

Закрытое Акционерное Общество «АКТИ-Мастер» АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ и ИНФОРМАТИКА

> 127254, Москва, Огородный проезд, д. 5, стр. 5 тел./факс (495)926-71-85 E-mail: <u>post@actimaster.ru</u> <u>http://www.actimaster.ru</u>

УТВЕРЖДАЮ

Генеральный директор ЗАО «АКТИ-Мастер»

В.В. Федулов июня 2019 г.

Государственная система обеспечения единства измерений

Анализаторы спектра в реальном масштабе времени RSA513A, RSA518A

> Методика поверки RSA518A/MП-2019

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

Д.Р. Васильев

г. Москва 2019 Настоящая методика поверки распространяется на анализаторы спектра в реальном масштабе времени RSA513A, RSA518A (далее – анализаторы), изготавливаемые компанией "Tektronix, Inc.", США, и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции в полном объеме и в последовательности, указанные в таблице 1.

Наименование операции	Номер пункта	Проведение операции при поверке		
	методики	первичной	периодической	
Внешний осмотр и подготовка к поверке	6	да	да	
Опробование и идентификация	7.2	да	да	
Определение усредненного уровня собственных шумов	7.3	да	да	
Определение погрешности измерения частоты	7.4	да	да	
Определение уровня фазовых шумов	7.5	да	да	
Определение погрешности измерения мощности	7.6	да	да	
Определение неравномерности амплитудно- частотной характеристики в полосе частот анализа в реальном времени	7.7	да	да	
Определение уровня интермодуляционных искажений 3-го порядка	7.8	да	да	
Определение погрешности уровня мощности следящего генератора (для опции 04)	7.9	да	да	

Таблица 1 – Операции поверки

2 СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуется применять средства поверки, указанные в таблице 2.

Допускается применять другие аналогичные средства поверки, обеспечивающие

определение метрологических характеристик поверяемых генераторов с требуемой точностью.

2.2 Средства измерений должны быть исправны, поверены и иметь документы о поверке.

	Наименование	Номер	Требуемые	Рекомендуемый тип
N⁰	средства	пункта	технические	средства поверки,
	поверки	методики	характеристики	рег. номер реестра
1	2	3	4	5
			СРЕДСТВА ИЗМЕРЕНИЙ	
1	Стандарт	7.4	относительная погрешность частоты	Стандарт частоты
	частоты		10 MHz не более $\pm 5.10^{-8}$;	рубидиевый Stanford
			уровень выходного сигнала	Research Systems
			$0 \pm 10 \text{ dBm}$	FS725; per. № 31222-06
2	Генератор	7.4 - 7.8	диапазон частот от 250 kHz до 18 GHz;	Генератор сигналов
	сигналов		уровень мощности от -20 до +10 dBm	Agilent (Keysight)
	СВЧ # 1	1 1		E8257D с опцией 520;
				рег. № 53941-13

