Федеральное государственное унитарное предприятие «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГУП «ВНИИМС»)

УТВЕРЖДАЮ Заместитель директора по производственной метрологии Н.В. Иванникова 2019 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

СИСТЕМЫ ЭЛЕКТРИЧЕСКОГО КОНТРОЛЯ С ЛЕТАЮЩИМИ ПРОБНИКАМИ SPEA 4000, SPEA 4000S2

Методика поверки

МП 206.1-032-2019

г. Москва 2019

СОДЕРЖАНИЕ

Введение	3
1 Операции поверки	3
2 Средства поверки	3
3 Требования к квалификации поверителей	4
4 Требования безопасности	4
5 Условия проведения поверки	5
6 Подготовка к поверке	5
7 Проведение поверки	5
8 Обработка результатов измерений	16
9 Оформление результатов поверки	16

Стр.

введение

Настоящая методика устанавливает методы и средства первичной и периодической поверок систем электрического контроля с летающими пробниками SPEA 4000, SPEA 4000S2, изготавливаемых фирмой «SPEA S.p.A.», Италия.

Системы электрического контроля с летающими пробниками SPEA 4000, SPEA 4000S2 (далее по тексту – системы) предназначены для комплексного автоматизированного внутрисхемного и функционального контроля печатных плат путем измерений электрического сопротивления, электрической емкости, индуктивности, напряжения постоянного тока, а также для отображения и сохранения в электронном виде или на бумажном носителе результатов измерений.

Интервал между поверками (межповерочный интервал) – 1 год.

Периодическая поверка средств измерений в случае их использования для измерений меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» Описания типа, допускается на основании письменного заявления их владельца, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке средства измерений.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

T	-	1
12	опи	19 1
1 4	Olini	Let I

Наименование операции	Пункт	Проведение	операции при
	методики	первичной	периодической
	поверки	поверке	поверке
1. Внешний осмотр	7.2	Дa	Дa
2. Опробование	7.3	Да	Да
3. Определение значений параметров электрического сопротивления, электрической емкости, индуктивности и напряжения постоянного тока поверочной платы SP-1	7.4	Да	Да
4. Определение относительной погрешности измерений электрического сопротивления, электрической емкости, индуктивности и напряжения постоянного тока системы SPEA 4000, SPEA 4000S2	7.5	Да	Да

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства измерений, перечисленные в таблицах 2 и 3.

2.2 Допускается применять другие средства измерений, обеспечивающие измерение значений соответствующих величин с требуемой точностью.

2.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

Таблица 2 – Средства поверки

Номер пункта	Тип средства поверки			
методики поверки				
7.2 – 7.3	Визуально			
7.4	Измеритель иммитанса НМ8118.			
	Диапазон измерений электрического сопротивления от 0,2 мОм до			
	100 МОм. Диапазон измерений электрической емкости от 0,01 пФ до			
	100 мФ. Диапазон измерений индуктивности от 10 нГн до 1 кГн.			
	Диапазон частот тестового сигнала от 20 Гц до 200 кГц.			
	Пределы допускаемой относительной погрешности измерений			
	параметров R, C, L от ±0,05 до ±0,5 %.			
	Вольтметр универсальный цифровой GDM-8135. Пределы измерений			
	напряжения постоянного тока 200 мВ, 2, 20, 200, 1200 В. Пределы			
	допускаемой абсолютной погрешности измерений напряжения			
	постоянного ток на пределах 20 и 200 В ±(0,001·U+1 е.м.р.) В.			
	Источник питания постоянного тока GPS-73030D. Максимальное			
	напряжение постоянного тока на выходе 30 В. Максимальная сила			
	постоянного тока на выходе 3 А			
7.5	Поверочная плата SP-1. Диапазон воспроизведения электрического			
	сопротивления постоянному току от 0,001 Ом до 100 МОм, диапазон			
	воспроизведения электрической емкости от 1 пФ до 0,1 Ф, диапазон			
	воспроизведения индуктивности от 1 мкГн до 1 Гн, диапазон			
	воспроизведения напряжения постоянного тока от 0 до 100 В			

