправленных ПУ проверку проводят в обоих (прямом и обратном) направлениях движения шарового поршня.
- 6.8 При необходимости устанавливают (монтируют) остальные средства поверки, выполняют необходимые электрические соединения согласно рисунку 1 или 2, проверяют правильность соединений.

Примечания к 6.8

- 1 При применении схемы подключения по варианту 1 (п. 6.2) и применении в качестве УОИ отдельного контроллера-вычислителя выходной сигнал поверяемого ПР подключают к контроллерувычислителю.
- 2 Отдельный контроллер-вычислитель, используемый в качестве средства поверки, при наличии технической возможности подключают к APM оператора (при его наличии и соответствии условию 3.2.9), используя соответствующий интерфейс.
- 6.9 При отсутствии УОИ, соответствующего 3.2.4.4, и при применении ПУ (только) проводят подключение частотомера и счетчика импульсов согласно рисунку Д1 приложения Д.
- 6.10 Проверяют отсутствие газа (воздуха) в технологической схеме поверки. Устанавливают расход жидкости в пределах рабочего диапазона, проводят несколько пусков поршня ПУ. Открывая (приоткрывая) воздушные краны (вентили), расположенные на ПУ и верхних точках технологической схемы, проверяют наличие газа (воздуха). Считают, что газ (воздух) в технологической схеме отсутствует, если из открытых (приоткрытых) кранов (вентилей) вытекает струя рабочей жидкости без пузырьков воздуха или газа.
- 6.11 Проверяют стабилизацию температуры рабочей жидкости, для чего при любом расходе проводят несколько последовательных пусков поршня ПУ. Температуру

жидкости считают стабильной, если ее изменение в технологической схеме за период одного измерения не превышает 0.2 °C.

- 6.12 Подготавливают средства поверки к ведению поверочных работ согласно инструкциям по их эксплуатации.
- 6.13 В память УОИ вводят исходные данные согласно протоколу поверки (приложение A) или проверяют достоверность ранее введенных.
- 6.14 В APM оператора вводят необходимые исходные данные, если APM оператора используют для автоматической обработки результатов измерений и формирования протокола поверки.
- 6.15 При отсутствии поточных анализаторов (ПП и преобразователя вязкости только в составе СИКН) отбирают точечную пробу с соблюдением требований ГОСТ 2517 (в момент отбора пробы измеряют температуру рабочей жидкости), далее определяют в лабораторных условиях:
 - а) плотность и приводят к рабочим условиям в ПУ по Р 50.2.075 и Р 50.2.076;
- δ) значения коэффициентов объемного расширения (β , °C⁻¹) и сжимаемости (γ , МПа⁻¹) жидкости согласно приложению Б с учетом измеренных значений плотности и температуры рабочей жидкости;
- $_{6}$) вязкость нефти по ГОСТ 33 при температуре рабочей жидкости в поверяемом преобразователе (v, сСт);

Примечание - Вязкость определяют также в конце поверки преобразователя.

- ε) объемную долю воды в нефти по ГОСТ 2477 (W, % об.).
- 6.16 Значения параметров (в зависимости от типа рабочей жидкости), определенных по 6.15, записывают в протокол поверки.

7 Проведение поверки

7.1 Внешний осмотр

При внешнем осмотре поверяемого ПР устанавливают:

- соответствие его комплектности перечню, указанному в эксплуатационной документации (паспорт);
- отсутствие механических повреждений, препятствующих его применению, дефектов покрытий, ухудшающих его внешний вид включая магнитоиндукционный датчик;
- четкость, целостность надписей и обозначений, нанесенных на корпусе («шильдике») их соответствие требованиям эксплуатационной документации (включая магнитоиндукционный датчик);
 - целостность герметичности кабельного ввода в магнитоиндукционный датчик;
 - целостность провода, заземления.

7.2 Опробование

- 7.2.1 Устанавливают любое значение расхода в пределах рабочего диапазона и проводят пробное измерение. При прохождении поршня ПУ через стартовый детектор должен начаться отсчет количества импульсов поверяемого ПР, при прохождении стопового детектора прекратиться.
- 7.2.2 При применении двунаправленной ПУ должно проводиться суммирование количества импульсов поверяемого ПР при прямом и обратном направлениях движения поршня.

Результаты вычислений наблюдают на дисплее УОИ (АРМ оператора).

- 7.2.3 Проверяют индикацию на дисплее УОИ (или на мониторе APM оператора) текущих значений:
- количества импульсов, выдаваемых поверяемым ПР (имп), плотности рабочей жидкости (кг/м 3), вязкости только для нефти (сСт);
 - температуры (°C) и давления (МПа) рабочей жидкости в поверяемом ПР и ПУ.
 - 7.3 Определение метрологических характеристик
- 7.3.1 Метрологические характеристики ПР и его градуировочную характеристику определяют при крайних значениях рабочего диапазона и значениях, выбранных внутри него.
- 7.3.2 При выборе количества точек внутри рабочего диапазона (разбиении рабочего диапазона на поддиапазоны) и размаха (величины) каждого конкретного поддиапазона расхода учитывают (размахи поддиапазонов могут быть разными):
 - технические возможности СОИ, которой оснащена СИКН;
 - крутизну ГХ поверяемого ПР (согласно результатам предыдущей поверки);
 - величину рабочего диапазона;
 - вид реализации ГХ поверяемого ПР в СОИ, которой оснащена СИКН.

Примечание — На основании письменного заявления владельца допускается проводить поверку ПР в более узком диапазоне, отличающимся от диапазона, указанного в описании типа ПР.

7.3.3 Устанавливают требуемое значение поверочного расхода, начиная от нижнего предела рабочего диапазона (Q_{min} , M^3/Ψ) в сторону увеличения или от Q_{max} (M^3/Ψ) в сторону уменьшения.

Требуемый поверочный расход в каждой j-й точке устанавливают ($Q_j^{\text{пов}}$, $M^3/\text{ч}$) и контролируют при движении поршня ПУ по 7.3.3.1 или 7.3.3.2 в зависимости от варианта подключения поверяемого ПР.

Примечание - Расход $Q_j^{\text{пов}}$ (м³/ч) допускается устанавливать по приложению В, используя результаты измерений поверяемого ПР.