Таблица 2 – Средства поверки

RSA518A/MП-2019	Методика поверки. 25.06.2019	стр. 2 из 14

Продолжение таблицы 2

1	2	3	4	5
3	Генератор сигналов	7.8	частота 2.131 GHz; уровень мошности от -20 до -10 dBm	Генератор сигналов Agilent (Keysight)
	СВЧ # 2		ypesend weighted in er 20 ge 10 abin	E8257D с опцией 520;
				рег. № 53941-13
4	Генератор	7.6	относительная погрешность	Генератор сигналов
	сигналов		установки уровня мощности	сложной формы со
	НЧ		-20 dBm на частотах 10 и 100 kHz	сверхнизким уровнем
			не более ± 0.3 dB	искажений SRS DS360;
	D	76 77		рег. № 45344-10
Э	Ваттметр	/.0 - /./	диапазон частот от 10 MHz до 18 GHz;	ваттметр проходящей
	проходящей		измерения урорня монности	Robde & Schwarz
	CRU		$20 \text{ no} + 5 \text{ dBm}$ us former $\pm 0.3 \text{ dB}$	NPP_728.
	CD1		$01 - 20 \mu 0 + 5 \mathrm{dBm}$ He conce $\pm 0.5 \mathrm{dB}$	nn -220,
6	Barryern	70	лиапазон настот от 10 MHz по 18 GHz.	Преобразователь
0	поглошаемой	1.9		измерительный
	поглощаемои		измерения урория монности	Robde & Schwarz
	Сри		измерения уровня мощности 10 до 0 dBm не более ± 0.5 dB	NPP_721.
			$01 - 10 \pm 0.0$ dBill He bosiee ± 0.5 dB	NR1 - 221,
	(для опции ч)		ПРИНАЛЛЕЖНОСТИ	per. 12 57000 00
1	Нагрузка	73	$N(m) 50 \Omega$	-
2	Кабель ВЧ	7.4 - 7.8	ВNC(m,m), 2 шт. для п. 7.8	-
3	Кабель СВЧ	7.4, 7.5	N(m,m), 2 шт. для п. 7.8	-
4	Адаптер	7.6	BNC(f)-N(m)	-
5	Адаптер	7.5 - 7.8	SMA(m)-BNC(f)	-
6	Аттенюатор	7.6, 7.7	3 dB, N(m)-N(f)	Agilent 8494B
7	Адаптер	7.8	N(m)-N(m)	-
9	Делитель	7.8	N(f,f,f)	Agilent 11667A
ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ (ПО) И КОМПЬЮТЕР		OTEP		
1	ПО	6	Управление режимами работы	SignalVu-PC версии не
		7.2 – 7.9	анализатора	ниже 3.16
2	Компьютер		Windows 7 (Windows 8/8.1 или	
			Windows 10), 64-bit, 8 GB RAM, 20	-
			GB свободной памяти, порт USB 3.0	

2.3. По письменному запросу пользователя поверку в части определения усредненного уровня собственных шумов (операция 7.3) и определения погрешности измерения мощности (операция 7.6) допускается проводить в ограниченном сверху диапазоне частот. При этом в свидетельстве о поверке должно быть указано ограничение по диапазону частот.

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области радиотехнических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

RSA518A/MП-2019	Методика поверки. 25.06.2019	стр. 3 из 14

4.2 Во избежание несчастного случая и для предупреждения повреждения анализатора необходимо обеспечить выполнение следующих требований:

- подсоединение анализатора к сети должно производиться с помощью сетевого кабеля из комплекта анализатора;

- заземление анализатора и средств поверки должно производиться посредством заземляющих контактов сетевых кабелей;

- присоединения анализатора и оборудования следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах);

 запрещается подавать на вход анализатора сигнал с уровнем, превышающим максимально допускаемое значение;

- запрещается работать с анализатором при снятых крышках или панелях;

- запрещается работать с анализатором в условиях температуры и влажности, выходящих за пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;

- запрещается работать с анализатором в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды: - температура воздуха (23 ±5) °C;

- относительная влажность воздуха от 30 до 70 %;

- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра проверяются:

- чистота и исправность разъемов, отсутствие механических повреждений корпуса и ослабления крепления элементов анализатора;

- сохранность органов управления, четкость фиксации их положений;

- правильность маркировки и комплектность анализатора.

6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого анализатора, его направляют в сервисный центр для ремонта.

6.2 Подготовка к поверке

6.2.1 Перед началом работы следует изучить руководство по эксплуатации анализатора, а также руководства по эксплуатации применяемых средств поверки.

6.2.3 Подсоединить компьютер и средства поверки к сети электропитания 220 V; 50 Hz. Включить питание компьютера и средств поверки.

6.2.4 Если на компьютер не установлена программа SignalVu-PC, следует ее установить, как указано в руководстве по эксплуатации анализатора.

6.2.5 Соединить кабелем USB соответствующий разъем анализатора с разъемом USB компьютера. При этом светодиод на анализаторе сначала будет красного цвета, а затем будет гореть зеленым цветом.

Убедиться в том, что на дисплее отображается статус программы SignalVu-PC (в левой стороне). Если имеется сообщение "Unaligned data", его не следует считать ошибкой.

6.2.6 Перед началом выполнения операций средства поверки и анализатор должны быть выдержаны во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева анализатора 30 min.

RSA518A/MП-2019	Методика поверки. 25.06.2019	стр. 4 из 14
-----------------	------------------------------	--------------

7.1 Общие указания по проведению поверки

7.1.1 Операции поверки 7.3 – 7.9 можно выполнять в любой последовательности, но сначала необходимо выполнить операцию 7.2.

