

Закрытое Акционерное Общество «АКТИ-Мастер» **АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ и ИНФОРМАТИКА**

127254, Москва, Огородный проезд, д. 5, стр. 5 тел./факс (495)926-71-85 E-mail: post@actimaster.ru http://www.actimaster.ru

УТВЕРЖДАЮ

Генеральный директор ЗАО «АКТИ-Мастер»

В.В. Федулов

4 мая 2019 г.

Государственная система обеспечения единства измерений

Генераторы-анализаторы цифровых сигналов с параметрическим измерителем модульные NI PXIe-6571

> Методика поверки NI6571/МП-2019

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

__ Д.Р. Васильев

Настоящая методика поверки распространяется на генераторы-анализаторы цифровых сигналов с параметрическим измерителем модульные NI PXIe-6571 (далее – модули), изготавливаемые компанией "National Instruments Corporation" (Венгрия), и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 - Операции поверки

Наименование операции	Номер пункта	Проведение операции при поверке	
	методики	первичной	периодической
Внешний осмотр и подготовка к поверке	6	да	да
Опробование и функциональное тестирование	7.2	да	да
Определение погрешности установки постоянного напряжения драйверами	7.3	да	да
Определение погрешности порогов срабатывания компараторов	7.4	да	да
Определение погрешности установки и измерения напряжения параметрическими измерителями в режиме источника напряжения	7.5	да	да
Определение погрешности установки и измерения силы тока параметрическими измерителями в режиме источника тока / электронной нагрузки	7.6	да	да
Определение погрешности измерения силы тока и погрешности установки напряжения параметрическими измерителями в режиме источника напряжения / электронной нагрузки	7.7	да	да

1.2 Если у поверяемого модуля используются не все каналы и/или режимы и диапазоны, то по запросу пользователя поверка может быть проведена выборочно по указанным в таблице 1 операциям для определенных каналов, режимов и диапазонов, при этом должна быть сделана соответствующая запись в свидетельстве о поверке.

2 СРЕДСТВА ПОВЕРКИ

- 2.1 Рекомендуется применять средства поверки, указанные в таблице 2.
- 2.2 Средства измерений должны быть исправны, поверены и иметь документы о поверке.
- 2.3 Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых модулей с требуемой точностью.
- 2.4 Переходной кабель поз. 2.8 таблицы 2 должен быть сделан из отрезка изолированного медного провода диаметром (0.8 ... 1.0) mm и длиной (100 ... 150) mm. Один из концов провода нужно освободить от изоляции на длине (6 ... 10) mm и облудить, на другой конец провода припаять вилку banana(m).
- 2.5 При отсутствии модуля коммутации для присоединения каналов поверяемого модуля к мультиметру и источнику-измерителю напряжения и силы тока следует использовать соединительный кабель SHC68-68-EPM и терминальную плату CB-68LP, либо соединительный кабель 68-ріп с переходом на двухполюсные вилки SHC68-H1X38.

