Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ФГУП «СНИИМ»)

**УТВЕРЖДАЮ** 

Заместитель директора

ФГУП «СНИИМ»

В.Ю. Кондаков

«12» апреля 2019 г.

Государственная система обеспечения единства измерений

# КОМПЛЕКС ИЗМЕРИТЕЛЬНО-ВЫЧИСЛИТЕЛЬНЫЙ «АЧИНСК-Ж4\_М»

Методика поверки МП-185-RA.RU.310556-2019

## 1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика поверки распространяется на Комплекс измерительновычислительный «Ачинск-Ж4\_М» (далее комплекс), предназначенный для измерений массы светлых нефтепродуктов при наполнении железнодорожных цистерн, управления процессом налива нефтепродуктов, а также проведения учетно-расчетных операций при отгрузке нефтепродуктов.
- 1.2 Первичная поверка проводится при вводе в эксплуатацию комплекса, а также после ремонта.
  - 1.3 Периодическая поверка проводится по истечении интервала между поверками.
  - 1.4 Интервал между поверками 2 года.
- 1.5 Допускается проведение поверки отдельных автономных блоков из состава комплекса (постов налива) в соответствии с заявлением владельца комплекса с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.

#### 2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

| Наименование операции                                        | Номер пункта методики поверки |  |
|--------------------------------------------------------------|-------------------------------|--|
| 1 Внешний осмотр                                             | 7.1                           |  |
| 2 Опробование                                                | 7.2                           |  |
| 3 Проверка метрологических характеристик                     | 7.3                           |  |
| 4 Проверка идентификационных данных программного обеспечения | 7.4                           |  |

2.2 При получении отрицательного результата при проведении какой-либо из операций поверка прекращается.

## 3 СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки применяют эталоны и средства измерений приведенные в таблице 2.
- 3.2 Все применяемые средства измерений должны быть поверены, а эталоны аттестованы в установленном порядке.
- 3.3 Допускается использование других средств поверки, обеспечивающих определение метрологических характеристик комплекса с требуемой точностью.

Таблица 2 – Средства поверки

| Номер    | Наименование и тип основного или вспомогательного средства поверки;          |  |  |  |  |
|----------|------------------------------------------------------------------------------|--|--|--|--|
| пункта   | обозначение нормативного документа, регламентирующего технические            |  |  |  |  |
| методики | требования, и (или) метрологические и основные технические характеристики    |  |  |  |  |
| поверки  | средства поверки                                                             |  |  |  |  |
| 7.3      | Установка поверочная мобильная эстакады автоматизированного тактового налива |  |  |  |  |
|          | нефтепродуктов CBPm                                                          |  |  |  |  |
|          | Диапазон измерений массового расхода от 60 до 600 т/ч, $\Pi\Gamma \pm 0.1$ % |  |  |  |  |
|          | Измеритель-регистратор температуры и относительной влажности EClerk-M-11-    |  |  |  |  |
| 7.2, 7.3 | RHT Температура: от минус 40 до плюс 70 °С ПГ $\pm 1,0$ °С                   |  |  |  |  |
|          | Относительная влажность: от 10 до 90 % ПГ ±3 %                               |  |  |  |  |
| 7.2, 7.3 | Измеритель абсолютного и дифференциального давления газа МБГО-2.             |  |  |  |  |
|          | Диапазон измерений от 40 до 150 кПа; ПГ $\pm$ (30+0,001 · P) Па              |  |  |  |  |

# 4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 Поверка выполняется специалистами аккредитованного в установленном порядке юридического лица или индивидуального предпринимателя, ознакомившимися с технической и эксплуатационной документацией и настоящей методикой поверки.
- 4.2 При проведении поверки должны быть соблюдены требования предусмотренные правилами промышленной безопасности и охраны труда, действующими на территории АО «АНПЗ ВНК», федеральными нормами и правилами в области промышленной безопасности «Правила безопасности в нефтяной и газовой промышленности».
- 4.3 Должны выполняться требования действующих нормативных актов, инструкций по охране труда и окружающей среды.
- 4.4 При проведении поверки должны соблюдаться требования безопасности, изложенные в «Правилах технической эксплуатации электроустановок потребителей», эксплуатационной документации комплекса, его компонентов и средств поверки, должны быть соблюдены требования безопасности по ГОСТ 12.3.019.

# 5 УСЛОВИЯ ПОВЕРКИ

- 5.1 Условия поверки комплекса должны соответствовать условиям его эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки.
  - 5.2 Условия эксплуатации комплекса:
  - температура окружающего воздуха:
    - оборудование поста налива от минус 50 до плюс 50 °C;
    - подсистема управления от плюс 5 до плюс 35 °C;
  - температура измеряемой среды от минус 40 до плюс 60 °C;
  - относительная влажность воздуха от 30 до 90 %;
  - атмосферное давление от 84 до 106,7 кПа;
  - 5.3 Жидкость, используемая для проведения поверки: бензины, дизельное топливо.