7.1.2 В процессе выполнения операций результаты заносятся в протокол поверки.

Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах настоящего раздела документа.

При получении отрицательных результатов по какой-либо операции необходимо повторить операцию. При повторном отрицательном результате анализатор следует направить в сервисный центр для проведения регулировки или ремонта.

7.2 Опробование и идентификация

7.2.1 Войти в меню Help, About Tektronix Real Time Spectrum Analyzer.

На панели программы должны отобразиться идентификационные данные анализатора и установленного программного обеспечения:

Device Type, Device Serial Number, SignalVu-PC Version, Firmware Version Записать в таблицу 7.2 результаты идентификации. Выйти из меню клавишей Close.

7.2.2 После прогрева анализатора в течение не менее 30 min выполнить заводскую установку и автоподстройку, для чего:

- выбрать в меню программы Presets > Main

- выбрать в меню программы Tools > Alignments > Align Now

Процесс автоподстройки занимает несколько секунд, по его завершению не должно появиться сообщений об ошибках.

Записать в таблицу 7.2 результат автоподстройки.

Содержание проверки	Результат проверки	Критерии проверки
отображение наименования и серийного номера		правильно отображаются наименование и серийный номер
идентификация ПО		SignalVu-PC версии не ниже 3.16.0014 Firmware Ver. 1.10 и выше
процедура заводской установки и автоподстройки		нет сообщений об ошибках

Таблица 7.2 – Опробование и идентификация

7.3 Определение усредненного уровня собственных шумов

7.3.1 Присоединить к входному разъему анализатора "RF In" согласованную нагрузку N(m) 50 Ω .

7.3.2 Сделать на анализаторе установки: Setup > Settings > Traces > Detection > Avg (VRMS) Function > Avg (of logs), Count 100 Settings > BW > Filter Shape > Flat-top Setup > Amplitude > Internal Settings > Auto (uncheck) > 0, Attenuation 0 dB Setup > Amplitude > Internal Preamp, Preamp ON Reference Level -80 dBm Center Frequency 500 kHz; Span 100 kHz; RBW 100 Hz

RSA518A/MП-2019	Методика поверки. 25.06.2019	стр. 5 из 14
-----------------	------------------------------	--------------

7.3.2 Установить маркерную функцию измерения шумов: Markers > Define Markers > Readouts > Power Markers > Add Markers > Peak

7.3.3 После завершения усреднений поместить маркер вблизи среднего уровня шумовой дорожки, не обращая внимание на возможные случайные выбросы.

Записать отсчет маркера в столбец 2 таблицы 7.3.

7.3.4 Выполнить операцию для остальных значений частоты, указанных в столбце 1 таблицы 7.3. Для анализатора RSA513A закончить измерения на частоте 13.5 GHz.

7.3.5 Отсоединить согласованную нагрузку от анализатора.

	Измеренное	Верхний		Измеренное	Верхний
Частота	значение,	предел допуска,	Частота	значение,	предел допуска,
	dBc/Hz	dBc/Hz		dBc/Hz	dBc/Hz
1	2	3	1	2	3
500 kHz		-138	6 GHz		-155
1 MHz		-138	7 GHz		-151
10 MHz		-153	9 GHz		-161
30 MHz		-158	12 GHz		-161
1 GHz		-158	13.5 GHz		-161
2 GHz		-156	14.5 GHz		-159
2.7 GHz		-153	15 GHz		-157
4 GHz		-149	17 GHz		-159
5 GHz		-155	17.99 GHz		-157

Таблица 7.3 – Усредненный уровень собственных шумов

7.4 Определение погрешности измерения частоты

7.4.1 Выполнить заводскую установку и автоподстройку анализатора, для чего:

- выбрать в меню программы Presets > Main

- выбрать в меню программы Alignments > Align Now

7.4.2 Выполнить соединения оборудования:

- соединить кабелем BNC(m,m) выход "10 MHz" стандарта частоты с разъемом "10 MHz In" генератора СВЧ;

- соединить кабелем N(m,m) выход "RF Out" генератора СВЧ с входным разъемом "RF In" поверяемого анализатора.