Таблица 3 – Вспомогательные средства поверки

Измеряемая величина	Диапазон измерений	Класс точности, погрешность	Тип средства поверки
Температура окружающего воздуха	от 0 до 55 °С	±0,3 °C	Термометр ртутный стеклянный лабораторный ТЛ-4
Относительная влажность воздуха	от 10 до 100 %	±(2-6) %	Психрометр аспирационный М-34-М
Атмосферное давление	от 80 до 106 кПа	±0,2 кПа	Барометр-анероид метеорологический БАММ-1
Напряжение питающей сети переменного тока	от 5 до 462 В	±0,1 %	Измеритель электрических параметров качества, мощности
Частота питающей сети	от 42,5 до 57,5 Гц	±0,01 Гц	и количества электрической энергии телеметрический LPW-305-1

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

3.1 К проведению поверки допускаются поверители из числа сотрудников организаций, аккредитованных на право проведения поверки в соответствии с действующим законодательством РФ, изучившие настоящую методику поверки, руководство по эксплуатации на поверяемое средство измерений и имеющие стаж работы по данному виду измерений не менее 1 года.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и «Правилами техники безопасности при эксплуатации электроустановок потребителей» (изд.3), ГОСТ 12.2.007.0-75, ГОСТ 12.1.019-79, ГОСТ 12.2.091-94 и требования безопасности,

указанные в технической документации на применяемые эталоны и вспомогательное оборудование.

4.2 К проведению поверки допускаются лица, прошедшие проверку знаний правил техники безопасности и эксплуатации электроустановок напряжением до 1 кВ и имеющие квалификационную группу по технике безопасности не ниже III.

4.3 Любые подключения приборов проводить только при отключенном напряжении питания системы.

4.4 Все средства измерений, участвующие в поверке должны быть надежно заземлены.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

5.1 При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха от 18 до 30 °C;
- относительная влажность от 30 до 80 %;
- атмосферное давление от 97,3 до 104,6 кПа или от 730 до 785 мм. рт. ст.;
- напряжение питающей сети переменного тока в зависимости от модификации;
- частота питающей сети от 49 до 51 Гц.

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед поверкой должны быть выполнены следующие подготовительные работы:

6.1 Проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75.

6.2 Средства измерений, используемые при поверке, поверены и подготовлены к работе согласно их руководствам по эксплуатации.

6.3 Поверочная плата должна быть внесена в рабочее помещение не менее чем за 2 часа до начала поверки.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Метрологические характеристики, подлежащие определению

Измеряемая	Диапазон измерений	Пределы допускаемой относительной		
физическая		погрешности измерений, %		
величина		SPEA 4020, SPEA	SPEA 4050S2, SPEA	
		4040, SPEA 4060	4060S2, SPEA 4080	
	от 10 мОм до 10 Ом включ.	±5	±1	
Электрическое	св. 10 Ом до 100 кОм включ.	±1	±0,5	
сопротивление	св. 100 кОм до 10 МОм включ.	±1	±1	
	св. 10 МОм до 100 МОм	±5	±2	
0	от 1 до 100 пФ включ.	±5	±5	
Электрическая	св. 100 пФ до 100 мкФ включ.	±1	±1	
емкость	св. 100 мкФ до 0,1 Ф	±5	±1	
	от 1 до 100 мкГн включ.	±5	±5	
14	св. 100 мкГн до 10 мГн включ.	±2	±2	
Индуктивность	св. 10 до 100 мГн включ.	±5	±5	
	св. 100 мГн до 1 Гн	±10	±5	
Напряжение постоянного тока	от 0 до 100 В	±1	±0,5	

Таблица 4 – Метрол	югические хара	ктеристики
--------------------	----------------	------------

7.2 Внешний осмотр

Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие системы следующим требованиям:

- 1. Комплектность системы должна соответствовать руководству по эксплуатации;
- Все органы управления и коммутации должны действовать плавно и обеспечивать надежность фиксации во всех позициях;
- 3. Не должно быть механических повреждений корпуса, лицевой панели, органов индикации и управления. Все надписи должны быть четкими и ясными;
- 4. Все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемая система бракуется и подлежит ремонту.

7.3 Опробование

Включить систему. Дождаться завершения загрузки операционной системы MS Windows. Ввести пароль «SPEA», для входа в систему.