NI6571/MΠ-2019	Методика поверки	стр. 2 из 14

№	Наименование средства поверки	Номер пункта методики	Требуемые технические характеристики	Рекомендуемый тип средства поверки, рег. номер реестра
1	2	3	4	5
			1. Средства измерений	
1.1	Вольтметр постоянного напряжения	7.3	абсолютная погрешность измерения постоянного напряжения от –2 до +6 V не более ±1 mV	Мультиметр цифровой модульный NI PXI-4071; рег. № 57582-14
1.2	Источник- измеритель напряжения и силы тока	7.4	относительная погрешность измерения силы постоянного тока от 0.5 µA до 32 mA не более ± 0,2 %; установка напряжения в диапазоне от -2 до +6 V	Источник-измеритель напряжения и силы тока модульный NI PXIe-4136; рег. № 69739-17
		2. Вспо	могательные средства и принад.	
2.1	Шасси PXI Express	Разделы 6, 7	не менее 8-х слотов РХІе мощность источника питания не менее 82 Вт, воздушное охлаждение	National Instruments PXIe-1095
2.2	Модуль контроллера	Разделы 6, 7	PXI Express HDD \geq 40 GB, O3Y \geq 512 MB	National Instruments PXIe-8105
2.3	Модуль коммутации	раздел 7	входной разъем 68 pin; выходы BNC(f)	National Instruments PXI-2515 (PXIe-2515)
2.4	Монитор	Разделы 6, 7		-
2.5	Клавиатура компьютерная	Разделы 6, 7		
2.6	Манипулятор «мышь»	Разделы 6, 7	-	
2.7	Кабель соединительный	7.3 – 7.5	68-pinVHDCI – 68-pin	National Instruments SHC68-C68-D5
2.8	Кабель переходной	7.3 – 7.5	диаметр (0.8 1.0) mm, длина (100 150) mm; 2 шт.	пункт 2.4
2.9	Кабель коаксиальный	7.5	BNC(m-m)	-
2.10	Адаптер	7.5	BNC(f)-banana, 2 шт.	
			3. Программное обеспечение	
3.1	Операционная система	Разделы 6, 7	управление работой модуля	Windows 7; National Instruments "LabVIEW
3.2	Драйвер	Разделы 6, 7	управление работой модуля NI PXIe-6571	National Instruments "NI-Digital Pattern Driver" версии 17.0 и выше
3.3	Драйвер	Разделы 6, 7	управление работой модуля NI PXI-4071	National Instruments "NI-DMM" версии 3.0 и выше
3.4	Драйвер	Разделы 6, 7	управление работой модуля NI PXIe-4136	National Instruments "NI-DCPower" версии 15.1 и выше
3.5	Драйвер	Разделы 6, 7	управление работой модуля NI PXI(e)-2515	National Instruments "NI-SWITCH" версии 4.0 и выше

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области электрических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.
- 4.2 Во избежание несчастного случая и для предупреждения повреждения модуля необходимо обеспечить выполнение следующих требований:
- подсоединение шасси с модулем и средств поверки к сети должно производиться с помощью сетевых кабелей из комплекта шасси и комплектов средств поверки;
- заземление шасси и средств поверки должно производиться посредством заземляющих контактов сетевых кабелей;
- соединения модуля и средств поверки следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах модуля и средств поверки);
- режим вентиляции шасси должен быть установлен в положение "HIGH", незадействованные слоты закрыты фальш-панелями;
 - запрещается работать с модулем при наличии в воздухе взрывоопасных веществ;
 - запрещается работать с модулем в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ±3) °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

- 6.1.1 При проведении внешнего осмотра проверяются:
- чистота и исправность разъемов модуля;
- отсутствие механических повреждений корпуса модуля и элементов плат;
- правильность маркировки и комплектность модуля.
- 6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого модуля, его следует направить в сервисный центр для проведения ремонта.

6.2 Подготовка к поверке

- 6.2.1 Перед началом работы следует изучить руководство по эксплуатации модуля, а также руководства по эксплуатации применяемых средств поверки.
 - 6.2.2 Выполнить установку контроллера и модуля:
 - 1) установить в 3 левых слота шасси РХІе модуль контроллера;
 - 2) присоединить к контроллеру монитор, клавиатуру и мышь;
 - 3) подсоединить шасси и монитор к сети 220 V/50 Hz;
- 4) установить слева направо модули NI PXIe-6571, NI PXI(e)-2515, NI PXI-4171, NI PXIe-4136 в слоты шасси PXIe (модуль NI PXI-4171 установить в гибридный слот шасси);
- 5) в свободные слоты шасси установить фальш-панели; выбрать на шасси режим высокой скорости вентилятора "HIGH";
 - 6) включить шасси и контроллер, дождаться загрузки Windows;

- 6.2.3 Если на контроллере не установлены драйверы "NI-Digital Pattern Driver", "NI-DMM", "NI-DCPower", "NI-SWITCH", следует инсталлировать соответствующие драйверы в соответствии с указаниями руководств по эксплуатации модулей.
- 6.2.4 Подготовить к работе средства поверки в соответствии с руководствами по эксплуатации.
- 6.2.5 Выдержать модуль и средства поверки во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева модуля 30 min.