- 7.3.3.1 ПР подключают по варианту 1. Расход $Q_j^{\text{пов}}$ устанавливают, используя результаты измерений резервно-контрольного преобразователя (м³/ч).
- 7.3.3.2 ПР подключают по варианту 2. После каждого прохода поршня ПУ проверяют значение расхода $Q_i^{\text{пов}}$ по формуле

$$Q_{j}^{\text{nob}} = \frac{V_{\text{np ij}}^{\text{ITY}} \cdot 3600}{T_{ij}},$$
 (2a)

- где $V_{np\,ij}^{IIV}$ вместимость калиброванного участка ПУ, приведенная к рабочим условиям в ПУ при i-м измерении при установлении поверочного расхода в j-й точке, м³, определяют по формуле (3);
 - T_{ij} время прохождения поршнем ПУ его калиброванного участка при i-м измерении при установлении поверочного расхода в j-й точке, с.
- 7.3.3.3 Значение расхода $Q_j^{\text{пов}}$ допускается определять по формуле (26), используя вместимость калиброванного участка ПУ, определенную для стандартных условий V_o ($V_o = V_o^{\text{TMV}}$, M^3) из действующего свидетельства о поверке

$$Q_{j}^{\text{nob}} = \frac{V_{0} \cdot 3600}{T_{ij}} , \qquad (26)$$

7.3.3.4 Вместимость $V_{np \, ij}^{\, ny}$ определяют:

$$V_{npij}^{\Pi y} = V_0^{\Pi y} \cdot \left[1 + 3\alpha_t^{\Pi y} \cdot \left(\overline{t}_{ij}^{\Pi y} - 20 \right) \right] \cdot \left(1 + \frac{0.95 \cdot D}{E \cdot s} \cdot \overline{P}_{ij}^{\Pi y} \right), \tag{3}$$

Внимание! Если при вычислениях вместимости калиброванного участка при поверке коэффициент «0,95» не учитывался, то в формуле (3) и далее в формулах (6a) и (6 δ) коэффициент «0,95» не учитывается.

- где α_i^{ny} коэффициент линейного расширения материала стенок ПУ, °С⁻¹ (значение берут из таблицы Г.1 приложения Г);
 - \bar{t}_{ij}^{nv} средняя температура рабочей жидкости в ПУ за *i*-ое измерение при установлении поверочного расхода в *j*-й точке, °C (см. примечание к 7.3.3.4);
 - D внутренний диаметр калиброванного участка ПУ, мм (из технического описания или паспорта);
 - s толщина стенок калиброванного участка ПУ, мм (из технического описания или паспорта);
 - E модуль упругости материала стенок калиброванного участка ПУ, МПа (значение согласно таблице Γ .1 приложения Γ);
 - \overline{P}_{ij}^{ny} среднее давление рабочей жидкости в ПУ за *i*-ое измерение при установлении поверочного расхода в *j*-й точке, МПа (см. примечание к 7.3.3.4);

П р и м е ч а н и е к 8.3.3.4 - Средние значения температуры и давления вычисляют для ПУ для каждого прохода поршня по формуле $\overline{a} = 0.5 \cdot (a_{_{BX}} + a_{_{Bbix}})$, где \overline{a} - среднее арифметическое значение измеряемого параметра ($\overline{t}_{ij}^{_{\Pi Y}}$ или $\overline{P}_{ij}^{_{\Pi Y}}$); $a_{_{Bx}}$ и $a_{_{Bbix}}$ - значения параметров (t, °C или P, МПа), измеренные соответствующими средствами измерений, установленными на входе и выходе ПУ.

- 7.3.3.5 При необходимости корректируют поверочный расход. Отклонение установленного поверочного расхода от требуемого (задаваемого) значения: не более 2,0 %.
- 7.3.4 При поверке ПР, эксплуатируемого в составе СИКН, дополнительно рекомендуется проводить контроль значения расхода через БИК ($Q_j^{\text{бик}}$, $M^3/\text{ч}$). Требуемое значение расхода ($Q_{inpe6}^{\text{бик}}$) определяют для каждой точки поверочного расхода по формуле

$$Q_{jrpe\delta}^{\text{БИК}} = Q_{j}^{\text{пов}} \cdot \frac{S_{\text{пзу}}}{S_{\text{тp}}}, \tag{4}$$

где S_{nsv} - суммарная площадь поперечного сечения входных отверстий пробозаборного устройства (далее – ПЗУ), мм²;

 $S_{\it mp}\,$ - площадь поперечного сечения трубопровода в месте установки ПЗУ, мм $^2.$

При необходимости корректируют расход через БИК. Допускают отклонение значения $Q_i^{\text{бик}}$ от значения $Q_{i\text{rpe6}}^{\text{бик}}$ на $\pm 5,0$ %.

7.3.5 После установления поверочного расхода и стабилизации температуры рабочей жидкости проводят серию измерений, последовательно запуская поршень ПУ.

Количество измерений в каждой j-й точке расхода (n_j) : не менее **пяти** измерений для рабочего ПР и не менее **семи** для контрольного.

- 7.3.6 Для каждого i-го измерения в каждой j-й точке расхода регистрируют (отсчитывают) и записывают в протокол поверки (приложение A):
 - а) количество импульсов, выдаваемых поверяемым ПР (N_{ij} , имп);
 - б) время движения поршня ПУ за период одного измерения (T_{ii} , c);
 - 6) значение поверочного расхода, определенное по 7.3.3.1 или 7.3.3.2 (Q_{ii} , M^3/Ψ);
 - ϵ) частоту выходного сигнала поверяемого ПР (f_{ii} , Γ ц);
 - ∂) температуру ($t_{ij}^{\mathit{\PiP}}$, °C) и давление ($P_{ij}^{\mathit{\PiP}}$, МПа) в ПР;
- e) средние значения температуры (\bar{t}_{ij}^{ny} , °C) и давления (\bar{P}_{ij}^{ny} , МПа) рабочей жидкости в ПУ, определяемые по алгоритмам согласно примечанию к 7.3.3.4;
 - $(\rho_{ij}, \kappa \Gamma/M^3);$
 - *u)* температуру рабочей жидкости в поточном ПП $(t_{ii}^{\Pi\Pi}, {}^{\circ}C)$;
 - к) давление рабочей жидкости в поточном ПП (P_{ii}^{III});
 - л) вязкость, измеренную поточным преобразователем вязкости (v_{ii} , сСт);
- M) объемную долю воды в рабочей жидкости, измеренную поточным влагомером (W_{sij} , % об. долей).

Примечания к 7.3.6

- 1 Вязкость [перечисление n)] определяют только для нефти и нефтепродуктов, объемную долю воды [перечисление m)] только нефти.
- 2 При отсутствии УОИ, соответствующего требованиям 3.2.4.4, количество импульсов N_{ij} определяют с долями периода согласно приложению Д.
- 3 При применении ПУ с двумя парами детекторов (ПУ имеет два калиброванных объема: V_{1-3-1} и V_{2-4-2}) и при наличии в УОИ (или APM оператора) алгоритмов для одновременной обработки информации, связанной с этими объемами, за один проход поршня проводят отсчет результатов за два измерения.
 - 8 Обработка результатов измерений
 - 8.1 Определение коэффициентов преобразования ПР и оценивание СКО
- 8.1.1 Для каждого i-го измерения в j-й точке рабочего диапазона определяют (вычисляют) коэффициент преобразования $\Pi P(K_{ij}, \text{имп./м}^3)$ по формуле

$$K_{ij} = \frac{N_{ij}}{V_{ij}^{rry}}, \tag{5}$$

- где V_{ij}^{nv} объем рабочей жидкости, прошедшей через калиброванный участок ПУ (следовательно, и через поверяемый ПР) за время i-го измерения в j-й точке и приведенный к рабочим условиям в ПР, м³, определяют по 8.1.1.1 или 8.1.1.2.
 - 8.1.1.1 Объем жидкости V_{ii}^{my} определяют по формуле

$$V_{ij}^{\text{riv}} = V_0^{\text{riv}} \cdot \left[1 + 3\alpha_t^{\text{riv}} \cdot \left(\overline{t}_{ij}^{\text{riv}} - 20 \right) \right] \cdot \left(1 + \frac{0.95 \cdot D}{E \cdot s} \cdot \overline{P}_{ij}^{\text{riv}} \right) \cdot \frac{\text{CTL}_{ij}^{\text{riv}} \cdot \text{CPL}_{ij}^{\text{riv}}}{\text{CTL}_{ij}^{\text{riv}} \cdot \text{CPL}_{ij}^{\text{riv}}}, \tag{6}$$

