УТВЕРЖДАЮ

Первый заместитель генерального директора – заместитель по научной работе ФДУ П «ВНИИФТРИ»

Инструкция

Системы измерений собственных и вносимых фазовых и амплитудных шумов E5505A

Методика поверки

651-19-008 МП

1 Основные положения

1.1 Настоящая методика поверки распространяется на системы измерений собственных и вносимых фазовых и амплитудных шумов E5505A (далее – система), изготавливаемые компанией «Keysight Technologies», Малайзия, и устанавливает методы и средства их первичной и периодической поверок.

1.2 Интервал между поверками – 1 год.

2 Операции поверки

2.1 При поверке выполняют операции, приведены в таблице 1.

Таблица 1

	Номер	Проведение опер	оации при
Наименование операции	пункта	первичной по-	периодиче-
	методики	верке (после	ской поверке
	поверки	ремонта)	
1 Внешний осмотр	7.1	да	да
2 Опробование	7.2	да	да
3 Определение уровня собственного шума	7.3	да	да
4 Определение пределов допускаемой аб- солютной погрешности измерений фазо- вого шума	7.4	да	да
5 Определение пределов допускаемой аб- солютной погрешности измерений ам- плитудного шума	7.5	да	да
6 Проверка программного обеспечения	7.6	да	да

2.2 Предусмотрена возможность проведения поверки для меньшего числа измеряемых величин и на меньшем числе поддиапазонов измерений.

Соответствующая запись должна быть сделана в эксплуатационных документах и свидетельстве о поверке.

2.2 При отрицательных результатах поверки по любому пункту таблицы 1 система бракуется и направляется в ремонт.

3 Средства поверки

3.1 Рекомендуемые средства поверки приведены в таблице 2. Вместо указанных в таблице 2 средств поверки допускается применение других средств, обеспечивающих определение метрологических характеристик с требуемой точностью.

3.2 Все средства поверки должны быть исправны, применяемые при поверке средства измерений и рабочие эталоны должны быть поверены и иметь свидетельства о поверке с неистекшим сроком действия на время проведения поверки или оттиск поверительного клейма.

3.3 При отрицательных результатах поверки по любому пункту таблицы 1 анализаторы бракуются и направляются в ремонт.

1 a0.11	ALLA Z
Номер	Наименование рабочих эталонов или вспомогательных средств поверки; номер до-
пункта ме-	кумента, регламентирующего технические требования к рабочим эталонам или
тодики по-	вспомогательным средствам; разряд по государственной поверочной схеме и (или)
верки	метрологические и основные технические характеристики средств поверки
7.3, 7.4, 7.5	Е8257D (3 шт.), диапазон частот от 250 кГц до 32 ГГц, минимальный уровень
	выходного сигнала минус 135 дБм, максимальный уровень выходного сигнала до
	11 дБм, режим низких фазовых шумов
7.3, 7.4, 7.5	Блоки измерительные ваттметров N1914A с преобразователями измерительными
	термоэлектрическими ваттметров поглощаемой мощности N8482A, N8485A и
	преобразователями измерительными ваттметров поглощаемой мощности 8481D,
	8485D диапазон частот от от 250 кГц до 33 ГГц, пределы измерений мощности
	сигнала не более ± 3,3 %

Номер	Наименование рабочих эталонов или вспомогательных средств поверки; номер
пункта ме-	документа, регламентирующего технические требования к рабочим эталонам или
тодики по-	вспомогательным средствам; разряд по государственной поверочной схеме и (или)
верки	метрологические и основные технические характеристики средств поверки
7.3, 7.4, 7.5	Анализаторы сигналов N9030A/B (526), диапазон частот до 26,5 ГГц, мощность
	собственных шумов до минус 164 дБм.
	Вспомогательные средства
7.3, 7.4, 7.5	Тройник 11667А, 11667В

4 Требования безопасности при поверке

4.1 При проведении поверки должны быть соблюдены меры безопасности, указанные в соответствующих разделах эксплуатационной документации средств измерений, используемых при поверке.

4.2 К проведению поверки систем допускается инженерно-технический персонал со среднетехническим или высшим образованием, квалифицированный в качестве поверителей в данной области измерений, ознакомленный с руководством по эксплуатации (РЭ) и настоящей методикой.

5 Условия поверки

5.1 При проведении поверки должны соблюдаться следующие условия:

 температура окружающего воздуха, °С 	от 15 до 25;
 атмосферное давление, кПа 	от 84 до 106,7;
 относительная влажность окружающего воздуха, % 	от 30 до 80;
 напряжение питания, В 	$220 \pm 2,2.$

6 Подготовка к поверке

6.1 Поверитель должен изучить РЭ поверяемой системы и используемых средств повер-

6.2 Поверяемая система должна быть выдержана в помещении, где проводится поверка, не менее 2-х часов.

7 Проведение поверки

7.1 Внешний осмотр

КИ.

7.1.1 При проведении внешнего осмотра проверяется:

- отсутствие внешних механических повреждений;

- целостность и чистота соединительных кабелей, зажимов и разъемов;

- комплектность и маркировку на соответствие документации.

7.1.2 Результаты поверки считать положительными, если выполнены требования п. 7.1.1.

7.2 Опробование

7.2.1 Собрать схему как на рисунке 1. и рисунке 1.1., рисунке 2 и 2.1 Все приборы соединены посредством интерфейса GPIB.

ВНИМАНИЕ!!! При поверке системы сначала поверяется основной модуль N5500A, потом совместно с N5507A

7.2.2 Запустить приложение Измерение фазовых шумов (User Interface), находящееся в папке «E5500 Phase Noise». При первом включении будет запущена автоматическая калибровка Digitizer. В случае возникновения ошибок поверка останавливается и прибор передается в ремонт.

7.2.3 После успешного прохождения самокалибровки необходимо определить все составные части системы. Для этого нажать System -> Asset Manager, Asset->Add.