6.2.6 Выполнить соединения:

- 1) Соединить кабелем SHC68-C68-D5 разъем "DIGITAL DATA AND CONTROL" модуля PXIe-6571 с разъемом "HSDIO" модуля NI PXI(e)-2515 (разъем на панели слева).
- 2) Используя адаптер BNC(f)-banana и кабель BNC(m-m), соединить разъем "BUS A" модуля NI PXI(e)-2515 с клеммами мультиметра PXI-4071 таким образом, чтобы центральный провод кабеля был соединен с клеммой "HI", а экранный провод с клеммой "LO" мультиметра.
- 3) Используя адаптер BNC(f)-banana и переходные кабели (п. 2.4), соединить разъем "BUS В" модуля NI PXI(e)-2515 с клеммами источника-измерителя PXIe-4136 таким образом, чтобы центральный провод кабеля был соединен с клеммой "HI", а экранный провод с клеммой "LO" источника-измерителя.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Общие указания по проведению поверки

В процессе выполнения операций результаты измерений должны укладываться в пределы допускаемых значений, которые указаны в таблицах раздела 7. При получении отрицательных результатов необходимо повторить операцию. При повторном отрицательном результате модуль следует направить в сервисный центр для проведения регулировки или ремонта.

7.2 Опробование и функциональное тестирование

- 7.2.1 Запустить программу "Measurement & Automation Explorer", затем в меню "Devices & Interfaces" выбрать ярлык с наименованием шасси и убедиться в том, что в списке устройств отображается наименование поверяемого модуля и номер слота шасси. Кликнуть на имени модуля, при этом в окне должен отобразиться серийный номер модуля и номер слота шасси.
- 7.2.2 В меню "Software" выбрать папку "Software", открыть вложенную папку "NI-Digital Pattern Driver". В окне справа должен отобразиться номер версии (Version) драйвера. Номер версии должен быть не ниже 18.5.
- 7.2.3 В меню "Devices & Interfaces" кликнуть на наименовании поверяемого модуля в списке устройств, и запустить процедуру тестирования "Self-Test". После завершения процедуры тестирования должно появиться сообщение "The self test completed successfully".
- 7.2.4 В меню "Devices & Interfaces" запустить процедуру автоподстройки "Self-Calibrate". Если появится предупреждение о необходимости отсоединить кабель от разъема модуля, следует выполнить отсоединение кабеля от модуля, после чего запустить процедуру автоподстройки. После завершения процедуры автоподстройки должно появиться сообщение "The device was calibrated successfully".
 - 7.2.5 Записать результаты проверки по пунктам 7.2.1 7.2.4 в таблицу 7.2.

Таблица 7.2 – Опробование и функциональное тестирование

Содержание проверки	Результат проверки	Критерии проверки	
отображение серийного номера и номера слота шасси		правильно отображаются серийный номер модуля и номер слота шасси	
идентификация ПО		"NI-Digital Pattern Driver" версии 18.5 или выше	
процедура "Self-Test"	-14 13	сообщение "The self-test completed successfully"	
процедура "Self-Calibrate"		сообщение "The device was calibrated successfully"	

7.3 Определение погрешности установки постоянного напряжения драйверами

7.3.1 Сконфигурировать мультиметр следующим образом:

Function: DC volts

Range: 10 V

Resolution: 61/2 Digits

Input Impedance: 10MOhm Power line frequency: 50 Hz

- 7.3.2 Подключить поверяемый канал модуля NI PXIe-6571 к гнездам "HI", LO" мультиметра через модуль коммутации NI PXI(e)-2515.
 - 7.3.3 Вызвать на канале модуля NI PXIe-6571 установку цифрового сигнала драйвера.
- 7.3.4 Установить уровень напряжения «высокий» V_{IH} «все единицы» на первое значение, указанное в столбце 1 таблицы 7.3.
- 7.3.5 Выполнить отсчет напряжения на мультиметре Um и записать его в столбец 2 таблицы 7.3.

Вычислить значение абсолютной погрешности

 $\Delta = [Um - V_{IH}]$, занести его в столбец 3 таблицы 7.3.