- где $\mathit{CTL}^{\mathit{ny}}_{ij}$, $\mathit{CTL}^{\mathit{np}}_{ij}$ поправочные коэффициенты, учитывающие влияние температуры рабочей жидкости на её объемы, прошедшие через ПУ и ПР, соответственно за i-е измерение в j-й точке расхода. Определяют (вычисляют) согласно приложению E.
 - $\mathit{CPL}^{\mathit{nv}}_{ij}$, $\mathit{CPL}^{\mathit{np}}_{ij}$ поправочные коэффициенты, учитывающие влияние давления рабочей жидкости на её объемы, прошедшие через ПУ и ПР, соответственно за i-е измерение в j-й точке расхода. Определяют (вычисляют) согласно приложению E.
- 8.1.1.2 При поверке ПР, эксплуатируемого в составе СИКН, объем жидкости V_{ij}^{ny} определяют по формуле

$$\begin{split} V_{ij}^{nv} &= V_{\theta}^{nv} \cdot \left[1 + 3\alpha_{t}^{nv} \cdot \left(\overline{t}_{ij}^{nv} - 20 \right) \right] \cdot \left(1 + \frac{0.95 \cdot D}{E \cdot s} \cdot \overline{P}_{ij}^{nv} \right) \cdot \\ &\cdot \left[1 + \beta_{*ij} \cdot \left(t_{ij}^{np} - \overline{t}_{ij}^{nv} \right) \right] \cdot \left[1 - \gamma_{*ij} \cdot \left(P_{ij}^{np} - \overline{P}_{ij}^{nv} \right) \right], \end{split}$$
 (6a)

где $\beta_{\infty ij}$ и $\gamma_{\infty ij}$ - коэффициенты объемного расширения (°С⁻¹) и сжимаемости (МПа⁻¹) рабочей жидкости, соответственно при i-м измерении в j-й точке расхода (значения определяют по приложению Б).

8.1.1.3 Допускается формулу (6*a*) применять вместо формулы (6) – при поверке ПР в составе СИКН (отсутствии в СОИ (УОИ) алгоритма вычисления поправочных коэффициентов СТL, СРL), в основном, введенной в эксплуатацию до ввода в действие настоящей методики.

П р и м е ч а н и е — Решение о переходе на формулу (6a) с установкой соответствующих алгоритмов в СОИ существующих СИКН принимает владелец. Время и порядок перехода рекомендуется согласовать с принимающей (сдающей) стороной.

8.1.2 По результатам измерений и вычислений по 8.1.1 определяют значение коэффициента преобразования ΠP в j-й точке расхода (\overline{K}_j , имп./м³) по формуле

$$\bar{K}_{j} = \frac{1}{n_{j}} \sum_{i=1}^{n_{j}} K_{ij} , \qquad (7)$$

где n_{j} - количество измерений в j-й точке расхода.

- 8.1.3 Оценивают среднее квадратическое отклонение (далее СКО) результатов определений коэффициента преобразования по 8.1.3.1 или 8.1.3.2.
 - 8.1.3.1 Оценивают СКО в каждой j-й точке расхода ($S_j^{\kappa on}$, %) по формуле

$$S_{j} = \frac{1}{\overline{K}_{j}} \cdot \sqrt{\frac{\sum_{i=1}^{n_{j}} \left(K_{ij} - \overline{K}_{j}\right)^{2}}{n_{j} - 1}} \cdot 100 \le 0,02 , \qquad (8a)$$

8.1.3.2 Оценивают СКО для каждого k-го поддиапазона расхода ($S_{n\partial k}$, %) по формуле

$$S_{n\partial k} = \sqrt{\frac{\sum_{j=k}^{k+l} \sum_{i=l}^{n_j} \left(\frac{K_{ij} - \overline{K}_j}{\overline{K}_j}\right)_k^2}{\left(n_j + n_{j+l} - 1\right)_k}} \cdot 100 \le 0,02,$$
(86)

при реализации ГХ в СОИ в виде кусочно-линейной аппроксимации значений \overline{K}_j (имп/м³).

 $8.1.4~\mathrm{B}$ случае несоблюдения условий (8*a*) и (или) (8*б*) анализируют причины и выявляют промахи. Промахи рекомендуется выявлять по приложению Ж.

Допускают не более одного промаха для каждой точки расхода. В противном случае (2 промаха и более) поверку прекращают.

- 8.1.5 После исключения промаха (в точке расхода) выполняют одно дополнительное измерение и повторно проводят операции по 8.1.1-8.1.3.
- 8.1.6 При соблюдении условий (8*a*) и (или) (8*б*), в т.ч. и после выполнения операций по 8.1.5, проводят операции поверки в других точках расхода и дальнейшую обработку результатов измерений.
 - 8.2 Определение параметров ГХ ПР

При реализации ГХ в виде кусочно-линейной аппроксимации $[\overline{K}_j = F(Q_j)]$, коэффициенты преобразований определяют для каждой точки по 8.1.2 (\overline{K}_j , имп./м³).

 Π р и м е ч а н и е - по введенным в память СОИ значениям \overline{K}_j и измеренным текущим значениям расхода рабочей жидкости СОИ автоматически определяет текущее значение коэффициента преобразования Π P в текущей точке расхода k-го поддиапазона, используемого для вычислений объема рабочей жидкости.