# 6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки выполнить следующие подготовительные работы:
- провести организационно-технические мероприятия по доступу поверителей к местам установки компонентов комплекса;
- провести организационно-технические мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководствами по эксплуатации применяемого оборудования.
- 6.2 Проверить наличие и работоспособность средств поверки, перечисленных в таблице 2.
- 6.3 Подготовить средства поверки к работе в соответствии с требованиями их эксплуатационной документации.
- 6.4 Провести организационно-технические мероприятия по подключению средств поверки к постам налива.

# 7 ПРОВЕДЕНИЕ ПОВЕРКИ

- 7.1 Внешний осмотр
- 7.1.1 Внешний осмотр и комплектность проверяют путем визуального осмотра.
- 7.1.2 При проведении внешнего осмотра должно быть установлено соответствие комплекса следующим требованиям:
- отсутствие влияющих на работоспособность механических повреждений и дефектов компонентов, входящих в состав комплекса;
  - соответствие комплектности комплекса паспорту;

- наличие маркировки линий связи и компонентов комплекса;
- надписи и обозначения на элементах комплекса должны быть четкими и соответствовать эксплуатационной документации.
- 7.1.3 Результаты проверки считают положительными, если выполняются все вышеперечисленные требования.

### 7.2 Опробование

- 7.2.1 Опробование комплекса проводят в соответствии с руководством по эксплуатации комплекса на рабочей жидкости. На APM оператора задают дозу выдачи нефтепродукта и выполняют налив в железнодорожную цистерну.
- 7.2.2 Герметичность комплекса проверяют визуальным осмотром стыковочных соединений, резьбовых и фланцевых соединений, сальниковых уплотнений, сварных швов после его десятиминутной работы.
  - 7.2.3 Результаты проверки считают положительными, если:
    - работа комплекса проходит в соответствии с эксплуатационной документацией и комплекс не выдает никаких сообщений об ошибках;
    - визуально не обнаружено следов течи измеряемой среды и запотевания при работающем насосе.
  - 7.3 Проверка метрологических характеристик
- 7.3.1 Проверку относительной погрешности измерений массы нефтепродуктов проводят для каждого поста налива в следующем порядке:
- 7.3.2 Подключают установку поверочную мобильную эстакады автоматизированного тактового налива нефтепродуктов СВРт (далее установка поверочная) в соответствии с руководством по эксплуатации на установку.
- 7.3.3 Через APM оператора задают дозу выдачи не менее 40000 кг (в соответствии с вместимостью цистерны). После завершения налива фиксируют в протоколе следующие значения:
  - массу нефтепродукта, кг, по показаниям комплекса;
  - массу нефтепродукта, кг, по показаниям установки поверочной.
- 7.3.4 Относительную погрешность комплекса для каждого налива  $\delta_{\rm M}$  , %, вычисляют по формуле:

$$\mathcal{S}_{\mathrm{M}} = \frac{M_{K} - M_{\mathfrak{I}m}}{M_{\mathfrak{I}m}} \cdot 100 \tag{1}$$

где

 $M_{\scriptscriptstyle K}$  - значение массы нефтепродукта, измеренное комплексом, кг

 $M_{_{2m}}$  - значения массы нефтепродукта, по показаниям установки поверочной, кг.

- 7.3.5 Для каждого поста налива выполняют не менее трех наливов.
- 7.3.6 Результаты проверки считают удовлетворительными, если относительная погрешность измерений массы для каждого налива не превышает  $\pm$  0,25 %;
  - 7.4 Проверка идентификационных данных программного обеспечения
- 7.4.1 Проверку идентификационных данных программного обеспечения проводят в следующей последовательности:
- проверяют соответствие исходного кода программного блока «FC111» проекта «S7300\_Print» исполняемому коду программного блока «FC111» ПО загруженного в контроллер;
- проверяют соответствие цифрового идентификатора (контрольной суммы) метрологически значимой части ПО с цифровым идентификатором ПО, указанным в описании типа и таблице 3.

- 7.4.2 Для проверки соответствия исходного кода программного блока «FC111» экземпляра ПО загруженного в контроллер S7-300 исходному коду программного блока «FC111» проекта на сервере выполняют следующие действия:
  - на сервере запускают приложение Simatic Manager;
  - устанавливают «Online» соединение с контроллером S7-300;
- для блока «FC111» проекта «S7300\_Print» выполняют сравнение блоков. (Для этого нажимают правой клавишей мыши на блоке, выбирают «Compare Blocks», в открывшемся окне выбирают типа сравнения «Online/Offline», выбирают сравнение исполняемого кода «Execute code comparison» и нажимают кнопку «Compare»).