- 7.3.6 Выполнить действия по пунктам 7.3.4, 7.3.5 для остальных значений уровня «высокий», указанных в столбце 1 таблицы 7.3.
- 7.3.7 Установить уровень напряжения «низкий» V_{IL} «все нули» на первое значение, указанное в столбце 1 таблицы 7.3.
- 7.3.8 Выполнить действия по пункту по пунктам 7.3.4, 7.3.5 для остальных значений уровня напряжения драйвера $V_{\rm IL}$.
- 7.3.9 Установить уровень напряжения «земля» на первое значение, указанное в столбце 1 таблицы 7.3.
- 7.3.10 Выполнить действия по пунктам 7.3.4, 7.3.5 для остальных значений уровня «земля», указанных в столбце 1 таблицы 7.3.
- 7.3.11 Выполнить действия по пунктам 7.3.2 7.3.10 для остальных поверяемых каналов модуля из 0-31.

Таблица 7.3 – Погрешность установки постоянного напряжения драйверами

Установленное значение, V	Измеренное значение Um, V	Абсолютная погрешность (Um – V), V	Пределы допуска погрешности, V	
1	2	3	4	
V _{IH}				
-2.000			±0.015	
-0.857			±0.015	
+2.571			±0.015	
+6.000			±0.015	
V_{IL}				
-2.000			±0.015	
-0.857			±0.015	
+2.571			±0.015	
+6.000			±0.015	
V _{TERM}				
-2.000			±0.015	
-0.857			±0.015	
+2.571			±0.015	
+6.000			±0.015	

7.4 Определение погрешности порогов срабатывания компараторов

Установки на мультиметре по предыдущей операции (пункт 7.3).

- 7.4.1 Отключить поверяемый канал модуля NI PXIe-6571 от гнезд "HI", LO" мультиметра через модуль коммутации NI PXI(e)-2515.
- 7.4.2 Установить на компараторе того же канала, что был выбран в пункте 7.4.1, значения напряжения порогов срабатывания:
 - верхний порог $V_{OH} = 6 V$
 - нижний порог значение, указанное в таблице 7.4 (первое значение V_{OL} = -1.5~V).
- 7.4.3 Установить на драйвере канала напряжение V_{IH} на 0.1 V ниже, чем установленный порог компаратора V_{OL} (для первого значения порога V_{IH} = -1.6 V).
 - 7.4.4 Выполнить определение уровня напряжения компаратором двадцать раз.
- а) Если компаратор ни разу не определил уровень напряжения как «высокий» (выше установленного порога), увеличить уровень напряжения драйвера V_{IH} на шаг Δ_H = 0.2 V (для первого значения порога V_{IH} = -1.4 V).
- b) Если компаратор хотя бы один раз определил уровень напряжения как «низкий» (ниже установленного порога), уменьшить уровень напряжения драйвера V_{IH} на шаг $\Delta_H = 0.2~V$ (для первого значения порога $V_{IH} = -1.8~V$).
- 7.4.5 Выполнить действия по пункту 7.4.4 одиннадцать раз, каждый раз уменьшая размер шага $\Delta_{\rm H}$ в два раза (на последней итерации шаг будет равен разрешению драйвера 122 μV).

В результате последней итерации уровень напряжения драйвера будет равен нижней границе порога срабатывания компаратора $V_{OL}(L)$.

- 7.4.6 Подключить поверяемый канал модуля NI PXIe-6571 к гнездам "HI", LO" мультиметра через модуль коммутации NI PXI(e)-2515.
 - 7.4.7 Измерить напряжение мультиметром U(L) и записать его в столбец 2 таблицы 7.4.

- 7.4.8 Отключить поверяемый канал модуля NI PXIe-6571 от гнезд "HI", LO" мультиметра через модуль коммутации NI PXI(e)-2515.
- 7.4.9 Установить на драйвере канала напряжение V_{IH} на 0.1 V выше, чем установленный порог компаратора V_{OL} (для первого значения нижнего порога $V_{IH} = -1.4$ V).
 - 7.4.10 Выполнить определение уровня напряжения компаратором двадцать раз.
- а) Если компаратор каждый раз определил уровень напряжения как «высокий» (выше установленного порога), уменьшить уровень напряжения драйвера V_{IH} на шаг $\Delta_H = 0.2~V$ (для первого значения нижнего порога $V_{IH} = -1.6~V$).
- b) Если компаратор хотя бы один раз определил уровень напряжения как «низкий» (ниже установленного порога), увеличить уровень напряжения драйвера V_{IH} на шаг $\Delta_H = 0.2~V$ (для первого значения нижнего порога $V_{IH} = -1.2~V$).
- 7.4.11 Выполнить действия по пункту 7.4.10 одиннадцать раз, каждый раз уменьшая размер шага $\Delta_{\rm H}$ в два раза (на последней итерации шаг будет равен разрешению драйвера $122~\mu{\rm V}$).