На рабочем столе ОС перейти в меню Start \rightarrow All programs \rightarrow Leonardo YA «Номер версии СПО» \rightarrow Spea Test SW \rightarrow Leonardo Execution. Запустить программу. При запросе пароля при входе в СПО (рисунок 1), необходимо выбрать имя оператора «Administrator» и ввести пароль «SPEA».

eonardo Login		×			
Please, insert your name and your password to log on Leonardo					
Operator Name:		R 💌			
Password:	****				
	Login	Cancel			

Рисунок 1 - Окно входа в СПО

Нажать кнопку «Login», после этого появится окно «Tester Controller» и автоматически запустится процесс инициализации и самодиагностики системы (время проверки ≈ 1 минута). При правильном функционировании системы режимы, отображаемые на дисплее, должны соответствовать требованиям руководства по эксплуатации.

Рисунок 2 – Окно Tester Controller после завершения процесса инициализации При неверном функционировании система бракуется и направляется в ремонт. Подтверждение соответствия программного обеспечения

На персональном компьютере системы в открытом окне программы «Tester Controller» открыть окно «About» (меню Help → About). Зафиксировать номер версии установленного СПО, он должен быть не ниже указанного в таблице 5. При невыполнении этих требований поверка прекращается и прибор бракуется.

Илентификационные данные		Знач	нение	
(признаки)	SPEA 4020,	SPEA 4040	SPEA 4050S2,	SPEA 4080
(признаки)	SPEA 4060		SPEA 4060S2	
Идентификационное наименование ПО ¹⁾	Leonardo YA	Leonardo XA	Leonardo Fly S2	Leonardo 4
Номер версии (идентификационный номер ПО)	Не ниже 1.00	Не ниже 1.8	Не ниже 1.1	Не ниже 1.1
Цифровой идентификатор ПО	-	—	-	-
Примечание – ¹⁾ Варианты СПО «Leonardo» учитывают конструктивные особеннос				особенности
модификаций систем для корректного управления ими				

Таблица 5 -	Идентис	рикационные	данные	прог	раммного	обеспечения

На рисунке 3 приведён вид окна «About». Номер версии программного обеспечения записан представлен в строке «Version».

При невыполнении этих требований поверка прекращается и прибор бракуется.

About		X
Test	Runpack 2.30/PK	
	Version 2.10.0.8	
SPEA S.p.A	•	
	ОК	

Рисунок 3 - Окно «About», указывающее номер версии встроенного СПО

7.4 Определение значений параметров электрического сопротивления, электрической емкости, индуктивности и напряжения постоянного тока поверочной платы SP-1

7.4.1 Вставить в CD-ROM персонального компьютера системы диск «SPEA Metrology Tolls». Открыть файл Microsoft Office Excel «Протокол поверки.xlsm».

7.4.2 Разместить на рабочем месте поверочную плату SP-1. Включить измеритель иммитанса и подключить 4-проводные измерительные кабели. Перед началом измерений необходимо откалибровать измеритель. Калибровка измерителя должна производиться согласно методике, предусмотренной его руководством по эксплуатации.

Калибровка холостого хода (Open-калибровка) проводится в специально отведенном на плате сегменте «RLC adjust»\ «Open» (рисунок 4, а).

Калибровка короткого замыкания (Short-калибровка) проводится в специально отведенном на плате сегменте «RLC adjust»\ «Short» (рисунок 4, б).

Рисунок 4 – Калибровка измерителя параметров LCR: а) Ореп-калибровка; б) Short-калибровка.

7.4.3 Для определения значений электрического сопротивления резисторов, установленных на поверочной плате SP-1, необходимо:

- на плате в специально отведенном сегменте «Resistors» подключить 4-проводные измерительные кабели к номиналу 1 мОм (соответствующая маркировка на плате «0,001»). Токовые щупы должны подключаться к внешним выводам от измеряемого номинала, а измерительные щупы к внутренним, как указанно на рисунке 5. Соблюдать полярность щупов;
- установить на измерителе иммитанса режим измерений сопротивления,
- выставить частоту тестового сигнала 20 Гц и уровень напряжения 2 В,
- выполнить измерение номинала 1 мОм,
- записать в документ «Протокол поверки.xlsm» в столбец «Показания измерения» полученные данные, с точностью до 4 знака (рисунок 6);

Рисунок 5 – Пример подключения токовых и измерительных щупов к измеряемому значению 10 мОм

Номинальное значение	Показания измерения (Аэј)	Показания измерения СИ SPEA 40XX (Aj)	Расчетная относительная погрешность Xi.%	Результат поверки
10мОм	0.010061	1		
100мОм		Ť		

Рисунок 6 – Пример записи результата измерений электрического сопротивления значением 10 мОм в файл «Протокол поверки.xlsm»

 выполнить аналогичным образом операции измерения всех остальных значений электрического сопротивления, представленных в таблице 6. Зафиксировать показания измерения в таблице файла «Протокол поверки.xlsm».