При совпадении исполняемого кода появляется сообщение, что с момента последней модификации отклонений при сравнении блоков не обнаружено.

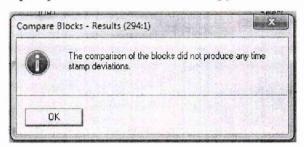



Рисунок 1 – Результат сравнения кода программных блоков

- 7.4.3 Для проверки соответствия цифрового идентификатора (контрольной суммы) метрологически значимой части ПО:
  - на рабочем столе, на сервере, создают текстовый файл «FC111.txt»;
- открывают исходный код программного блока «FC111» в редакторе SCL системы программирования «SIMATIC STEP 7», копируют текст блока в буфер обмена и вставляют скопированный текст в файл «FC111.txt», сохраняют файл;
  - запускают утилиту MD5 Checksum Tool;

для файла «FC111.txt» определяют цифровой идентификатор (контрольную сумму) по
MD5;

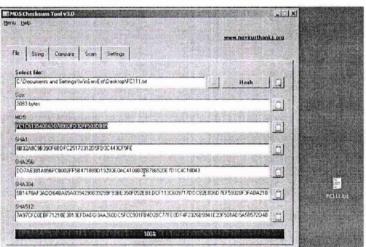



Рисунок 2 – Результат проверки цифрового идентификатора для файла «FC111.txt»

- сравнивают цифровой идентификатор с соответствующими идентификационными данными, указанными в описании типа комплекса.
- 7.4.4 Результат проверки идентификационных данных ПО считают положительным, если:
- установлена полная идентичность исходного кода программного блока «FC111» проекта «S7300\_Print» исполняемому коду программного блока «FC111» ПО загруженного в контроллер;
- цифровой идентификатор (контрольная сумма) метрологически значимой части ПО совпадает с приведенным в описании типа и таблице 3.

Таблица 3 – Идентификационные данные ПО контроллера

| Идентификационные данные (признаки)          | Значение                          |
|----------------------------------------------|-----------------------------------|
| Идентификационное наименование ПО            | блок FC111 проекта S7300 Print    |
| Номер версии (идентификационный номер ПО)    | не присвоен                       |
| Цифровой идентификатор ПО                    | FC1C61354084 D078992FD32FF593DB85 |
| Алгоритм вычисления цифрового идентификатора |                                   |
| ПО                                           | MD5                               |

### 8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Результаты поверки оформляют протоколом произвольной формы.

8.2 Положительные результаты поверки комплекса оформляют свидетельством о поверке в соответствии с приказом Минпромторга РФ № 1815 от 2 июля 2015 г. На обратной стороне свидетельства о поверке или в приложении к свидетельству о поверке приводят метрологические характеристики комплекса в виде таблицы, по форме таблицы 4. В графу 4 занося максимальное фактическое значение погрешности.

Таблица 4

| Номер поста заводской номер первичного преобразователя счетчика-расходомера массового | первичного                                     | Заводской номер вторичного- | Относительная погрешность измерений массы, % |       |
|---------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------------------|-------|
|                                                                                       | преобразователя счетчика-расходомера массового | фактическая                 | допускаемая                                  |       |
| 1                                                                                     | 2                                              | 3                           | 4                                            | 5     |
|                                                                                       |                                                |                             |                                              | ±0,25 |

- 8.3 В случае поверки отдельных автономных блоков из состава системы (постов налива) в свидетельстве о поверке на обратной стороне или в приложении к свидетельству о поверке в таблице 4 приводят информацию только по поверенным постам налива.
- 8.4 Знак поверки наносится на свидетельство о поверке и на пломбу в месте установки контроллера программируемого SIMATIC S7-300 в шкафу управления. Пломба устанавливается на контровочной проволоке пропущенной через отверстия корпуса шкафа управления в соответствии с рисунком 1.

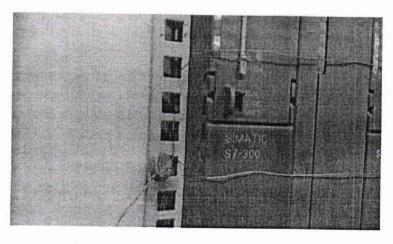



Рисунок 1 – Место пломбирования

- 8.5 Результаты поверки считают отрицательными, если при проведении поверки установлено несоответствие хотя бы по одному из пунктов настоящей методики.
  - 8.6 Отрицательные результаты поверки оформляют выдачей извещения о непригодности.