В результате последней итерации уровень напряжения драйвера будет равен верхней границе порога срабатывания компаратора $V_{OL}(H)$.

- 7.4.12 Подключить поверяемый канал модуля NI PXIe-6571 к гнездам "HI", LO" мультиметра через модуль коммутации NI PXI(e)-2515.
 - 7.4.13 Измерить напряжение мультиметром U(H) и записать его в столбец 3 таблицы 7.4.
 - 7.4.14 Вычислить значения погрешности установки порога срабатывания компаратора:

$$\Delta L = [U(L) - V_{OL}]$$

$$\Delta H = [U(H) - V_{OL}]$$

Занести наибольшее по модулю из этих двух значений в столбец 4 таблицы 7.4.

Таблица 7.4 – Погрешность установки порогов срабатывания компаратора

Установленное	Измеренное	значение, V	Абсолютная	Пределы допуска погрешности, V 5	
значение, V	U(L)	U(H)	погрешность, V		
1	2	3	4		
V _{OL}					
-1.500				±0.025	
+0.100				±0.025	
+3.900				±0.025	
+5.800				±0.025	
V_{OH}					
-1.500				±0.025	
+0.100				±0.025	
+3.900				±0.025	
+5.800				±0.025	

- 7.4.15 Выполнить действия по пунктам 7.4.1 7.4.14 для остальных значений нижнего порога срабатывания поверяемого канала, указанных в столбце 1 таблицы 7.4.
- 7.4.16 Отключить поверяемый канал модуля NI PXIe-6571 от гнезд "HI", LO" мультиметра через модуль коммутации NI PXI(e)-2515.
- 7.4.17 Установить на компараторе того же канала, что был выбран в пункте 7.4.1, значения напряжения порогов срабатывания:
 - нижний порог $V_{OL} = -2 V$
 - верхний порог значение, указанное в таблице 7.4 (первое значение V_{OH} = -1.5~V).

- 7.4.18 Выполнить действия по пунктам 7.4.3 7.4.16 для верхнего порога срабатывания компаратора V_{OH} (заменяя в этих пунктах V_{OL} на V_{OH}).
- 7.4.19 Выполнить действия по пунктам 7.4.1 7.4.18 для остальных поверяемых каналов модуля из 0 31.

7.5 Определение погрешности установки и измерения напряжения параметрическими измерителями в режиме источника напряжения

Установки на мультиметре по предыдущей операции (пункт 7.3).

- 7.5.1 Подключить поверяемый канал модуля NI PXIe-6571 к гнездам "HI", LO" мультиметра через модуль коммутации NI PXI(e)-2515.
- 7.5.2 Вызвать на канале модуля NI PXIe-6571 режим параметрического измерителя (PPMU) и сделать установки:
 - Current Limit Range 32 mA
 - Output Function DC Voltage
- 7.5.3 Установить на канале PPMU модуля первое значение U_S , указанное в столбце 1 таблицы 7.5.
- 7.5.4 Выполнить отсчет напряжения на мультиметре Um и записать его в столбец 2 таблицы 7.5.

Вычислить значение абсолютной погрешности установки напряжения $\Delta_S = (Um - U_S)$, занести его в столбец 3 таблицы 7.5.

7.5.5 Выполнить отсчет напряжения U_{PPMU} на канале PPMU и записать его в столбец 5 таблицы 7.5.

Вычислить значение абсолютной погрешности измерения напряжения $\Delta_M = (U_{PPMU} - Um)$, занести его в столбец 6 таблицы 7.5.