Номинальное значение	Соответствующая маркировка на плате	Показания измерения (Аэј)
1 мОм	0,001	
10 мОм	0,01	
100 мОм	0,1	
1 Ом	1	
4,7 Ом	4,7	
10 Ом	10	
1 кОм	1 K	
10 кОм	10 K	
100 кОм	100 K	
1 МОм	1 M	
10 МОм	10 M	
50 МОм	50 M	
100 МОм	100 M	

7.4.4 Для определения значений электрической емкости конденсаторов, установленных на поверочной плате SP-1, необходимо:

- на плате в специально отведенном сегменте «Capacitors» подключить 4проводные измерительные кабели к номиналу 1 пФ (соответствующая маркировка на плате «1p»). Токовые щупы должны подключаться к внешним выводам от измеряемого номинала, а измерительные щупы к внутренним, как указанно на рисунке 7. Соблюдать полярность щупов;
- установить на измерителе иммитанса режим измерений емкости, частоту и уровень тестового сигнала согласно таблице 7.
- выполнить измерение номинала 1 пФ и записать в документ «Протокол поверки.xlsm» в столбец «Показания измерения» показания измерения с точностью до 4 знака (рисунок 8);

Рисунок 7 – Пример подключения токовых и измерительных щупов к измеряемому значению 1 пФ

Номинальное значение	Показания измерения (Аэј)	Показания измерения СИ SPEA 40XX (Aj)	Расчетная относительная погрешность Õ _i %	Результат поверки
1пФ	1.04E-12			
4.7п		Í		

Рисунок 8 – Пример записи результата измерений электрической емкости конденсатора значением 1 пФ в файл «Протокол поверки.xlsm»

 выполнить аналогичным образом операции измерения всех остальных значений емкостей, представленных в таблице 7. Зафиксировать показания измерения в таблице файла «Протокол поверки.xlsm».

Таблица 7

Номинальное значение	Соответствующая маркировка на плате	Режим измерений частота, Гц / напряжение, В	Показания измерения (Аэј)
1 пФ 1 р		10K / 2	
4,7 пФ	4,7 p	10K / 2	
10 пФ	10 p	10K / 2	
47 пФ	47 p	10K / 2	
100 пФ	100 p	10K / 2	
1 нФ	1 n	10K / 2	
100 нФ	100 n	100 / 2	
10 мкФ	10 u	100 / 2	
100 мкФ	100 u	100 / 2	
1 мФ	1000 u	100 / 2	
6,8 мФ	6800 u	100 / 2	
33 мФ	33000 u	100 / 2	
100 мФ	100000 u	100 / 2	

7.4.5 Для определения значений индуктивностей, установленных на поверочной плате SP-1, необходимо:

- на плате в специально отведенном сегменте «Inductors» подключить 4-проводные измерительные кабели к номиналу 1 мкГн (соответствующая маркировка на плате «1u»). Токовые щупы должны подключаться к внешним выводам от измеряемого номинала, а измерительные щупы к внутренним, как указанно на рисунке 9. Соблюдать полярность щупов;
- установить на измерителе иммитанса режим измерения индуктивности, частоту и уровень напряжения тестового сигнала согласно таблице 8,
- выполнить измерение номинала 1 мкГн и записать в документ «Протокол поверки.xlsm» в столбец «Показания измерения» показания измерения с точностью до 4 знака (рисунок 10);

Рисунок 9 – Пример подключения токовых и измерительных щупов к измеряемому значению 1 мкГн

Номинальное значение	Показания измерения (Аэј)	Показания измерения СИ SPEA 40XX (Aj)	Расчетная относительная погрешность Õį %	Результат поверки
1мкГн	9.03E-07			
4.7мкГн				

Рисунок 10 – Пример записи результата измерений индуктивности значением 1 мкГн в файл «Протокол поверки.xlsm»

 выполнить аналогичным образом операции измерения всех остальных значений индуктивностей, представленных в таблице 8. Зафиксировать показания измерения в таблице файла «Протокол поверки.xlsm».