C Asset Manager Server Asset Options Heb 21 6 Add Properties	n -] © ₩		
Cox - Creck Associ Cox - Creck Associ Agler(HP 70427A)/5507A Agler(HP 70427A)/5507A M FFT Analyzer M PC8111-1 Phase Stifter M Source Swept Analyzer HP 14411A Tool Sol Tane Esse	Addenois Districco Addenois Model Number: Seciel Number: Seciel Number ACM Teleranie: Ebrary: Considert:		

Рис.5

7.2.4 В приложении добавить все приборы, входящие в систему путем выбора из выпадающего списка

Choose Asset Role		
You you	are now adding a new asset want for this asset:	Please select the role
Asse	et Type: Baseband Source Counter Downconverter FFT Analyzer Phase Shifter Source	
- Carlos - C	<u>N</u> ext >	Cancel Help

Рис.6

7.2.5 Для каждого прибора необходимо прописать серийный номер и адрес GPIB интерфейса

	you will talk interface	to the asset an	d the asset's addres	ss on that
	Interface:	GPIB0		
. 3.3 3	Address:	19		
N N N N N N N N N N N N N N N N N N N	Library:	Agilent Tech	nologies VISA 🔄]

7.2.6 Стандартные адреса приведены в таблице ниже

Instrument	Address	
Test set	20	
Downconverter	28	
Microwave downconverter	28	
RF analyzer	17	
FFT analyzer (PC digitizer card)	1	
FFT analyzer (89410A)	18	
Source # 1	19	

7.2.7 После конфигурации каждого прибор нажать кнопку Finish

Enter A Comment				North C
	Congratulatii asset server comment for Once you r to perform a by using the	ons! You have . If you would your own use. return to the ma n 1/D check or check mark ic	a added a new asse like, you may enter ain screen, you may n this asset. You ca ion.	et to your an asset also want an do this
	Comment:	Write a comm	nent here.	2
-	< <u>B</u> ack	Finish	Cancel	Help
		Puc 8		

7.2.8 Далее нажать на галочку и увидеть сообщение об успешном определении указанного устройства

Рис.10

7.2.9 После успешного определения всех элементов измерительной системы нажать Server->Exit. Далее нажать в основной измерительной оболочке System -> Server Hardware Connection и определить все оборудование из системы, путем выбора из выпадающего списка возможных приборови и нажатием кнопки Check I/O, если появилась зеленая галочка опробование можно считать успешным.

Tenten		Concern Cardon	
A Dankert AUD 2042		Place Prey Courses	
Agient/hr 70420	MUNCOUL •		
FFT Analyzer			
thet [none]	•		<u>4</u>
Swept Analyzer			
diek 1/0	•		-
Down Converter			
deck 1/0 inone)	•	1	-
Phase Shifter			
deà 1/0 (none)	·		
the second se			

Рис.11

Test Set	Frequency Counter
Aglen/HP 70420A/N550	thet fromet
FFT Analyzer	
	1
Swept Analyzer	
there increase increa	
Down Converter	
thek 1/0 Incnel	
Phase Shifter	
deci 1/0 (none)	
	renters Clearly connections and Areat Manager

Рис.12

7.2.10 Если на каком-либо этапе возникли ошибки, необходимо проверить соединения GPIB кабелей и правильность адресов и конфигурации. В случае повторения ошибки прибор бракуется и направляется в ремонт.

7.3 Определение уровня собственного шума

7.3.1 В папке E5500 найти файл confidence.pnm (C:\Users\Public\Documents\Agilent\E5500 Phase Noise). Запустить файл.

Нажать	Define->N	Measure и	установить	слелующие	параметры
TTOMATD	Dernie	i cuoure n	Jerenconin	erren jio maire	The beaution beaution

	in th		Couple Graph Type	to Measuren	vent Type		
Offset Frequ	ency Rar	nge	, coopie and in the				
Start Offset	10		Hz	Stop Offset	100E+6	Hz	
		FFT Ar	nalyzer Minimum Number	of Averages	4		
FFT Qualit	у				Define	Custom Segmer	nt Table
C Norma	d G	Fast	C High Resolution	C Custom		FFT	
Swept Qu	alty						
C Norma	4 6	Fast	C High Resolution	C Custom		Swept	

Рис. 13

7.3. Присоединить 50 Ом нагрузку ко входу Signal N5500A. Нажать Measure -> New Measure. В появившемся окне выбрать тот модуль, который поверяется (без опции, с опцией 001, опцией 201). Нажать кнопку Meter и убедиться, что шкала измерения меняется (происходит процесс детектирования опорного сигнала генератора), нажать Continue.

	A	Verify Connections ug 25, 2016 05:29:	50			
						_
1.1.1				0000		
OUTF	יטד		C		0 0	
L			C	0	0	
			0	0	· 0	
On Confidence Instead, a con	Test, a signal sour nector to OUTPUT i	rce is not us is terminate	ed. d by 50 ohr	m imped	lance.	
On Confidence Instead, a com Hardware: @ Control Panels	Test, a signal sour nector to OUTPUT i glen/HP 704204/N5500A o	rce is not us is terminate pion 001 test set c	ed. d by 50 ohr	m imped	lance.	
On Confidence Instead, a cons Hardware: Control Panels FFT Analyzer	Test, a signal sour nector to OUTPUT i glen/HP 704204-M5500A o Swept Analyzer	rce is not us is terminate clon 001 test set o Test Set	ed. d by 50 ohr	m imped	lance.	
On Confidence Instead, a con Hardware: Control Panels FFT Analyzer	Test, a signal sour nector to OUTPUT i grant HE 704202000 or Swept Analyzer Reference Source	rce is not us is terminate pion 001 lear ser o Test Set Residual Source	ed. d by 50 ohr		lance.	sce Shifter ency Counter
On Confidence Instead, a com Hardware: Control Panels FFT Analyzer Control Panels FFT Analyzer Tuning Voltage	Test, a signal sour nector to OUTPUT i genuite 7042452004 of Swept Analyzer Reference Source	rce is not us is terminate tron 001 test set o Test Set Pleadual Source	ed. d by 50 ohr	m imped	lance. Ph Frequ	eile Shifter ency Counter connerter

Рис.14

7.3.3 Снять галочку с отображения паразитных составляющих сигнала (Spurs). Значения собственных фазовых шумов не должны превышать значений минус 170 дБн/Гц при отстройке более 10 кГц от несущей.

Рис.15

7.3.4 При несоответствии метрологических характеристик система бракуется.