- 8.3 Определение погрешностей ПР
- 8.3.1 Относительную погрешность ПР и составляющие относительной погрешности (случайную и систематическую составляющие) определяют при доверительной вероятности P=0.95.
 - 8.3.2 Определение случайной составляющей погрешности

Случайную составляющую погрешности ПР ($\varepsilon_{_j}$ или $\varepsilon_{_{n\partial k}}$, %) определяют:

а) для ј-й точки расхода по формуле

$$\mathbf{\varepsilon}_{j} = \mathbf{t}_{(P,n)} \cdot \mathbf{S}_{j}, \tag{9a}$$

 δ) для каждого k-го поддиапазона расхода по формуле

$$\varepsilon_{n \delta k} = \mathsf{t}_{(P,n)} \cdot \mathsf{S}_{n \delta k} \,, \tag{96}$$

где S_{j} - значение СКО, определенное по формуле (8*a*);

 $S_{n\delta k}$ - значение СКО, определенное по формуле (86);

- $t_{(P,n)}$ квантиль распределения Стьюдента, зависящий от доверительной вероятности Р и количества измерений n [для случая a): $n = n_j$; для случая δ): $n = n_j + n_{j+1}$]; значение $t_{(P,n)}$ определяют из таблицы Ж.2 приложения Ж.
- 8.3.3 Определение систематической составляющей погрешности
- 8.3.3.1 Систематическую составляющую погрешности ($\theta_{\scriptscriptstyle \Sigma_j},\ \theta_{\scriptscriptstyle \Sigma\it{nok}},\ \%$) определяют:
- a) для каждой j-й точки расхода по формуле

$$\theta_{\Sigma j} = 1, 1 \cdot \sqrt{(\delta_{\Pi Y})^2 + (\delta_{COH}^{(K)})^2 + (\theta_t)^2}$$
, (10a)

б) для каждого k-го поддиапазона расхода по формуле

$$\theta_{\Sigma n g k} = 1, 1 \cdot \sqrt{(\delta_{n y})^2 + (\delta_{com}^{(K)})^2 + (\theta_t)^2 + (\theta_{a n g k})^2} , \qquad (106)$$

- где $\delta_{\scriptscriptstyle HY}$ пределы допускаемой относительной погрешности ПУ согласно описанию типа (или из действующего свидетельства о поверке), %;
 - $\delta_{con}^{(\kappa)}$ пределы допускаемой относительной погрешности СОИ при вычислениях коэффициента преобразований ПР (из описания типа или действующего свидетельства о поверке), %;
 - θ_t составляющая систематической погрешности, обусловленная погрешностью измерений температуры рабочей жидкости в ПУ и поверяемом ПР, %, определяют формуле 11;
 - $\theta_{an\partial k}$ составляющая систематической погрешности, вызванная аппроксимацией коэффициента преобразования ПР в k-м поддиапазоне расхода ($K_{n\partial k}$, имп./м³), %, определяют по формуле 12.
 - 9.3.3.2 Составляющую систематической погрешности (θ_t , %) вычисляют по формуле

$$\theta_{t} = \beta_{\text{max}} \cdot \sqrt{(\Delta t_{\text{IIP}})^2 + (\Delta t_{\text{IIY}})^2} \cdot 100, \tag{11}$$

- где β_{max} максимальное значение коэффициента объемного расширения рабочей жидкости из ряда значений, определенных по приложению Б (при условиях измерений в ПУ), °С $^{-1}$;
- $\Delta t_{\mathit{пP}}$ и $\Delta t_{\mathit{пV}}$ пределы допускаемых абсолютных погрешностей датчиков температуры (или термометров), используемых для измерений температуры рабочей жидкости в ПР и ПУ, соответственно, °C (из описаний типа или действующих свидетельств о поверке).

 Π р и м е ч а н и е – Максимальное значение $\;\beta_{max}\;$ выбирают:

- при вычислении θ_{Σ_i} : из ряда значений, определенных при всех измерениях в точке расхода;
- при вычислении $\theta_{\Sigma\pi\eta k}$: из ряда значений, определенных при всех измерениях в k-м поддиапазоне расхода.
- 9.3.3.3 Составляющую систематической погрешности ПР ($\theta_{an\delta k}$, %) вычисляют по формуле

$$\theta_{\text{апдk}} = 0.5 \cdot \left| \frac{(\overline{K}_{j} - \overline{K}_{j+1})_{k}}{(\overline{K}_{j} + \overline{K}_{j+1})_{k}} \right| \cdot 100.$$
 (12)

8.3.4 Определение относительной погрешности

Относительную погрешность ПР (δ_{I} , $\delta_{n \delta k}$,%) определяют:

а) в каждой ј-й точки расхода по формуле

$$\delta_{j} = \begin{cases} Z_{0,95} \cdot \left(\theta_{\Sigma j} + \epsilon_{j}\right) & \text{если } 0, 8 \leq \theta_{\Sigma j} / S_{j} \leq 8 \\ \theta_{\Sigma j} & \text{если } \theta_{\Sigma j} / S_{j} > 8 \end{cases}, \tag{13a}$$

 δ) в каждом k-м поддиапазоне расхода по формуле

$$\delta_{\text{пдk}} = \begin{cases} Z_{0,95} \cdot \left(\theta_{\text{Епдk}} + \epsilon_{\text{пдk}}\right) & \text{если} & 0,8 \le \theta_{\text{Епдk}} / S_{\text{пдk}} \le 8 \\ \theta_{\text{Епдk}} & \text{если} & \theta_{\text{Епдk}} / S_{\text{пдk}} > 8 \end{cases}, \tag{136}$$

где $Z_{(0,95)}$ - коэффициент, зависящий от значения отношения $\theta_{\Sigma j}/S_j$ или $\theta_{\Sigma n\partial k}/S_{n\partial k}$ (при доверительной вероятности P=0,95). Определяют из таблицы Ж.3 приложения Ж.

- 8.3.5 Допуск ПР к дальнейшему применению
- 8.3.5.1 Проверяют выполнение условия:
- a) в каждой j-ой точки расхода по формуле

$$\left|\delta_{\mathbf{j}}\right| \le 0,10\%; \tag{14a}$$

б) в каждом k-ом поддиапазоне расхода по формуле

$$\left|\delta_{\text{nzk}}\right| \le 0.10\%. \tag{146}$$

- 8.3.5.2 ПР к дальнейшему применению допускают, если выполняются условия (14a) и (или) (14 δ).
- $8.3.5.3~\mathrm{B}$ случае невыполнения условия (14*a*) и (или) (14*б*) ПР к дальнейшему применению не допускают.
- 8.3.5.4 При невыполнении условия (14a) и (или) (14b) выясняют причины, устраняют их (при возможности) и проводят повторные операции согласно разделам 7 и 8. Рекомендуется:
 - увеличить количество измерений в точках расхода;
- увеличить количество точек разбиения рабочего диапазона (уменьшить поддиапазоны расхода).

В случае повторного невыполнения условия (14a) и (или) (14b) ПР к дальнейшему применению не допускают.