- 7.5.6 Выполнить действия по пунктам 7.5.3 7.5.5 для остальных значений напряжения, указанных в столбце 1 таблицы 7.5.
- 7.5.7 Отключить поверяемый канал модуля NI PXIe-6571 от гнезд "HI", LO" мультиметра через модуль коммутации NI PXI(e)-2515.
- 7.5.8 Выполнить действия по пунктам 7.5.1 7.5.7 для остальных поверяемых каналов модуля из 0-31.

Таблица 7.5 – Погрешность установки и измерения напряжения параметрическими измерителями PPMU в режиме источника напряжения

Установленное РРМU значение U _S , V	Измеренное мультиметром значение Um, V	Абсолютная погрешность установки (Um – U _s), V	Пределы допуска погрешности установки, V	Измеренное	Абсолютная погрешность измерения (U _{PPMU} – Um), V	Пределы допуска погрешности измерения, V
1	2	3	4	5	6	7
-2.000			±0.015			±0.005
-0.857			±0.015			±0.005
+2.571			±0.015			±0.005
+6.000			±0.015			±0.005

- 7.6 Определение погрешности установки и измерения силы тока параметрическими измерителями в режиме источника тока / электронной нагрузки
- 7.6.1 Подключить поверяемый канал модуля NI PXIe-6571 к гнездам "HI", LO" источникаизмерителя напряжения и силы тока через модуль коммутации NI PXI(e)-2515.
- 7.6.2 Сконфигурировать источник-измеритель напряжения и силы тока (SMU) со следующими установками:
 - Source mode: Single point
 - Sense: Local
 - Voltage range: 10 VAperture time: 1 PLC
 - Powerline Frequency: 50 HzCurrent limit autorange: Off
- 7.6.3 Вызвать на канале модуля NI PXIe-6571 режим параметрического измерителя (PPMU) и сделать установки:
- Current level: первое значение I_S , указанное в столбце 1 таблицы 7.6 для первого значения диапазона Current range таблицы 7.6
 - Upper voltage limit: 6 V
 - Lower voltage limit: -2 V
 - Current range: первое значение, указанное в таблице 7.6
 - Aperture time: 20ms
- 7.6.4 Установить на SMU значения Current limit range и Current limit, соответствующие значению диапазона Current range, установленному на канале PPMU модуля. Например, для диапазона 32 mA следует установить на SMU Current limit range / limit равным 100 mA.
- 7.6.5 Установить на SMU первое значение напряжения U_S , указанное в столбце 2 таблицы 7.6.
 - 7.6.6 Активировать выход SMU.
- 7.6.7 Выполнить отсчет силы тока SMU, изменить знак отсчета на противоположный и записать инвертированный отсчет I_{SMU} в столбец 3 таблицы 7.6.
- 7.6.8 Выполнить отсчет силы тока I_{PPMU} на канале PPMU и записать его в столбец 6 таблицы 7.6.
 - 7.6.9 Вычислить значение абсолютной погрешности установки силы тока

 $\Delta_S = (I_{SMU} - I_S)$, занести его в столбец 4 таблицы 7.6.

Вычислить значение абсолютной погрешности измерения силы тока

- $\Delta_{\rm M} = (I_{\rm PPMU} I_{\rm SMU})$, занести его в столбец 7 таблицы 7.6.
- 7.6.10 Выполнить действия по пунктам 7.6.3 7.6.9 для остальных значений первого диапазона Current range канала PPMU, указанных в столбце 1 таблицы 7.6, опуская установки, которые не изменяются.
- 7.6.11 Выполнить действия по пунктам 7.6.3 7.6.10 для остальных значений всех диапазонов Current range канала PPMU, указанных в таблице 7.6, опуская установки, которые не изменяются.
 - 7.6.12 Деактивировать выходы SMU и PPMU.
- 7.6.13 Отключить канал модуля NI PXIe-6571 от гнезд "HI", LO" источника-измерителя напряжения и силы тока через модуль коммутации NI PXI(e)-2515.

7.6.14 Подключить следующий поверяемый канал модуля NI PXIe-6571 к гнездам "HI", LO" источника-измерителя напряжения и силы тока через модуль коммутации NI PXI(e)-2515.

7.6.15 Выполнить действия по пунктам 7.6.3 - 7.6.13 для остальных поверяемых каналов модуля из 0 - 31.