7.4 Определение пределов допускаемой абсолютной погрешности измерений фазового шума

Рис.16

7.4.2 Генератор 1 (E8257D) определить, как генератор сигнала несущей частоты. Генератор 2 (E8257D) как генератор отстройки. Установить на Генераторе 1 выходной сигнал 10 МГц, амплитуда 5 дБм. Подать сигнал и измерить его на выходе с Input 11667A (на конце кабеля) измерителем мощности N8482A. Используя индикатор блока ваттметра регулировать выходную мощность сигнала с генератора 1, чтобы на ваттметре было значение 5 дБм (зафиксировать реальное значение с ваттметра) Р1. Выключить генерацию сигнала. На генераторе 2 подать сигнал с частотой 10,00001 МГц и амплитудой -50 дБм (зафиксировать реальное значение с ваттметра) Р1. Измерить сигнал на выходе с 11667A (на конце кабеля) ИП мощности 8481D. Используя индикатор блока ваттметра 2, чтобы на ваттметре было значение с ваттметра регулировать выходную мощность сигнала с генератора 2, чтобы на конце кабеля) ИП мощности 8481D. Используя индикатор блока ваттметра блока ваттметра регулировать выходную мощность сигнала с генератора 2, чтобы на конце кабеля) ИП мощности 8481D. Используя индикатор блока ваттметра регулировать выходную мощность сигнала с генератора 2, чтобы на ваттметре было значение -50 дБм. Отсоединить Ваттметр и присоединить кабель с Input 11667A ко входу Signal N5500A (50 kHz – 1.6 GHz). Подать сигнал с обоих генератора 1 и Генератора 2 :+5 и -50 дБм соответсвенно

Нажать кнопку Measure -> Define, установить следующие значения

Offset Frequency Range	1. coopie aropin 13		
Start Offset 1	Hz	Stop Offset	100E+6 Hz
FFT /	Analyzer Minimum Numbe	er of Averages	4
C Normal C Fast	C High Resolution	C Custom	FFT
Swept Quality	C High Resolution	C Custom	n Swept

Рис.17

Type and Range Sources	Cal Block	: Diagram Tes	st Set Downconve	rter Graph		
Carrier Source						
Frequency 10E+6	Hz	Power 5	dBm			
Carrier Source O	utput is conne	cted to: 🔎	Test Set 🕜 Do	wnconverter		
Detector Input Frequency	Re	ference Source	e			
10E+6	Hz Fn	equency 10E	+6	Hz Power	16	dBm
Deletion inport frequency	- Neleichice J	ource Frequence	cy multiplied by (1		p.)
VCO Tuning Parameters Nominal Tune Constant	500	Hz / Volt	Center Voltage	0	Volts	,
VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	500	Hz / Volt	cy multiplied by { 1 Center Voltage Input Resistance	0	Volts	,
VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	500 5 Haumum Alio	Hz / Volt Volts	Center Voltage	0 600	Volts Ohms Volts	,
VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	500 5 Maxmum Alee The Tune F	Hz / Volt Volts Range is within t	Center Voltage Input Resistance from Center Voltage		Volts Ohms Molto	,
VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	500 5 Meuroum Alio The Tune F from +/- 0	Hz / Volt Volts Volts Range is within 1 0.20 to +/- 10.	Center Voltage Input Resistance from Center Voltage the limits of 00 Volts,	0 600	Volts Ohms Molte) Preset
VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	500 5 Hearson Alio The Tune F from +/- 0 required by the	Hz / Volt Volts Volts Range is within 1 0.20 to +/- 10.	Center Voltage Input Resistance from Center Voltage the limits of 00 Volta, r Voltage setting.	0 0 1	Volts Ohms Molte) Preset

Рис.18

Type and Range Sources Cal Block Diagram	m Test Set Dov	wnconverter Graph	
Absolute Phase Noi	se (using a phase	locked loop)	
Phase Detector Constant			
C Use <u>current</u> phase detector of	onstant		
Measure phase detector con	stant		
Current Phase Detector Constan	t 707E-3	Volts / Radian	
VCO Tune Constant			
C Use current VCO tune consta	ant		
Measure VCO tune constant			
C Calculate from expected VCC) tune constant us	ing tune port resistance	
Current VCO Tune Constant	40E+3	Hz / Volt	
Expected VCO Tune Constant	461.5	Hz / Volt	
Phase Locked Loop Suppression			
Verify calculated phase locked loop suppress	ion 🔽 Always	Show Suppression Graph	
Maximum Suppression Error Limit	1	JB	
If Limit is exceeded: C Use theoretical values	C Use adjusted	values (Show Suppre	ssion <u>G</u> raph
			Preset

Рис.19

and Range Sources Cal Block Diagram	" Test Set Downconverter Graph
Absolute Phase Nois	se (using a phase locked loop)
Carrier Source	
check (manual)	
Down Converter	Phase Detector
Agilent/HP 70427A/N5507	Automatic Detector Selection
 None System Control Manual External 	Test Set Tune Voltage
Reference Source	Output Front Panel -
check Agilent E8257D 💌	Destination Reference Source -
- Timebase	VCO Tune Mode
(hone) 포	C EFC (* DC FM
Asset Manager	Preset

Рис.20

	In	-		1.	10.11	
Type and Range Sources Cal	Block	Ulagram I	est set	Downconverte	r Graph	
A	bsolute pha	ase noise (us	sing a p	hase locked loop)	
	(Current Te	est Set: Agile	ent/HP	70420A/N5500A)	
Input Attenuation		LNA Low P	ass Filte	r		
068 - F Acro		20 MHz	•	Auto		C Block
LNA Gain				- Analyzes	len	
Auto Gain Minimu	um Auto Ga	in 56 dB	-	C Ba	besides	
6 0 0 0 0 0 0 0		1		C Ca	1/S	
Pause after Auto Gain Ad	justment					
<u>P</u> ause after Auto Gain Ag Fixed Gain	Fixed Ga	in 14 dB	•			
 Pause after Auto Gain Aq Exced Gain 	Fixed Ga	in 14 dB	•			
Exced Gain Exced Gain	Pixed Ga	in 14 dB	•			
C Eved Gain	Fixed Ga	in 14 dB	•			10.10
Evel Gain Evel Gain Ostessor Haxmun Input Level Mistoward Phase D F F Phase D	Pixed Ga	in 14 dB	•	PLL Integrat	tor Attenuation	O dB 👻
Eved Gain Eved Gain Octrector Havmon Input Level Microward Phase D FLF Phase D A.M.D	Pixed Ga	in 14 dB	•	PLL Integrat	or Attenuation	0 dB 💌
Evel Gain Evel Gain Optional Having Input Level Motoward Prece D F F Prace D A F Prace D A M. D Monore out-of-lock condition	Fixed Ga	in 14 dB	amier	PLL Integrat	or Attenuation	O dB 💌
Pause aner Auto Gain Ag Postector Havmann Input Level Microward Prace D R F Phars D AM. D Ignore out-of-lock condition	Fixed Ga	in 14 dB	Carrier	PLL Integrat	or Attenuation	0 dB 💌
Pause aner Auto Gain Ag Postecial Having Input Level Microward Prace D F F Prace D A M. D Ignore out-of-lock condition	Pixed Ga	in 14 dB	amer	PLL Integrat	or Attenuation	0 dB 💌