7.4.3 Установить на генераторе СВЧ уровень 0 dBm, частоту 1 GHz. Активировать выход генератора.

7.4.4 Установить на анализаторе: Reference Level +10 dBm Center Frequency 1 GHz; Span 30 kHz Markers > Peak

7.4.5 Записать отсчет маркера анализатора в столбец 2 таблицы 7.4.

7.4.6 Отключить выход генератора СВЧ.

RSA518A/MП-2019	Методика поверки. 25.06.2019	стр. 6 из 14
	meredina nobeptan 25.00.2017	cip. 01

7.4.7 Для периодической поверки рассчитать пределы допускаемых значений в столбцах 1 и 3 таблицы 7.4 по следующим данным:

 $F0 = 1 \text{ GHz}; \Delta F = (2 + N) \text{ kHz}; N - количество лет после выпуска анализатора из производства или подстройки опорного генератора (округленное до целого числа в большую сторону).$

ruomių 7.4 morpemnoerbi	пэмерения частоты	
Нижний предел допускаемых значений частоты, GHz	Измеренное значение частоты, GHz	Верхний предел допускаемых значений частоты, GHz
1	2	3
Первична	ая поверка (поверка после по,	дстройки)
0.999 997		1.000 003
	Периодическая поверка	
$F0 - \Delta F$		$F0 + \Delta F$

Таблица 7.4 – Погрешность измерения частоты

7.5 Определение уровня фазовых шумов

7.5.1 Выполнить заводскую установку и автоподстройку анализатора, для чего:

- выбрать в меню программы Presets > Main

- выбрать в меню программы Alignments > Align Now

7.5.2 Выполнить соединения оборудования:

- соединить кабелем BNC(m,m) выход "Ref Out" генератора CBЧ с разъемом "Ref In" поверяемого анализатора;

- соединить кабелем N(m,m) выход "RF Out" генератора СВЧ с входным разъемом "RF In" поверяемого анализатора.

7.5.3 Установить на анализаторе режим внешней синхронизации:
 Setup > Acquire > Frequency Reference, External (10 MHz)
 Процесс перехода на внешнюю синхронизацию займет несколько секунд.
 Убедиться в том, что на панели индицируется статус Ref: Ext.

7.5.4 Установить на генераторе СВЧ уровень 0 dBm, частоту 1 GHz. Активировать выход генератора.

7.5.5 Сделать установки на анализаторе: Setup > Settings > Traces > Detection: +PEAK Function > Avg (of logs), Count 20

Reference Level +10 dBm Center Frequency 1 GHz

7.5.6 Установить полосу обзора, полосу пропускания и полосу видео: Setup > Settings > Span 40 kHz; RBW 1 kHz, VBW 10 Hz

7.5.7 Установить маркеры: Markers > Define Markers > Markers >Peak Marker Properties > Readouts > Delta > dBc/Hz (установить флажок) Markers > Add

7.5.8 Переместить маркер ΔМ1 на 10 kHz от центра вправо (значение отстройки ΔМ1 индицируется в правом верхнем углу).

7.5.9 После завершения усреднений записать отсчет уровня дельта-маркера ∆М1 в столбец 4 таблицы 7.5.

Отключить маркеры: Markers > All off

RSA518A/MП-2019	Методика поверки. 25.06.2019	стр. 7 из 14
-----------------	------------------------------	--------------

7.5.10 Выполнить действия по пунктам 7.5.6 – 7.5.9, устанавливая значения полосы обзора (Span), полосы пропускания (RBW), полосы видео (VBW) и отстройки ΔF, как указано в столбцах 1, 2, 3 таблицы 7.5.

7.5.11 Отключить выход генератора сигналов СВЧ.

			Измеренное	Верхний предел
Span	RBW / VBW	ΔF	значение фазовых	допускаемых
			шумов, dBc/Hz	значений, dBc/Hz
1	2	3	4	5
40 kHz	1 kHz / 10 Hz	+10 kHz		- 94
400 kHz	10 kHz / 30 Hz	+100 kHz		- 94
4 MHz	100 kHz / 300 Hz	+1 MHz		- 116

T 6					
Гаолица	1.5	- yp	овень	фазовых	ШУМОВ

7.6 Определение погрешности измерения мощности

7.6.1 Выполнить заводскую установку и автоподстройку анализатора, для чего:

- выбрать в меню программы Presets > Main

- выбрать в меню программы Tools > Alignments > Align Now

7.6.2 Используя адаптер BNC(f)-N(m), соединить кабелем BNC(m,m) выходной разъем "BNC+" генератора сигналов HЧ с входным разъемом "RF In" поверяемого анализатора.