Номинальное Соответствующая значение маркировка на плате		Режим измерений частота, Гц / напряжение, В	Показания измерения (Аэј)
1 мкГн 1 u		1K / 2	
4,7 мкГн	4,7 u	1K / 2	
10 мкГн	10 u	10K / 2	
47 мкГн	47 u	10K / 2	
100 мкГн	100 u	10K / 2	
470 мкГн	470 u	10K / 2	
1 мГн	1 m	10K / 2	
4,7 мГн	4,7 m	1K/2	
10 мГн	10 m	10K / 2	
33 мГн	33 m	10K / 2	
68 мГн	68 m	10K / 2	
100 мГн	100 m	10K / 2	
330 мГн	330 m	1K / 2	
500 мГн	500 m	1K / 2	
1 Гн	1	1K / 2	

Таблица 8

7.4.6 Для выполнения измерения значений напряжения постоянного тока воспроизводимых поверочной платой SP-1, необходимо:

 используя источник питания постоянного тока подключить два соединительных провода, соблюдая полярность, к плате SP-1. Место подключения на плате обозначено «30V» (рисунок 11);

Рисунок 11 – Подключение источника питания к плате SP-1

- выставить значение выходного напряжения на источнике питания, равным 30±3
 B;
- используя универсальный цифровой вольтметр, подключить измерительные кабели к тестовым выводам, произвести измерение выходного напряжения платы для диапазонов от 1 до 5 В, используя в качестве «нуля» опорный вывод, указанный на рисунке 12. Для диапазонов напряжений от 10 до 100 В используя в качестве «нуля» опорный вывод, указанный на рисунке 13;

Рисунок 12 – Пример подключения измерительных проводов при измерении напряжения постоянного тока в диапазоне от 1 до 5 В

Рисунок 13 – Пример подключения измерительных проводов при измерении напряжения постоянного тока в диапазоне от 10 до 100 В

 записать в документ «Протокол поверки.xlsm» в столбец «Показания измерения» напротив соответствующего значения напряжения постоянного тока показания цифрового вольтметра (рисунок 14).

Номинальное значение	Показания измерения (Аэј)	Показания измерения СИ SPEA 40XX (Aj)	Расчетная относительная погрешность Õį %	Результат поверки
1 B	0.9987			
2 B				

Рисунок 14 – Пример записи результата измерения напряжения постоянного тока значением 1 В в файл «Протокол поверки.xlsm»

 выполнить аналогичным образом измерения всех значений выходных напряжения постоянного тока платы SP-1.

Примечание:

 В документ «Протокол поверки.xlsm» значения измерения необходимо записывать в числовом или экспоненциальном формате. Например, при измерении емкости 47 пФ показания LCR-метра составляют 46,673 пФ, тогда в соответствующую ячейку документа необходимо записывать значение 4,6673E-11. Не допускается запись в виде 46,673п или 46,673p.

2) Для емкостей номиналом 1 мФ, 6,8 мФ, 33 мФ и 100 мФ, предусмотрен резистор разрядки 100 Ом. В изначальном состоянии тумблеры в измерительной цепи этих конденсаторов находятся в замкнутом состоянии (положение «Disch»). Перед выполнением измерений перевести тумблер в положение «Meas», произвести измерение емкости и затем вернуть в изначальное состояние «Disch».

7.5 Определение относительной погрешности измерений электрического сопротивления постоянному току, электрической емкости, индуктивности и напряжения постоянного тока системы SPEA 4000, SPEA 4000S2

7.5.1 На системе SPEA 40XX, в СПО «Leonardo» открыть готовый тестовый проект «Metrology SPEA 40XX» (меню Open \rightarrow Main Disk (C:) \rightarrow Metrology \rightarrow Metrology SPEA 40XX \rightarrow Open). См. рисунок 15.

Рисунок 15 - Открытие проекта «Metrology SPEA 40XX» в СПО «Leonardo»

7.5.2 Для систем с конвейерной загрузкой печатных плат (модификация IBL) разместить плату на конвейерной линии, как показано на рисунке 16. Для систем с ручной и челночной (шаттловой) загрузкой печатных плат (модификации FBL и SBL соответственно) разместить плату SP-1 в тестовую зону. Позиционирование платы должно осуществляться в соответствии с руководством по эксплуатации поверяемого средства измерения. Перед позиционированием платы в системе необходимо открутить все 5 крепежных стоек платы.