Рис.21

Absolute Phase Nois	e (using a phase locked loop)
Down Converter Aglient/HP 70427A/N5507 None System Control Manual External	Phase Detector
Reference Source	Output Front Panel Destination Reference Source VCO Tune Mode C EFC C DC FM
Asset Manager	Preset

Рис.22

7.4.3 Поставить галочку для отображения Spurs. Далее нажать Measure -> New Measure. Провести измерения Spur на отстройке 10 Гц

7.4.4 Вычислить погрешность измерения мощности фазовых шумов по следующейфоре Pspur = P2-P1-6дБ

муле

Рпг = Ризм - Pspur

7.4.5 Провести измерения на остальных отстройках из таблицы ниже. При проведении измерений, на других несущих необходимо менять данные в Source.

	Absolute Phase No	ini presi dei p	hase locked lo			
Carrier Source						
Frequency 10E+6	Hz Pow	er 5	dBm			
Carrier Source O	utput is connected to	· · Test S	Set C Do	wnconverter		
Detector Input Frequency	Reference	e Source				
10E+6	Hz Frequenc	y 10E+6		Hz Power	16	dBm
Detector Input Frequency	= Reference Source I	Frequency mult	tiplied by (1		/ 1	-,
Detector Input Frequency VCO Tuning Parameters Nominal Tune Constant	= Reference Source I	Frequency mult	tiplied by (1	0	/ [1 	—)
Detector Input Frequency VCO Tuning Parameters Nominal Tune Constant Tune Bange +/-	= Reference Source I	requency mult / Volt Cei	tiplied by (1 enter Voltage	0	/ 1 Volts)
Detector Input Frequency VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	Reference Source I [500 Hz . [5 Volt	Frequency mult Volt Cer s Inpu	tiplied by (1 Inter Voltage It Resistance	[0 [600	/ [1 Volts Ohms	_,
Detector Input Frequency VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	Reference Source I [500 Hz , [5 Volt Maxmun Allowed Dr The Tune Bange I	Frequency mult / Volt Cer s Inpu what on Ponton	tiplied by (1 Inter Voltage at Resistance Inter Voltage	1 [600	/ [1 Volts Ohms Volts	_,
Detector Input Frequency VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	Reference Source I [500 Hz , [5 Volt Maxmun Allowed Dr The Tune Range II from +/- 0.20 to	Trequency mult Volt Cer s Input whattors from Cr s within the limit +/- 10.00 Vol	tiplied by (1 enter Voltage at Resistance ienter Voltage its of its,	[0 [600 [1	/ [1 Vots Ohms Vots) Preset

Рис.24

f _m				•••••	for				
10 МГц	f _m + 1 Гц	f _{in} + 10 Гц	f _{in} + 100 Гц	f _{in} + 1 кГц	f _{in} + 10 кГц	f _{in} + 100 кГц	f _{in} + 1 МГц	-	-
100 MΓt	tf _{in} + 1 Γu	f _{in} + 10 Гц	f _m + 100 Гц	f _{in} + 1 кГц	f _{in} + 10 кГц	f _{in} + 100 кГц	$f_{in} + 1$ M Γ u	f _{iu} + 20 МГц	-
1 ГГц	$f_{in} + 1 \Gamma_{ij}$	f _m + 10 Гц	f _{in} + 100 Гц	f _{in} + 1 кГц	f _{in} + 10 кГц	f _{in} + 100 кГц	f _{in} + 1 МГц	f _{in} + 10 МГц	f _{in} + 100 МГц
1,6 ГГц	$f_{in} + 1 \Gamma u$	$\frac{f_{in}+10}{\Gamma_{II}}$	f _{in} + 100 Гц	f _{in} + 1 кГц	f _{in} + 10 кГц	f _{in} + 100 кГц	f _{in} +1 МГц	f _{in} + 10 МГц	$f_{in} \pm 100$ MGu

7.4.6 Провести измерения на всех несущих и отстройках из таблицы 3. Таблица 3

7.4.7 При наличии опции 001 или 201 при переходе на диапазон выше 1,6 ГГц необходимо переключать сигнальный кабель с опорного генератора на соответствующий вход Ref Input 1.2 – 26,5 GHz (001). Измерения проводить на отстройках согласно таблице 4.

Таблиц	a 4								
f_m					for	(le an in Branch	F.a. and
1,2fTu	$f_{in} + 1\Gamma \mu$	f _{in} + 10 Гц	f _{in} + 100 Гц	f _{in} + 1 кГц	f _{in} + 10 κΓιι	f _{in} + 100 кГц	f _{in} + 1 МГц	f _{in} + 10 МГц	f _{in} + 100 МГц
6 ГГц	f _m + 1 Гц	f _m + 10 Гц	f _{in} + 100 Γιι	f _{in} + 1 кГц	f _{iu} + 10 кГц	f _m + 100 кГц	f _{in} + 1 МГц	f _{in} + 10 МГц	f _{in} + 100 МГц
12 ГГц	f_m + 1 $\Gamma \mu$	f _{in} + 10 Γιι	$f_{in} + 100$ Γu	f _m + 1 кГц	f _{ia} + 10 кГц	f _{in} + 100 кГц	f _{in} +1 ΜΓu	f _{in} + 10 МГц	f _{in} + 100 МГц
26,5 IT1	$f_m + 1 \Gamma u$	$\frac{f_{in} \pm 10}{\Gamma u}$	f _m + 100 Γιι	f _{in} + 1 кГц	f _m + 10 κΓμ	f _m + 100 кГц	$f_{in} + 1$ MFit	f _{in} + 10 МГц	f _{in} + 100 ΜΓu