- 9 Оформление результатов поверки
- 9.1 При положительных результатах поверки оформляют свидетельство о поверке в соответствии с документом «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденным приказом Минпромторга России от 02 июля 2015 г. № 1815 (далее Порядок проведения поверки СИ).
- 9.2 Результаты поверки оформляют протоколом в двух экземплярах, рекомендуемая форма протокола приведена в приложении А. Один экземпляр протокола, подписанного поверителем и закрепленного оттиском личного поверительного клейма поверителя в соответствии с требованиями Порядка проведения поверки СИ, прилагают к свидетельству о поверке, как обязательное приложение.
- 9.3 На лицевой стороне свидетельства делают записи согласно Порядка проведения поверки СИ.
- 9.4 На оборотной стороне свидетельства записывают, что ПР допущен к применению в качестве (делают одну из записей):
- контрольного с пределами допускаемой относительной погрешности измерений объема измеряемой среды в точках рабочего диапазона $\pm 0,10$ %, если выполняется условие (14a);
- рабочего с пределами допускаемой относительной погрешности измерений объема измеряемой среды в поддиапазонах рабочего диапазона $\pm 0,10$ %, если выполняется условие (14 δ);

- контрольно-резервного с пределами допускаемой относительной погрешности измерений объема измеряемой среды в точках рабочего диапазона $\pm 0,10$ % и в поддиапазонах рабочего диапазона $\pm 0,10$ %, если выполняются условия (14a) и (14 δ).
 - 9.5 На оборотной стороне свидетельства также записывают:
 - рабочий диапазон расхода в котором поверен ПР ____ ___ м³/ч;
 - значения кинематической вязкости в начале и в конце поверки ____ ___ сСт.
- 9.6 В память СОИ, входящего в состав СИКН, устанавливают значения коэффициентов преобразования.
- 9.7 Проводят установку пломб на ПР согласно описанию типа, на пломбы наносят оттиск поверительного клейма.
- 9.8 При отрицательных результатах поверки ПР к дальнейшему применению не допускают. Свидетельство о поверке аннулируют и выдают извещение о непригодности по форме Порядка проведения поверки СИ.
- 10 Точность представления результатов измерений и вычислений в протоколе поверки
- 10.1 Значения расхода (м 3 /ч) записывают после округления до одного знака после запятой.
- 10.2 Количество импульсов (имп.) измеряют и записывают с двумя знаками после запятой (т.е. с долями периодов), если $N \leq 10~000$. При N > 10~000 допускается значение N записывать без долей периодов.
- 10.3 Значения давления (МПа) и температуры (°C) рабочей жидкости записывают после округления до двух знаков после запятой.
- 10.4 Объем рабочей жидкости, измеренной ПУ (м³), записывают после округления до шести значащих цифр.
- 10.5 Значения плотности рабочей жидкости (кг/м 3) записывают после округления до пяти значащих цифр.
- 10.6 Вязкость (сСт) записывают после округления её значения до одного знака после запятой.
- 10.7 Значения коэффициентов преобразования ПР (имп./м³) записывают после округления их значений, исходя от количества знаков, вводимых в память СОИ.
- 10.8 Значения СКО (%) и погрешностей (%) записывают после округления до трех знаков после запятой.

Приложение А

(рекомендуемое)

Протокол поверки № ____ преобразователя расхода турбинного геликоидного ТПР-400-1,6

	100 1 6	DNI 404			аименован								
		DN <u>400</u>											
以:		TWE	,		, разряд	, зав.	No	,	PN	МП	а, дата по	верки	
	кидкость												
аблица	1 – ИСХО	ОДНЫЕ ДА	ННЫЕ										
		Пог	верочной	установки	(ПУ)				CO	И	ПР		
Детектор ПУ	V_0^{IIV}	δ_{ny} ,	<i>D</i> ,	S, MM	<i>Е</i> , МПа			$\Delta t_{_{ec{ec{T}}\!$	$\delta_{cc}^{(k)}$		$\Delta t_{_{\it \PiP}}$ °C	,	
1	2	3	4	5	6	7		8	9		10		

аблица	2 – РЕЗУ	ЛЬТАТЫ И	3МЕРЕНИ	й и вычи	СЛЕНИЙ								
№ точ/	0				Pea	льтаты	измере			,			
№ изм	Q _{ij}	Детекторі	T_{ij} ,	$\bar{t}_{ij}^{\mu\nu}$,	$r_{C} \mid \bar{I}$, ПУ ij ,	f_{ij} ,		t_{ij}^{IIP} ,	P_i	ΠP j ,	N_{ij} ,	
(j/i)	м ³ /ч	ПУ	c	ij ,	-	пα	Гц		°C		Па	имп.	
1	2	3	4	5		6	8		9		10	11	
1/1		***************************************											
•••													
$1/n_i$												12.	
m/1		***************************************											
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
m/n_m									***************************************				
		2											
кончан №	ие таблі		іьтаты изм	ranauuŭ				-	Den	VIII TOTI	ы вычисле	· rriaiă	
точ/						-	т ПУ	V					T
№ изм	$ ho_{ij}$		$P_{ij}^{\Pi\Pi}$,	v_{ij} ,	W_{gij}		γ ^{ΠУ} ,	K_{ij}	, (CTL_{ij}^{TY}	$CPL_{ij}^{\Pi y}$	$CTL_{ij}^{\Pi P}$	CPL_{ij}^{III}
j/i	кг/м³	°C	МПа	сСт	об. до	л.	м ³	имп./	м				
1	12	13	14	15	16	_	17	18	_	19	20	21	22
1/1													
1/n.													
1/n ₁								_					
m/1								<u> </u>					
													<u> </u>
m/n_m								-					
and the same of th													

Приложение А

(продолжение)

Таблица 4 – РЕЗУЛЬТАТЫ ПОВЕРКИ В ТОЧКАХ РАБОЧЕГО ДИАПАЗОНА

№ точки (ј)	Q _ј , м³/ч	f_{j} , Гц	S_j , %	K_{j} , имп./м 3	$oldsymbol{arepsilon}_j$, %	$ heta_{\Sigma j}$, %	δ_j , %
1	2	3	4	5	6	7	8
1							
m							

№ точки (<i>j</i>)	Q _j , м³/ч	f_j , Гц	K_j , имп./м ³	№ подди- апазона (k)	$Q_{k min}$, M^3/q	Q _{к тах} , м ³ /ч	$S_{n\partial k}$, %	$\mathcal{E}_{n\partial k}$, %	$ heta_{an\partial k}$,	$ heta_{\Sigma n \partial k}$,	$\delta_{n\partial k}$,
1	2	3	4	5	6	7	8	9	10	11	12
1				1							
2			***************************************								
		***************************************		m-1	***************************************						
m											

Заключение: преобразователь расхода тур применению в качестве рабочего/ контрольного/		ый ТПР-400-1,6 _{годен / не годен}	к дальнейшему	
Поверитель	подпис	СЬ	инициалы, фамилия	
Дата поверки «»	20 Γ.			

Приложение А (окончание)

Некоторые пояснения к формированию и оформлению протокола поверки

А.1 По таблице 1 – Исходные данные

- А.1.1 В колонку 1 в одну строку записывают обозначения калиброванных участков:
- «1-2» для однонаправленных ПУ с одной парой детекторов;
- «1-2-1» для двунаправленных ПУ с одной парой детекторов.
- А.1.2 В колонку 1 в две строки записывают обозначения калиброванных участков:
- «1-3-1» и «2-4-2» для ПУ с двумя парами детекторов, если УОИ, применяемое при поверке, соответствует требованию примечания 4 к 7.3.6.
- А.1.3 В колонку 2 записывают значения объемов калиброванных участков, соответствующие обозначениям по А.1.1 (в одну строку) и А.1.2 (в две строки).