7.6.3 Установить на генераторе сигналов НЧ режим синусоидального напряжения на нагрузку 50 Ω, уровень –20 dBm, частоту 10 kHz.

Активировать выход генератора сигналов НЧ.

7.6.4 Сделать установки на анализаторе: Reference Level –15 dBm Setup > Settings > Traces > Detection > +PEAK Function > Avg (Vrms), Count 10 Settings > BW > Filter Shape > Flat-top Setup > Amplitude > Internal Settings > Auto (uncheck) > 0, Attenuation 10 dB Setup > Amplitude > Internal Preamp OFF Center Frequency 10 kHz; Span 10 kHz; RBW 100 Hz Markers > Peak

7.6.5 Записать отсчет маркера анализатора в столбец 2 таблицы 7.6 для частоты 10 kHz.

7.6.6 Установить на генераторе сигналов НЧ уровень -20 dBm, частоту 100 kHz.

7.6.7 Ввести на анализаторе: Center Frequency 100 kHz; Span 100 kHz; RBW 1 kHz Markers > Peak

7.6.8 Записать отсчет маркера анализатора в столбец 2 таблицы 7.6 для частоты 100 kHz.

7.6.9 Отключить выход генератора сигналов НЧ.

7.6.10 Отсоединить кабель с адаптером от поверяемого анализатора.

7.6.11 Подготовить к работе ваттметр СВЧ проходящей мощности, выполнить установку нуля ваттметра, ввести количество усреднений 128.

The second se		
RSA518A/MП-2019	Методика поверки. 25.06.2019	стр. 8 из 14

7.6.12 Выполнить соединения поверяемого анализатора с генератором сигналов СВЧ и ваттметром проходящей мощности СВЧ:

- соединить кабелем BNC(m,m) выход "10 MHz Ref Out" генератора сигналов СВЧ с разъемом "Ref In" поверяемого анализатора;

- присоединить входной разъем кабеля СВЧ ваттметра проходящей мощности к выходу генератора СВЧ через аттенюатор 3 dB (для улучшения согласования);

- присоединить выходной разъем преобразователя мощности ваттметра к входу "RF In" поверяемого анализатора.

7.6.13 Установить на генераторе СВЧ уровень –10 dBm, частоту 10 MHz. Активировать выход генератора.

7.6.14 Установить на анализаторе: Setup > Acquire > Frequency Reference, External (10 MHz) Процесс перехода на внешнюю синхронизацию займет несколько секунд. Убедиться в том, что на панели индицируется статус Ref: Ext. Reference Level –15 dBm Center Frequency 10 MHz; Span 1 MHz; RBW 10 kHz

7.6.15 Подстроить уровень генератора СВЧ так, чтобы отсчет на ваттметре на данной частоте был равен –(20.00 ±0.02) dBm.

7.6.16 Поместить маркер анализатора на пик сигнала (Markers > Peak).
Записать отсчет маркера анализатора в соответствующую строку столбца 2 таблицы 7.6.