Type and Range Sources	Cal Block	Diagram Te	st Set Downconver	rter Graph		
	Absolute Pha	se Noise (usi	ng a phase locked lo	op)		
Carrier Source		-				
Frequency 6E+9	Hz	Power 5	dBm			
Carrier Source C	utput is connec	ted to: 🔎	<u>I</u> est Set <u>○</u> o	wnconverter		
Detector Input Frequency	Ref	erence Sourc	e			
600E+6	Hz Fre	quency 60	0E+6	Hz Power	6	dBm
Detector Input Frequency VCO Tuning Parameters	 Reference So 	urce Frequer	icy multiplied by (1	1	1)
Detector Input Frequency VCO Tuning Parameters Nominal Tune Constant	 Reference So 500 	urce Frequer Hz / Volt	cy multiplied by { 1 Center Voltage	/	1 Voits)
Detector Input Frequency VCO Tuning Parameters Nominal Tune Constant Tune Range +/	= Reference So	urce Frequer Hz / Volt Volts	cy multiplied by (1 Center Voltage	0	1 Voits Ohms)
Detector Input Frequency VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	Reference So [500 [5 Mexicum Allow	urce Frequer Hz / Volt Volts	Center Voltage	0 [0 [1]	1 Volts Ohms Volts)
Detector Input Frequency VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	= Reference So 500 5 Herence Alow The Tune Ra	Hz / Volt Volts Volts	Center Votage Input Resistance from Center Votage	[] [0 [0 []	1 Volts Ohms Volts)
Detector Input Frequency VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	 Reference So 500 5 Meximum Allow The Tune Ra from +/-0. 	Hz / Volt Volts ange is within 20 to +/-10	Center Votage Input Resistance from Center Votage the limits of .00 Vota,	0 000 1	1 Volts Ohms Volts) Preset
Detector Input Frequency VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	Reference So 500 5 5 Meximum Allow The Tune Ra from +/- 0. required by the	Hz / Volt Volts Volts ange is within 20 to +/-10 current Cente	Center Voltage Input Resistance from Center Voltage the limits of .00 Volts, er Voltage setting.	0] 000] 1	1 Vots Ohms Vots) Preset

Рис.25

7.4.8 При использовании N5507A или N5502A необходимо собрать схему указанные на рис. 2 и рис 2.1 и провести те же измерения на несущих и отстройках для этого установить следующие значения.

Measurement Type At	solute Phase Noise (using a	phase locked	loop)	•	
	I✓ Couple Graph Ty	pe to Measurer	nent Type		
Offset Frequency Rang	e				
Start Offset 100	Hz	Stop Offset	2E+6	Hz	
F	FT Analyzer Minimum Numb	er of Averages	4		
FFT Quality			Define	Custom Segment	Table
C Normal @ F	ast C High Resolution	Custom		FFT	
Swept Quality					
C Normal @ F	ast C High Resolution	Custom		Swept	
					Preset

7.4.9 Значение несущего сигнала устанавливать относительно установок Генератора 1.

	Absolute Phas	e Noise (usi	ng a phase locked lo	op)		
Carrier Source						
Frequency 6E+9	Hz	Power 5	dBm			
Carrier Source O	utput is connect	ed to: 🔎	Test Set C Do	wnconv	erter	
Detector Input Frequency	Refe	rence Sourc	e			
600E+6	Hz Fred	uency 600	DE+6	Hz Po	wer 16	dBm
VCO Tuning Parameters		ace neque	icy indiciplied by (11		у р	,
VCO Tuning Parameters Nominal Tune Constant	500	Hz / Volt	Center Voltage	0	Volts	
VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	500	Hz / Volt	Center Voltage Input Resistance	0	Volts Ohms	,
VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	500 Maxmum Allow	Hz / Volt Volts	Center Voltage Input Resistance	0 [0	Volts Ohms Volts	,
VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	500 5 Maxmon Alow The Tune Ra	Hz / Volt Volts Inge is within	Center Voltage Input Resistance from Center Voltage the limits of	[1 [600	Volts Ohms UgBa	
VCO Tuning Parameters Nominal Tune Constant Tune Range +/-	500 5 Maxmum Alow The Tune Rai from +/- 0.2	Hz / Volt Volts ad Deviation nge is within 10 to +/- 10	Center Voltage Input Resistance from Center Voltage the limits of .00 Volts,	0 0	Volts Ohms Volts	Preset

Рис. 27

ilent E5500		1.4	588 A.X	8
Type and Range Sources Cal Block Diagra	am Test	Set Downconv	erter Graph	
Absolute Phase No	oise (usino	a phase locked	loop)	
Phase Detector Constant				
C Use gurrent phase detector	constant			
Measure phase detector con	nstant			
Current Phase Detector Consta	int 172	2.7E-3	Volts / Rad	lian
VCO Tune Constant				
C Use current VCO tune cons	tant			
Measure VCO tune constant	t i			
Calculate from expected VC	O tune co	onstant using tune	e port resistanci	e
Current VCO Tune Constant	476.9	1.1	Hz / Volt	
Expected VCO Tune Constant	461.5		Hz / Volt	
Phase Locked Loop Suppression				
☐ Verify calculated phase locked loop suppres	sion [Always Show	Suppression Gra	aph
Maximum Suppression Error Limit	1	dB		
If Limit is exceeded: $ \subset $ Use theoretical values	C Use	a <u>a</u> djusted values	Show Su	uppression <u>G</u> raph
				Preset
The Landson Hole		Close		Help

Рис.28

gilent E5500	8 100 × 2 101	8 3
Type and Range Sources Cal Block Diagr	ram] Test Set Downconverter Graph]	
Absolute Phase N Carrier Source (deck (manual)	loise (using a phase locked loop)	
Down Converter	Phase Detector	
Agilent/HP 70427A/N5507 C None System Control C Manual C Egternal	Test Set RF Phase Detector	
Reference Source	Output Front Panel	•
Agilent E8257D	Destination Reference Source	-
Tantase del (none)		
Asset Manager		Preset
	Close	Help