А.2. По таблице 2 – Результаты измерений и вычислений

- А.2.1 Запись в колонке 3 согласно А.1.1 и А.1.2 в зависимости от типа применяемой ПУ.
- А.2.2 Запись в колонке 15 только при поверке ПР, эксплуатируемого в составе СИКН. При этом:
- при наличии поточного(ых) вискозиметра(ов) записывают значение вязкости нефти для каждого измерения (используют результаты измерений поточного вискозиметра);
- при отсутствии (или отказе) поточного(ых) вискозиметра(ов) для первого измерения записывают значение вязкости нефти, определенное в химико-аналитической лаборатории непосредственно перед поверкой. Для других измерений (кроме последнего) колонку 14 допускается не заполнять.

Для последнего измерения в колонке 15 записывают значение вязкости, определенное в химико-аналитической лаборатории в конце поверки

- А.2.3 Запись в колонке 16 для каждого измерения и только при поверке ПР, эксплуатируемого в составе СИКН (используют результаты измерений поточного влагомера).
- A.2.4 Колонки 19 22 заполняют только в случае, если при обработке результатов измерений используют коэффициенты CPL и CTL.

Примечание - При формировании (оформлении) протокола поверки незаполняемые колонки из таблицы 2 допускается исключать (в частности колонки 15, 16, 19-22), изменив при этом нумерацию колонок.

А.З. По таблице 3 – Значения коэффициентов, использованных при вычислениях

Таблица 3 заполняется для каждой j-й точки или(и) для каждого k-го поддиапазона в зависимости от применения ПР (контрольный, рабочий).

А.4 По таблице 4 – Результаты поверки в точках рабочего диапазона

Таблица 4 заполняется в случае определения метрологических характеристик ПР в точках рабочего диапазона измерений (контрольный, контрольно-резервный).

В случае определения метрологических характеристик ПР в поддиапазонах рабочего диапазона (рабочий) колонки 7, 8 не заполняют.

А.5 По таблице 5 – Результаты поверки в поддиапазонах рабочего диапазона

Таблица 5 заполняется в случае определения метрологических характеристик ПР в поддиапазонах рабочего диапазона измерений (рабочий, контрольно-резервный).

Приложение Б (справочное)

Определение коэффициентов объемного расширения ($\beta_{_{\mathcal{M}}}$) и сжимаемости ($\gamma_{_{\mathcal{M}}}$) рабочей жидкости

Б.1 Коэффициенты объемного расширения и сжимаемости рабочей жидкости (β_{∞} , °С⁻¹ и γ_{∞} , МПа⁻¹, соответственно) определяют по реализованным в УОИ (или APM оператора) алгоритмам, разработанным согласно Р 50.2.075 и Р 50.2.076 для нефти и нефтепродуктов.

Б.2 При отсутствии алгоритмов согласно Б.1 коэффициенты β_{∞} и γ_{∞} определяют для нефти и нефтепродуктов по таблицам Р 50.2.076.

Б.3 Для нефти (с содержанием воды до 5,0 %) коэффициенты β_{∞} и γ_{∞} определяют по формулам

$$\beta_{\infty} = \beta_{\scriptscriptstyle H} \cdot \left(1 - \frac{W_{\scriptscriptstyle \theta}}{100}\right) + \beta_{\scriptscriptstyle \theta} \cdot \frac{W_{\scriptscriptstyle \theta}}{100},\tag{6.1}$$

$$\gamma_{\mathcal{H}} = \gamma_{H} \cdot \left(1 - \frac{W_{g}}{100}\right) + \gamma_{g} \cdot \frac{W_{g}}{100}, \tag{6.2}$$

где $\beta_{\rm H}$ и $\gamma_{\rm H}$ - коэффициенты объёмного расширения и сжимаемости обезвоженной нефти (°С-1 и МПа-1, соответственно), значения которых берут из Р 50.2.076;

 W_{g} - объемная доля воды в нефти, определенная лабораторным способом или поточным влагомером, %;

 β_{e} и γ_{e} - коэффициенты объёмного расширения и сжимаемости воды, соответственно (°С⁻¹ и МПа⁻¹).

Б.3.1 Принимают:

- $\beta_e = 2,6\cdot10^{-4}$ °C ⁻¹ при объемной доле воды в нефти до 5,0 % включительно ($W_e \le 5,0$ %);
 - $\gamma_6 = 49,1 \cdot 10^{-5} \text{ МПа}^{-1}$ при любом содержании воды в нефти.

Приложение В

(справочное)

Установление и контроль значения поверочного расхода, используя результаты измерений поверяемого ПР

- В.1 При проведении операций согласно 7.3.3.2 (или 7.3.3.3 и 7.3.3.4) дополнительно регистрируют значение расхода жидкости ($Q_i^{\text{пр}}$, м³/ч), измеренное поверяемым ПР.
- В.2 Для каждой j-й точки расхода вычисляют коэффициент коррекции расхода $k_j^{\mathbb{Q}}$ по формуле

$$k_j^{Q} = 1 - \frac{Q_j^{mp} - Q_j}{Q_j},$$
 (B.1)

где $\,{\rm Q}_{\,{\rm i}}\,$ - значение расхода, определенное по формуле (2a) или (2б).

В.3 Вычисляют скорректированное значение расхода $Q_{\text{корр}_1}$ (м³/ч) по формуле

$$Q_{\text{kopp j}} = k_j^Q \cdot Q_j^{\text{TP}}. \tag{B.2}$$

В.4 Устанавливают значение поверочного расхода, определенное по В.3, принимая

$$Q_{i}^{\text{nob}} = Q_{\text{kopp } i}$$
.

Приложение Г (справочное)

Коэффициенты линейного расширения материала стенок ПУ (α_t^{ny}), значения модуля упругости (E) материала стенок ПУ

Коэффициент линейного расширения материала стенок ПУ (α_t^{ny}), значение модуля упругости материала стенок ПУ (E) определяют из таблицы Б.1.

Таблица Б.1 – Коэффициенты линейного расширения (α_t^{ny}), значения модуля упругости (*E*) материала стенок ПУ

Материал стенок	Значения $\boldsymbol{\alpha}_{t}^{ny}$, °C ⁻¹	Значения E , МПа		
Сталь углеродистая	11,2 x 10 ⁻⁶	2,068 x 10 ⁵		
Сталь легированная	11,0 x 10 ⁻⁶	2.0×10^5		
Сталь нержавеющая 17-4	10,8 x 10 ⁻⁶	1,965 x 10 ⁵		
Сталь нержавеющая 304 литая	15,9 x 10 ⁻⁶	1,931 x 10 ⁵		
Сталь нержавеющая 304	17,3 x 10 ⁻⁶	1,931 x 10 ⁵		
Сталь нержавеющая 316	17,3 x 10 ⁻⁶	1,931 x 10 ⁵		

 Π р и м е ч а н и е - Если значения α_t^{uun} и E приведены в паспорте или техническом описании на Π У (или в заводском сертификате калибровки Π У), то при расчетах используют значения, указанные в одном из перечисленных документов.