Таблица 7.6 – Погрешность установки и измерения силы тока параметрическими измерителями в режиме источника тока / электронной нагрузки

Установленное РРМU значение I _S	Установленное SMU значение U _S , V	Измеренное SMU значение I _{SMU}	Абсолютная погрешность установки (I _{SMU} – I _S)	Пределы допуска погрешности установки	Измеренное РРМИ значение І _{РРМИ}	Абсолютная погрешность измерения (I _{PMU} – I _{SMU})	Пределы допуска погрешности измерения
1	2	3	4	5	6	7	8
Current rang	ge 32 mA						
-32.00	+5.000			±0.32			±0.32
+32.00	+5.000	1.3- 16.		±0.32			±0.32
-9.60	-1.000			±0.32	- Santa de la companya de la company		±0.32
-32.00	+1.250			±0.32		La Barralan Referen	±0.32
+32.00	-1.000			±0.32			±0.32
Current rang	ge 2 mA						
-2.000	+5.000			±0.020			±0.020
+2.000	+5.000			±0.020			±0.020
-0.600	-1.000	. a c Te .		±0.020			±0.020
-2.000	+1.250			±0.020			±0.020
+2.000	-1.000			±0.020			±0.020
Current rang							
-128.00	+5.000			±1.28			±1.28
+128.00	+5.000			±1.28			±1.28
-38.40	-1.000	A-L		±1.28			±1.28
-128.00	+1.250		_ 11 =	±1.28			±1.28
+128.00	-1.000			±1.28			±1.28
Current rang							
-32.00	+5.000		T	±0.32			±0.32
+32.00	+5.000			±0.32		la sad de	±0.32
-9.60	-1.000	JI II		±0.32			±0.32
-32.00	+1.250	44		±0.32			±0.32
+32.00	-1.000			±0.32			±0.32
Current rang							
-2.000	+5.000			±0.020			±0.020
+2.000	+5.000			±0.020			±0.020
-0.600	-1.000			±0.020			±0.020
-2.000	+1.250			±0.020			±0.020
+2.000	-1.000			±0.020			±0.020

- 7.7 Определение погрешности измерения силы тока и погрешности установки напряжения параметрическими измерителями в режиме источника тока / электронной нагрузки
- 7.7.1 Подключить поверяемый канал модуля NI PXIe-6571 к гнездам "HI", LO" источникаизмерителя напряжения и силы тока через модуль коммутации NI PXI(e)-2515.
- 7.7.2 Сконфигурировать источник-измеритель напряжения и силы тока (SMU) со следующими установками:
 - Source mode: Single point
 - Output function: DC Current
 - Sense: Local
 - Voltage limit range: 6.5 V
 - Voltage limit: 6.5 V
 - Aperture time: 1 PLC
 - Power line frequency: 50Hz
 - Current level range: первое значение, указанное в таблице 7.7
- Current level: первое значение $-I_{SMU}$, указанное в столбце 1 таблицы 7.7 для первого значения диапазона Current range таблицы 7.7

<u>Примечание</u>: в столбце 1 таблицы 7.7 указаны значения силы тока $-I_{SMU}$ с учетом того, что отсчеты силы тока I_{PPMU} имеют противоположный знак (например, если на SMU установлено значение +32 mA, то отсчет PPMU будет равен примерно -32 mA).

- 7.7.3 Вызвать на канале модуля NI PXIe-6571 режим параметрического измерителя (PPMU) и сделать установки:
 - Aperture time: 20ms
- Voltage level: первое значение U_S , указанное в столбце 2 таблицы 7.7 для первого значения диапазона PPMU Current range таблицы 7.7
 - Current limit range: первое значение, указанное в таблице 7.7
 - 7.7.4 Активировать выход SMU.
 - 7.7.5 Выполнить отсчет силы тока РРМU и записать его в столбец 6 таблицы 7.7.
- 7.7.6 Выполнить отсчет силы тока I_{PPMU} на канале PPMU и записать его в столбец 3 таблицы 7.7.
- 7.7.7 Выполнить отсчет напряжения U_{PPMU} на канале PPMU и записать его в столбец 6 таблицы 7.7.
 - 7.7.8 Вычислить значение абсолютной погрешности измерения силы тока

 $\Delta_{\rm M} = ({\rm I}_{\rm PPMU} - {\rm I}_{\rm SMU})$, занести его в столбец 4 таблицы 7.7.