Рис. 29

and an angle in our one in the	, .			- 1
Absolute	e phase no	ise (using a	a phase locked loop	
(Curre	nt Test Set	: Aglient/H	P 70420A/N5500A	.)
Input Attenuation	LNA I	Low Pass F	ilter	
Inge I Stro	120 1	1112	IM Auto	DC Block
LNA Gain				
Auto Gain Minimum Auto	o Gain 5	6 dB 💌	G 8	
C Pause after Auto Gain Adjustme	nt		C ()	
C Exed Gain Fixed	d Gain 1	4 dB 👻		
Delector Maximum Incut Levels				
Microwave Phase Diet	0	dEmi		
R F Phase Det	0	dSm	PLL Integra	tor Attenuation 0 dB
AMDE	o	dSin		
Ignore out-of-lock conditions	IT Pu	sed Carrier		Preset

Рис. 30

ype and hange Sourc	ces Cal Block Diagram Absolute phase nois	Test Set [Downconverter] Graph] e (using a phase locked loop)
Input Frequency	(Current Downconverte	Input Attenuation 0 v dB V Atto
L.O. Frequency	AUTO 💌	Microwave / Millimeter Band
I.F. Frequency	600E+6	Microwave (0 - 26.5 GHz)
Millimeter L.O. Freque	ncy 0	Millimeter Band Mixer Blas
LO. Po Analytic View C Baseband C	wer 10 💼 dBm	Reference Chain Reference 10 MHz 💌
Maximum Moxer Input L	evel 🛛 📑 dBm	Tuning Sensitivity 0 ppm / V 0 Hz / V (Nominal)
Maximum AM Detector	Level 0 🛨 dBm	100 MHz PLL Bandwidth 126 💌 Hz
		600 MHz PLL Bandwidth 10000 + Hz

Рис. 31

Data
Deta 1
Deta
Data
Udia
Data
Preset
erences

Рис.32

Рис.33

7.4.10 Значения погрешности измерения амплитуды фазовых шумов должны соответствовать значениям не более ± 2 дБ при отстройках от $1\cdot10^{-8}$ до 1,0 МГц исключая от несущей и ± 4 дБ при отстройках от 1 до 100 МГц. В противном случае прибор бракуется.

7.5 Определение пределов допускаемой абсолютной погрешности измерений амплитудного шума

7.5.1 Определение пределов допускаемой абсолютной погрешности измерений амплитудного шума проводится только для опций 001 и 5507А.

7.5.2 Для измерения необходимо отсоединить опорный генератор, указанный на рис. 1.

7.5.3 Для опции 001, на рис.2.1 сигнал подавать на вход Signal, для модификации с N5507A необходимо соединить кабелем выход N5507A AM с N5500A Noise и сигнал подавать на вход N5507A Signal.

7.5.4 Перед проведением измерения необходимо провести процедуру калибровки (при каждом изменении частоты несущего сигнала необходимо проводить калибровку). 7.5.5 Калибровка АМ

7.5.5.1 Для опции 001 и N5507А установить

		Couple Graph Type	e to Measuren	nent Type	
Offset Frequency R	ange				
Start Offset 1		Hz	Stop Offset	2E+6	Hz
FFT Quality	FFT Analyze	Hinh Resolution	of Averages	4 Define Custo	m Segment Table –
Swept Quality	Fast C	High Resolution	C Custom	Si	vept

Рис.34

7.5.5.2 Необходимо при изменении частоты несущего сигнала вносить изменения во вкладке Source, устанавливая значение частоты несущий и уровень мощности сигнала.

lent E5500			8 2
Type and Rang	e Source Cal	Block Diagram Test Set Downconverter AM Noise	Graph
Carrier Source	e		
Frequency	10E+6	Hz Power 5 dBm	
c	amer Source Outpu	it is connected to: 📀 Test Set 🛛 🗘 Down	nconverter
Detector Inp	ut		1
Frequency	10E+6	Hz	
			Preset
	N 25° 4		

Рис. 35

ilent E5500		14 900	Mildale,	- 1.5		8 - 2
Type and Range Source C	al Block D	liagram Test Se AM Noise	t Downconv	verter Gr	aph	
Detector Constant						
C Use internal a	utomatic self-ca	alibration				
C Use current d	etector constar	t				
C Derive detect	or constant from	n double - sided s	pur			
Our Derive detect	or constant from	n single - sided sp	ur			
Current Phase D	stector Constar	t 168.3E-3	\	/olts / Rad	1	
Known Spur Parameters Offset Frequency	10	Hz	Amplitude	-55	dBc	
Calibration Source						
theck (manual)	•	Frequency	10E+6	Hz F	ower 5	dBm
Asset Manager						Preset
				- 1	-	Links

Рис. 36

ype and Range Source Cal	Block Diagram Test Set Downconverter Graph AM Noise	
Carrier Source	AM Detector Test Set AM Detector	
Down Converter (none) (* <u>N</u> one (* <u>S</u> ystem Control (* <u>M</u> anual (* Egternal		
Asset Manager		Preset

Рис. 37

and Press Same Col	1 Directory	Norman T	and Cat	Demonstration of the	Creek
ype and Hange Source Cal	Biock	Jagram I	લ્લ ગયા	Downconverter	Graph
		AM	noise		
	Current T	est Set: Ani	ent/HP	70420A/N5500A)	
	(
Input Attenuation		LNA Low I	ass Hite	ar	
0dB ▼ F Adu		20 MHz	-	Auto	C Block
LNA Gain				- Drishizer M	
(Auto Gain Uto		14 40	_	C Bas	
Minimu	m Auto Ga	an 14 dB	-	E Bab	
C Pause after Auto Gain Adj	ustment			C Day	
C Exed Gain	Fixed Ga	ain 14 dB	•		
Dilan a Loning to mark back					
histoways Phase D	- 10	-			
an Null	1.	_			- Mar - 10
	or le	93		PLL integrato	Attenuation
A.M. D	10	10 or 1 12			
I Ignore out-of-lock conditions	5	Puised	Jamer		Preset
			-		
Contraction of the second second second second					