Рисунок 16 - Размещение поверочной платы SP-1 в системе

7.5.3 В окне «Tester Controller» нажать кнопку «Start», тем самым запустив процесс автоматического измерения и генерации файла с результатами измерений параметров электрического сопротивления, емкости и индуктивности компонентов, а так же выходного напряжения постоянного тока платы SP-1 (рисунок 17).

Рисунок 17 – Процесс автоматического измерения электрических параметров системой SPEA 40XX

7.5.4 После завершения процесса измерения системой, открыть файл «Протокол поверки.xlsm». Нажать кнопку «Импорт» и в появившемся окне выбрать файл с результатами измерений системы (Main Disk (C:) → Metrology Measure Result → MMres.txt → Открыть) рисунок 18. После этого в файле автоматически заполнится столбец «Показания измерения СИ SPEA 40XX».

Гларидочить •	Новал папка		and the barry of	····
Microsoft Excel	Vear	Дата изменения	Тип	Разькер
	MMRes.txt	21.10.2013 17:32	Текстовый докумен	нт 14 KE
Библиотеки				
Компьютер				
🖷 Компьютер 🗣 Сеть				
🗏 Компьютер 🗣 Сеть				
№ Компьютер Фи Сет»	14m Quiñas: MMRestat		• Текспоные ф	งพักษ (*td) 1

Рисунок 18 – Выбор файла MMRes.txt с результатами измерения электрических параметров системой

7.5.5 Нажать кнопку «Анализ данных». Программа произведет расчет относительной погрешности измерений, заполнит столбец «Расчетная относительная погрешность δ_j, %» с полученными значениями (расчет относительной погрешности измерений ведется согласно пункту 8 настоящей методики). Напротив каждого из значений появится информация «Pass» или «Fail» (рисунок 19) в зависимости от того попадает или нет результат расчета относительной погрешности в предъявляемый диапазон допустимой относительной

погрешности измерений электрических параметров (столбец «Допустимая относительная погрешность, %»).

Пределы измерения	Допустимая относительная погрешность,%	Номинальное значение	Показания измерения (Аэј)	Показания измерения СИ SPE A 40XX (Aj)	Расчетная относительна я погрешность Õ _i ,%	Результат поверки
		10мОм	0.010061	0.009969	0.93	Pass
or 10 MOM	±5	100мОм	0.100092	0.101000	0.90	Pass
ло 10 Ом		10M	1.001950	1.010000	0.80	Pass
до 10 ОМ		4.7 OM	4.687080	4.682314	0.10	Pass
		10 Ом	10.0009	9.98125	0.20	Pass

Рисунок 19 – Результат выполнения анализа метрологических характеристик системы

7.5.6 Результаты поверки считаются положительными, если значения относительной погрешности измерений не превышают значений, указанных в п. 7.1 настоящей Методики.

8 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Автоматический расчет относительной погрешности измерений в файле «Протокол поверки.xlsm», выполняется следующим образом:

1) Значение абсолютной погрешности измерений в j-той точке определяется по формуле:

$$\Delta Aj = |Aj - Aj| \tag{1}$$

где Aj - значение физической величины, измеренной системой в соответствии с документом «Протокол поверки.xlsm», столбец «Показания измерения СИ SPEA 40XX (Aj)» для п. 7.6.4;

Аэј - значение физической величины в соответствии с документом «Протокол поверки.xlsm», столбец «Показания измерения (Аэј)» для п.п. 7.4.3, 7.4.4, 7.4.5 и 7.4.6;

 Значение относительной погрешности измерений в j-той точке определяется по формуле:

$$\delta_{j} = (\Delta A j / A j) * 100 \%$$
 (2)

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

9.1 Оформление результатов поверки производится в соответствии с требованиями Приказа Минпромторга России от 02.07.2015 г. № 1815.

9.2 При положительных результатах поверки в формуляре производится запись о годности к применению и (или) выдается свидетельство о поверке.

9.3 При отрицательных результатах поверки система не допускается к дальнейшему применению, в формуляр вносится запись о непригодности его к эксплуатации, знак предыдущей поверки гасится, свидетельство о поверке аннулируется и выдается извещение о непригодности.

Начальник отдела 206.1 ФГУП «ВНИИМС»

Начальник сектора отдела 206.1 ФГУП «ВНИИМС»

С.Ю. Рогожин А.Ю. Терещенко