Вычислить значение абсолютной погрешности установки напряжения

 $\Delta_{\rm S} = ({\rm U}_{\rm PPMU} - {\rm U}_{\rm S})$, занести его в столбец 7 таблицы 7.7.

ПРИМЕЧАНИЕ: в столбце 8 таблицы 7.7 значения допуска для абсолютной погрешности установки напряжения указаны с учетом допуска на погрешность измерения напряжения PPMU, равного $\pm 5~\text{mV}$.

- 7.7.9 Выполнить действия по пунктам 7.7.2 7.6.8 для остальных значений первого диапазона SMU Current level range / PPMU Current limit range, указанных в столбце 1 таблицы 7.7, опуская установки, которые не изменяются.
- 7.7.10 Выполнить действия по пунктам 7.7.2 7.7.9 для остальных значений всех диапазонов канала SMU Current level range / PPMU Current limit range, указанных в таблице 7.7, опуская установки, которые не изменяются.
 - 7.7.11 Деактивировать выходы SMU и PPMU.

- 7.7.12 Отключить канал модуля NI PXIe-6571 от гнезд "HI", LO" источника-измерителя напряжения и силы тока через модуль коммутации NI PXI(e)-2515.
- 7.7.13 Подключить следующий поверяемый канал модуля NI PXIe-6571 к гнездам "HI", LO" источника-измерителя напряжения и силы тока через модуль коммутации NI PXI(e)-2515.
- 7.7.14 Выполнить действия по пунктам 7.7.2 7.7.12 для остальных поверяемых каналов модуля из 0 31.

Таблица 7.7 — Погрешность измерения силы тока и погрешность установки напряжения параметрическими измерителями в режиме источника напряжения / электронной нагрузки

Установленное SMU значение $-I_{SMU}$	Установленное РРМU значение U _S , V	Измеренное РРМU значение І _{РРМU}	Абсолютная погрешность измерения (Ірми – Ізми)	Пределы допуска погрешности измерения	Измеренное РРМU значение U _{PPMU} , V	Абсолютная погрешность установки (U _{PPMU} – U _S), V	Пределы допуска погрешности установки, V
1	2	3	4	5	6	7	8
SMU Currer	nt level range	PPMU Curr	ent limit rang	e 32 mA			
0.00	-2.000			±0.48			±20
+32.00	+1.250			±0.32			±20
-32.00	-2.000			±0.48			±20
-32.00	+6.000	La di Santa di India		±0.48			±20
+32.00	+6.000	Carte		±0.48			±20
SMU Currer	nt level range	PPMU Curr	ent limit range	e 2 mA			
0.000	-2.000	The second		±0.030			±20
+2.000	+1.250			±0.020			±20
-2.000	-2.000			±0.030			±20
-2.000	+6.000			±0.030			±20
+2.000	+6.000			±0.030			±20
SMU Curren	t level range	PPMU Curr	ent limit range	e 128 μΑ			
0.00	-2.000			±1.92			±20
+128.00	+1.250			±1.28			±20
-128.00	-2.000			±1.92			±20
-128.00	+6.000			±1.92			±20
+128.00	+6.000			±1.92			±20
SMU Curren	t level range	PPMU Curr	ent limit range				
0.00	-2.000			±0.48			±20
+32.00	+1.250			±0.32			±20
-32.00	-2.000			±0.48			±20
-32.00	+6.000			±0.48			±20
+32.00	+6.000			±0.48			±20
	t level range	PPMU Curr	ent limit range				
0.000	-2.000		-8	±0.030			±20
+2.000	+1.250			±0.020		I law	±20
-2.000	-2.000			±0.030			±20
-2.000	+6.000			±0.030		11 14 14	±20
+2.000	+6.000			±0.030			±20

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

По завершении операций поверки оформляется протокол поверки в произвольной форме. В протоколе поверки разрешается привести качественные результаты измерений о соответствии допускаемым значениям без указания измеренных числовых значений величин.

Вместо оформления протокола поверки допускается указать результаты поверки на обратной стороне свидетельства о поверке.

8.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.