Приложение Д (справочное)

Определение количества импульсов выходного сигнала ПР с учетом долей периода

Д.1 Собирают схему согласно рисунку Д.1.

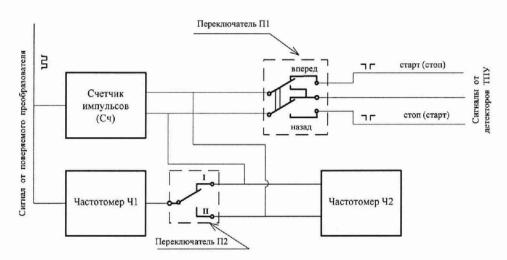


Рисунок Д.1 – Принципиальная электрическая схема соединений средств поверки для определения долей периода

Д.2 Количество импульсов с учетом долей периода (N_{ij} , имп.) определяют по формуле

$$N_{ij} = N_{ij}^* \cdot \left[1 + \frac{(\tau_i - \tau_2)}{T_{ij}^*}\right],$$
 (Д.1)

где N_{ij}^* - измеренное количество импульсов ПР, имп.;

 $au_{_{I}}$ - время от начала измерений до первого импульса от ПР, мкс;

 τ_2 - время от начала измерений до последующего импульса от ПР, мкс;

 T_{ii}^* - интервал времени согласно рисунку Д.2, мкс.

Д.3 Значения τ_1 и τ_2 определяют следующим образом (см. рисунки Д.1 и Д.2):

- перед запуском поршня ПУ переключатель П2 ставят в положение «I». После начала отсчета количества импульсов счетчиком Сч с индикатора частотомера Ч1 считывают значение τ_i ;
- переключатель П2 ставят в положение «II». После окончания отсчета количества импульсов счетчиком Сч с индикатора частотомера Ч1 считывают значение τ_2 . Значения τ_1 и τ_2 измеряют с дискретностью 1 мкс;
- отсчет значения T_{ij}^* проводят с индикатора частотомера Ч2, работающего в режиме измерений времени (T_{ij}^* измеряют с дискретностью 1 мкс);
 - количество импульсов N_{ij}^{*} отсчитывают с индикатора счетчика Сч.

Приложение Д (окончание)

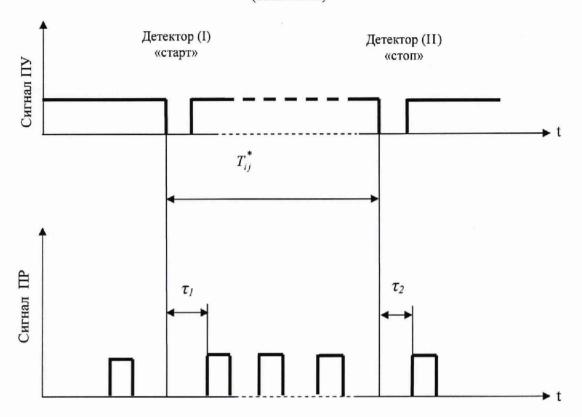


Рисунок Д.2 – Определение долей периода следования импульсов ПР

Д.4 Количество импульсов с учетом долей периодов (N_{ij} , имп.) определяют (измеряют) до пяти значащих цифр.

Приложение Е

(справочное)

Определение коэффициентов *CTL* и *CPL*, учитывающих влияние температуры и давления на объем рабочей жидкости

E.1 Коэффициент CTL, учитывающий влияние температуры на объем рабочей жидкости, вычисляют по формуле

$$CTL = \exp\{-\beta_{15} \cdot (t_v - 15) \cdot [1 + 0.8\beta_{15} \cdot (t_v - 15)]\},$$
 (E.1)

где β_{15} - коэффициент объемного расширения рабочей жидкости при температуре 15 °C, который определяют по E.2 (формула E.2), °C⁻¹;

 $t_{_{V}}$ - температура рабочей жидкости при измерении её объема, °С.

Е.2 Коэффициент β_{15} определяют по формуле

$$\beta_{15} = \frac{K_0 + K_1 \cdot \rho_{15}}{\rho_{15}^2} + K_2, \tag{E.2}$$

где $K_{\scriptscriptstyle 0}$, $K_{\scriptscriptstyle 1}$ и $K_{\scriptscriptstyle 2}$ - коэффициенты, значения которых определяют из таблицы Е.1;

 $ho_{_{15}}$ - плотность рабочей жидкости при температуре 15 °C и избыточном давлении равном нулю ($P_{_{136}}=0$), т.е. при абсолютном давлении равном 0,1 МПа ($P_{_{a6c}}=0$,1 МПа), кг/м 3 .

Таблица Е.1 – Значения коэффициентов K_0 , K_1 , K_2 (из Р 50.2.076)

Рабочая жидкость	K_{o}	K_1	K ₂
Нефть (611,2 $\leq \rho_{15} \leq$ 1163,8)	613,97226	0,0000	0,0000
Бензины (611,2 $\leq \rho_{15} \leq 770,9$)	346, 42278	0,43884	0,0000
Топлива, занимающие по плотности промежуточное место между бензинами и керосинами (770,9 $\leq \rho_{15} \leq$ 788,0)	2690,7440	0,00000	-0,0033762
Топлива и керосины для реактивных двигателей, авиационное реактивное топливо ДЖЕТ А $(788,0 \le \rho_{15} \le 838,7)$	594,54180	0,0000	0,0000
Дизельные топлива, мазуты, печные топлива (838,7 $\leq \rho_{15} \leq 1163,9$)	186,96960	0,48618	0,0000

E.3 Коэффициент CPL , учитывающий влияние давления на объем рабочей жидкости, определяют по формуле

$$CPL = \frac{1}{1 - \gamma_t \cdot P_\nu},\tag{E.3}$$

где γ_t - коэффициент сжимаемости рабочей жидкости при температуре измерения её объема, который определяют по Е.4 (формула Е.3), МПа⁻¹;

 $P_{\nu}\,$ - давление рабочей жидкости при измерении её объема, МПа.

Приложение Е

(продолжение)

E.4 Коэффициент γ , определяют по формуле

$$\gamma_t = 10^{-3} \cdot \exp\left(-1,62080 + 0,00021592 \cdot t_v + \frac{870960}{\rho_{15}^2} + \frac{4209,2 \cdot t_v}{\rho_{15}^2}\right)$$
 (E.4)

Е.5 Плотность $\rho_{_{15}}$ и текущая плотность, измеренная поточным ПП ($\rho_{_{III}}$), между собой связаны выражением

$$\rho_{15} = \frac{\rho_{mn}}{CTL^* \cdot CPL^*},\tag{E.5}$$

где CTL^* и CPL^* - коэффициенты по Е.1 и Е.3, но значения которых определены для температуры (t_{nn} , °C) и давления (P_{nn} , МПа) рабочей жидкости в поточном ПП соответственно.