Рис. 38

			A	M noise		
Title	kgilent E5500	Absolute Phase Nois	e Mea	surement		•
			PV	When saving, use T	itle as Filenam	e.
(X Scale	Graph Type	AM noise (dBc/H	z)	-		•
Minimum	10	Hz Ma	wimum	100E+3	Hz	Fit <u>X</u> ScaleTo Data
Y Scale fo	or AM Noise				_	
Maximum	0	dBc / H	Hz			Fit Y Scale To Data
Minimum	-170	dBc / ł	Hz			
	Nor	nalize trace data to a	a 1		Hz bandwidt	h
Scale trac	e data to a nev	v carrier frequency o	f 1	times the c	urrent carrier fr	requency.
		Shift trace data by	0	dB		
	Trac	e Smoothing Amour	nt 0	÷		Preset
	Power pr	esent at input of DU	то	dBm		Display Preference

Рис. 39

7.5.5.3 Генератор 1 (E8257D) определим как генератор сигнала несущей частоты. Генератор 2 (E8257D) как генератор сигнала отстройки. Установить на Генераторе 1 выходной сигнал 10 МГц, амплитуда 5 дБм. Подать сигнал и измерить его на выходе с Input 11667A (на конце кабеля) измерителем мощности N8482A. Используя индикатор блока ваттметра регулировать выходную мощность сигнала с генератора 1, чтобы на ваттметре было значение 5 дБм (зафиксировать реальное значение с ваттметра) Р1. Выключить генерацию сигнала. На генераторе 2 подать сигнал с частотой 10,000010 МГц и амплитудой -50 дБм (зафиксировать реальное значение с ваттметра регулировать сигнала с генератора 2, чтобы на ваттметра) ИП мощности 8481D. Используя индикатор блока ваттметра было значение с генератора 2, чтобы на ваттметре было значение с игнала с генератора 2, чтобы на ваттметре было значение с игнала с генератора 2, чтобы на ваттметре было значение с игнала с генератора 2, чтобы на ваттметре было значение с игнала с генератора 2, чтобы на ваттметре было значение с игнала с генератора 2, чтобы на ваттметре было значение с игнала с генератора 2, чтобы на ваттметре было значение -50 дБм. Отсоединить Ваттметре и присоединить

кабель с Input 11667А ко входу Signal N5500А (50 kHz – 1.6 GHz). !!! Для отсроек 1, 10 и 100 Гц лучше использовать уровни мощности сигнала Генератор 1 и Генератора 2 :+5 и -25 дБм соответсвенно

Подать сигнал с обоих генераторов.

Запустить Measure ->New measurement

После появления диалогового окна убедиться, что сигналы подаются с 2-х генераторов, нажать continue

gilent E5500 Mea	surement Pause Po	oint	8 2
À	Apply modulation Sep 30, 20	n to carrier signal. 16 07:36:24	
Continue	Retty	Abort	Local

Рис. 40

7.5.5.4 При появлении диалогового окна (Рис.41) отключить выходной сигнал с Генера-

Remove n	nodulation from carri Sep 30, 20	er signal and connect 16 07:36:56	the DUT.

Рис. 41

7.5.6 После успешного прохождения процедуры калибровки необходимо измерить погрешность амплитудных шумов на всех несущих и отстройках, указанных в таблице 5. Для этого провести установки на системе в сответсвии с п. 7.5.7.

Таблица 5								
fin				for				
10 МГц	f _{in} + 10 Гц	f _{in} + 100 Гц	f _{in} + 1 кГц	f _m + 10 кГц	f _{in} + 100 кГц	f _{in} + 1 МГц	-	-
1 ГГц	f _{in} + 10	f _{in} + 100	f _{in} + 1	f _{in} + 10	f _{in} + 100	f _{in} + 1	f _m + 10	f _{in} + 100
	Гц	Γιι	кГц	кГц	кГц	МГц	МГц	ΜΓιι
6 ГГц	f _m + 10	f _{in} + 100	f _{in} + 1	f _{iu} + 10	f _{in} + 100	f _{in} + 1	f _{in} + 10	f _{in} + 100
	Гц	Гц	кГц	кГц	кГц	МГц	МГц	МГц
12 ГГц	f _{in} + 10	f _{in} + 100	f _{in} + 1	f _{iu} + 10	f _{in} + 100	f _{in} + 1	f _{in} + 10	f _{in} + 100
	Гц	Гц	кГц	кГц	кГц	МГц	MI`น	МГц
26,5 ГГц	f _{in} + 10	f _{in} + 100	ք _ա + 1	f _{in} + 10	f _{in} + 100	f _{in} + 1	f _{in} + 10	f _{in} + 100
	Гц	Гц	кГц	кГц	кГц	МГц	МГц	МГц

тора 2

7.5.7 При этом во вкладке Define -> Measure -> Cal необходимо установить

ype and Range Source Cal Block Diagram Test Set Downconverter Graph	
AM Noise	
Detector Constant	5.411
C Use internal automatic self-calibration	
Use current detector constant	
C Derive detector constant from double - sided spur	
C Derive detector constant from single - sided spur	
Current Phase Detector Constant 34.55E-3 Volts / Rad	
Known Spur Parameters Offset Frequency 10E+3 Hz Amplitude 40 dBc	
Calibration Source	
check (manual) Frequency 500E+6 Hz Power 10	dBm
Asset Manager	Preset
Chee	Help

Рис. 42

При использовании N5507А для измерения АМ шумов необходимо установить следующие параметры в настройках измерения

Offset Frequency	Ban	de .	I Couple Graph Type	e to measuren	непк туре	
Start Offset 100			Hz	Stop Offset	2E+6	Hz
		FFT An	alyzer Minimum Number	of Averages	4	
FFT Quality						Define Custom Segment Table
Normal	С	Fast	C High Resolution	C Custom	r	FFT
Swept Quality			(and the second		-	
Normal	C	Fast	C High Resolution	C Custom		Swept

Рис. 43

me and Ranne Source Cal	Block Discom	() Crash]
pe and hange tooloo Ca	block Diagram Test Set Downconverter	r Graph
	AM Noise	
Carrier Source		
Frequency IIII	Hz Power 0 dBm	
Carrier Source Out	ut is connected to: C Test Set C Dow	nconverter
Detector Input		
Frequency 1E+9	Hz	
		Preset
		Preset