E.6 Зная значение плотности ρ_{nn} и используя метод последовательных приближений, определяют значения коэффициентов CTL^* , CPL^* и значение плотности ρ_{1s} по E.6.1 - E.6.5.

Е.6.1 По формулам (Е.2) и (Е.4) определяют значения $\beta_{_{15\;(1)}}$ и $\gamma_{t(1)}$ (условно первые значения), при этом в этих формулах принимают: $\rho_{_{15}} = \rho_{_{\Pi\Pi}}$, $t_{_{V}} = t_{_{\Pi\Pi}}$.

Е.6.2 По формулам (Е.1) и (Е.3) вычисляют значения CTL_1^* и CPL_1^* (условно первые значения), соответственно, принимая в формуле (Е.1): $t_v = t_{nn}$ и $\beta_{15} = \beta_{15 \, (1)}$, в формуле (Е.3)

$$P_{V} = P_{\Pi\Pi}$$
 и $\gamma_{t} = \gamma_{t(1)}$.

Е.6.3 По формуле (Е.5) вычисляют значение $\rho_{_{15\,(1)}}$ (условно первое значение), подставляя вместо значений CTL и CPL значения CTL_1^* и CPL_1^* , определенные по Е.6.2.

Е.6.4 Повторяют операции по Е.6.1 - Е.6.3.

По формулам (Е.2) и (Е.4) определяют значения $\beta_{15 \, (2)}$ и $\gamma_{t \, (2)}$, дополнительно в Е.6.1 принимая: $\rho_{15} = \rho_{15 \, (1)}$.

По формулам (Е.1) и (Е.3) вычисляют значения CTL_2^* и CPL_2^* , дополнительно в Е.6.2 принимая: $\beta_{_{15\,(1)}}=\beta_{_{15\,(2)}}$ и $\gamma_{t\,(1)}=\gamma_{t\,(2)}$.

По формуле (E.5) вычисляют значение $\rho_{_{15(2)}}$, принимая: $\mathit{CTL}_1^* = \mathit{CTL}_2^*$ и $\mathit{CPL}_1^* = \mathit{CPL}_2^*$.

E.6.5 Операции по вычислению значений плотности $ho_{\scriptscriptstyle 15}$ прекращают по достижению условия

$$\left| \rho_{15(k)} - \rho_{15(k-1)} \right| \le 0.01,$$
 (E.6)

где k и (k-1) — порядковые номера вычислений (последнего и предпоследнего вычисления условно) значений плотности ρ_{15} .

Примечание – Операции по Е.б.1 - Е.б.5 проводят для каждого измерения.

Приложение Е

(окончание)

Е.7 Используя формулы (Е.1) - (Е.4) и вычисленное значение $\rho_{_{15(k)}}$ определяют значения $CTL_{ij}^{_{II^{y}}}$, $CTL_{ij}^{_{II^{y}}}$, $CPL_{ij}^{_{II^{y}}}$, $CPL_{ij}^{_{II^{y}}}$ с учетом условий измерения объема, т.е. температуры ($t_{_{V}}$, $^{\circ}$ С) и давления ($P_{_{V}}$, МПа) для каждого i-го измерения в каждой j-й точке расхода.

В формулах (Е.1), (Е.3), (Е.4) при определении CTL_{ij}^{nv} , CPL_{ij}^{nv} принимают: $t_{\nu}=\bar{t}_{ij}^{nv}$ и $P_{\nu}=\overline{P}_{ij}^{nv}$, при определении CTL_{ij}^{np} , CPL_{ij}^{np} : $t_{\nu}=t_{ij}^{np}$ ($t_{\nu}=\bar{t}_{ij}^{nnp}$) и $P_{\nu}=P_{ij}^{np}$ ($P_{\nu}=\overline{P}_{ij}^{np}$).

 Π р и м е ч а н и е — Значения *CTL* и *CPL* допускается определять, используя алгоритмы, имеющиеся («зашитые») в УОИ (СОИ).

Приложение Ж

(справочное)

Анализ результатов измерений, значения квантиля распределения Стьюдента и коэффициента $Z_{(p)}$

Ж.1 Анализ результатов измерений для выявления промахов (при необходимости) проводят операции по Ж.1.1 - Ж.1.4.

Ж.1.1 Определяют СКО результатов вычислений коэффициентов преобразования в каждой точке диапазона расхода по формуле

$$S_{j}' = \sqrt{\frac{\sum_{i=1}^{n_{j}} (K_{ij} - \overline{K}_{j})^{2}}{n_{j} - 1}}.$$
(Ж.1)

 Π р и м е ч а н и е - Π ри $S'_i \leq 0$, 001 принимают $S'_i = 0$, 001.

Ж.1.2 Для каждого измерения вычисляют соотношение по формуле

$$U_{ij} = \left| \frac{K_{ij} - \overline{K}_j}{S_j'} \right| \tag{W.2}$$

 $\mathbb{X}.1.3$ Из ряда вычисленных значений U_{ij} для каждой точки расхода выбирают максимальное значение U_{jmax} , которое сравнивают с «h», взятой из таблицы $\mathbb{X}.1$ в зависимости от значения « n_j ».

Таблица Ж.1 - Критические значения для критерия Граббса (ГОСТ Р ИСО 5725)

n	3	4	5	6	7	8	9	10	11
h	1,155	1,481	1,715	1,887	2,020	2,126	2,215	2,290	2,355

Ж.1.4 Если $U_{jmax} \geq h$, то подозреваемый результат исключают из выборки как промах.

П р и м е ч а н и е — Допускается как промах исключать результат измерения, у которого K_{ij} по значению наиболее (в большую или меньшую сторону) отличается от значений K_{ij} других измерений в этой же точке расхода, не проводя анализ по Ж.1.1 - Ж.1.3.

Таблица Ж.2 – Значения квантиля распределения Стьюдента $t_{0.95}$

n	5	6	7	8	9	10	11	12	13
t 0,95	2,776	2,571	2,447	2,365	2,306	2,262	2,228	2,201	2,179
Оконча	ние табл	ицы Ж.2							
n	14	15	16	17	18	19	20	21	22
t 0,95	2,160	2,145	2,131	2,120	2,110	2,101	2,093	2,086	2,080

Примечание — При n_j -1> 21 значения $t_{0.95}$ принимают в соответствии с ГОСТ Р 8.736.

Таблица Ж.3 – Значения коэффициента $Z_{(0,95)}$ при P = 0,95

			- T T							
$\theta_{\scriptscriptstyle \Sigma} / S$	0,5	0,75	1	2	3	4	5	6	7	8
$Z_{(0,95)}$	0,81	0,77	0,74	0,71	0,73	0,76	0,78	0,79	0,80	0,81