Рис. 44

jilent E5500	8 2
Type and Range Source Cal Block Diagram Test Set Downconverter Graph	
AM Noise	
Detector Constant	
C Use internal automatic self-calibration	
C Use gurrent detector constant	
C Derive detector constant from <u>d</u> ouble - sided spur	
Derive detector constant from single - sided spury	
Current Phase Detector Constant 28.45E-3 Volts / Rad	
Known Spur Parameters	
Offset Frequency 10E+3 Hz Amplitude 40 dB	ic
Calibration Source	
check (manual) Frequency 500E+6 Hz Power	10 dBm
Asset Manager	Preset
Close	Help

Рис. 45

gilent E5500		8 - 23
Type and Range Source Cal	Block Diagram Test Set Downconverter Graph	1
	AM Noise	
Carrier Source	AM Detector	
thek 1/0 [marual)	Downconverter AM Detector	-
Down Converter		
Agilent/HP 70427A/N	5507	
<u>N</u> one <u>System Control</u> <u>Manual</u>		
C Egtemal		
distant in the	<u>144-16-1 </u>	
Asset Manager		Preset

Рис. 46

The sustaining Langer Lang	AM noise	1	
(Curre	nt Test Set: Agilent/H	P 70420A/N5500A)	
Input Attenuation	LNA Low Pass Fi	iter	
	20 MHz 💌	Auto	☐ <u>D</u> C Block
LNA Gain		- Analyte Ve	
Auto Gain Minimum Aut	to Gain 14 dB 💌	G gas	
C Pause after Auto Gain Adjustme	nt	C Carp	
C Exed Gain Fixe	d Gain 14 dB 💌	He Fine	
-Detector Maximum Input Levels			
Micioware Phase Dec	0 dBm		
	0 dBm	PLL Integrato	r Attenuation 0 dB -
R.F. Phare Det	· · · · · · · · · · · · · · · · · · ·		
FLF PromDet A M Det	0 dim		
R.F. Phare Det. A M. Det	Pulsed Camer		Preset
FLF Phare Det A M. Det	Pulsed Carrier		Preset

Рис. 47

the event verifie 1 eeen	e cai block blag	AM noise
	(Current Downcom	verter: Agilent/HP 70427A/N5507A)
Input Frequency	2259	
L.O. Frequency	AUTO	Microwave / Millimeter Band
I.F. Frequency	600E+6	Microwave (0 - 26.5 GHz) -
Millimeter L.O. Freque	ncy 0	─ Millimeter Band Mixer Bias
L.O. Po	wer 10 🕂 dBm	Reference Chain
		Reference 10 MHz -
C Baseband C	Gatter @ 17	Egtemal Tune Enable
Maximum Mixer Input L	evel 0 🛨 d	-Tuning Sensitivity dBm 0 ppm / V 0 Hz / V
		(Nominal)
Maximum AM Detector	revei la 🗔 d	100 MHz PLL Bandwidth 126 - Hz
	Present	600 MHz PLL Bandwidth 10000 - Hz

Рис. 48

			A	M noise		
Ttle	glert E550) Absoluti	Phase Noise	Mean	urement		•
			V V	/hen saving, use Title	as Filenam	ne.
G	iraph Type AM no	ise (dBc/Hz)				•
X Scale Minimum	100	Hz Maxi	mum	100E+3	Hz	Fit <u>X</u> Scale To Data
Y Scale fo	r AM Noise		-			
Maximum	0	dBc / Hz				Rt Y Scale To Data
Minimum	-170	dBc / Hz				
	Normalize tr	ace data to a	1	ŀ	lz bandwid	th
Scale trace	data to a new came	frequency of	1	times the cum	ent camer f	requency.
	Shift	trace data by	0	dB		
	Trace Smo	othing Amount	0	+		Preset
	and the second second		-			N 1 N 1

Рис. 49

Рис. 50

7.5.8 Генератор 1 (E8257D) определим как генератор сигнала несущей частоты. Генератор 2 (E8257D) как генератор сигнала отстройки. Установить на Генераторе 1 выходной сигнал 10 МГц, амплитуда 5 дБм. Подать сигнал и измерить его на выходе с Input 11667A (на конце кабеля) измерителем мощности N8482A. Используя индикатор блока ваттметра регулировать выходную мощность сигнала с генератора 1, чтобы на ваттметре было значение 5 дБм (зафик-сировать реальное значение с ваттметра) Р1. Выключить генерацию сигнала. На генераторе 2 подать сигнал с частотой 10,000010 МГц и амплитудой -50 дБм (зафиксировать реальное значение с ваттметра) Р1. Измерить сигнал на выходе с 11667A (на конце кабеля) ИП мощности 8481D. Используя индикатор блока ваттметра регулировать выходную мощность сигнала с генератора 2, чтобы на ваттметре было значение -50 дБм. Отсоединить Ваттметр и присоединить кабель с Input 11667A ко входу Signal N5500A (50 kHz – 1.6 GHz). !!! Для отсроек 1, 10 и 100 Гц лучше использовать уровни мощности сигнала Генератор 1 и Генератора 2 :+5 и -25 дБм соответсвенно. Вычислить погрешность измерения мощности амплитудных шумов по следующим формулам

Pspur = P2-P1-6дБ Рпг = Ризм - Pspur

7.6 Проверка программного обеспечения

7.6.1 Проверка программного обеспечения (ПО) анализаторов осуществляется в соответствии с РЭ.

7.6.2 Результаты проверки считать положительными, если идентификационные данные ПО системы соответствуют данным, приведенным в таблице 6. Таблица 6

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	5500 Phase Noise Measurement
Номер версии (идентификационный но- мер) ПО	Не ниже А.03.07

8 Оформление результатов поверки

8.1 При положительных результатах поверки на систему оформляется свидетельство установленной формы.

8.2 При поверке системы результаты измерений заносят в протокол произвольной формы на бумажном носителе. На оборотной стороне свидетельства и (или) на дополнительных листах приводят результаты измерений для поверяемого модуля.

8.3 В случае отрицательных результатов поверки системы к дальнейшему применению не допускается. На нее выдается извещение о непригодности к дальнейшей эксплуатации с указанием причин забракования.

Начальник НИО-1

О.В. Каминский