Частота	Измеренное значение, dBm	Пределы допуска, dBm	Частота	Измеренное значение, dBm	Пределы допуска, dBm
1	2	3	1	2	3
		Pream	p OFF		
10 kHz		-(19.2 20.8)	5 GHz		-(18.5 21.5)
100 kHz		-(19.2 20.8)	6 GHz		-(18.5 21.5)
10 MHz		-(19.2 20.8)	7 GHz		-(18.5 21.5)
100 MHz		-(19.2 20.8)	7.49 GHz		-(18.5 21.5)
500 MHz		-(19.2 20.8)	9 GHz		-(18.45 21.55)
1 GHz		-(19.2 20.8)	12 GHz		-(18.45 21.55)
2 GHz		-(19.2 20.8)	13.49 GHz		-(18.45 21.55)
2.99 GHz		-(19.2 20.8)	16 GHz		-(18.45 21.55)
4 GHz		-(18.5 21.5)	17.99 GHz		-(18.45 21.55)
		Pream	ip ON		
10 MHz		-(19.0 21.0)	6 GHz		-(18.25 21.75)
100 MHz		-(19.0 21.0)	7 GHz		-(18.25 21.75)
500 MHz		-(19.0 21.0)	7.49 GHz		-(18.25 21.75)
1 GHz		-(19.0 21.0)	9 GHz		-(18.0 22.0)
2 GHz		-(19.0 21.0)	12 GHz		-(18.0 22.0)
2.99 GHz		-(18.25 21.75)	13.49 GHz		-(18.0 22.0)
4 GHz		-(18.25 21.75)	16 GHz		-(18.0 22.0)
5 GHz		-(18.25 21.75)	17.99 GHz		-(18.0 22.0)

Таблица 7.6 – Погрешность измерения мощности

7.6.17 Ввести на анализаторе:

Center Frequency 100 MHz; Span 10 MHz; RBW 100 kHz

DCACI	0.4	A (TT	2010
KSADI	ðA/	MII	-2019

7.6.18 Устанавливать частоту на генераторе СВЧ и соответствующую центральную частоту на анализаторе, как указано в столбце 1 таблицы 7.6.

Подстраивать уровень генератора СВЧ так, чтобы отсчет на ваттметре на данной частоте был равен –20.00 dBm.

Помещать маркер анализатора на пик сигнала (Markers > Peak).

Записывать отсчет маркера анализатора в соответствующую строку столбца 2 таблицы 7.6. Для модификации RSA513A закончить измерения на частоте 13.49 GHz

7.6.19 Отключить выход генератора сигналов СВЧ.

7.6.20 Выполнить действия по пунктам 7.6.13 – 7.6.19 для режима с предварительным усилителем (первое значение частоты 10 MHz), при этом следует в пункте 7.6.4 ввести Setup > Amplitude > Internal Preamp ON.

7.7 Определение неравномерности АЧХ в полосе частот анализа в реальном времени

7.7.1 Выполнить заводскую установку и подстройку анализатора:

- выбрать в меню программы Presets > Main

- выбрать в меню программы Tools > Alignments > Align Now

7.7.2 Подготовить к работе ваттметр СВЧ проходящей мощности, выполнить установку нуля ваттметра, ввести количество усреднений 128.

7.7.3 Выполнить соединения поверяемого анализатора с генератором сигналов СВЧ и ваттметром проходящей мощности СВЧ:

- соединить кабелем BNC(m,m) выход "10 MHz Ref Out" генератора сигналов СВЧ с разъемом "Ref In" поверяемого анализатора;

- присоединить входной разъем кабеля СВЧ ваттметра проходящей мощности к выходу генератора СВЧ;

- присоединить выходной разъем преобразователя мощности ваттметра к входу "RF In" поверяемого анализатора.

7.7.4 Сделать установки на анализаторе: Setup > Acquire > Frequency Reference, External (10 MHz) Процесс перехода на внешнюю синхронизацию займет несколько секунд. Убедиться в том, что на панели индицируется статус Ref: Ext. Setup > Settings > Traces > Detection > +PEAK

Function > Avg (Vrms), Count 10 Settings > BW > Filter Shape > Flat-top

Reference Level +10 dBm

Setup > Amplitude > Internal Settings > Auto (uncheck) > 0, Attenuation 10 dB Center Frequency 30 MHz; Span 42 MHz; RBW Auto (300 kHz) Markers > Define Markers > Peak

7.7.5 Установить на генераторе СВЧ уровень +7 dBm, частоту 30 MHz. Активировать выход генератора.

7.7.6 Подстроить уровень генератора СВЧ так, чтобы отсчет маркера на данной частоте был равен (0.00 ±0.03) dBm.

Зафиксировать отсчет уровня мощности Pref на ваттметре, он будет использоваться как опорный уровень.

RSA518A/MП-2019	Методика поверки. 25.06.2019	стр. 10 из 14

7.7.7 Устанавливать на генераторе значения частоты, указанные в столбце 1 таблицы 7.7. Не менять центральную частоту на анализаторе.

Подстраивать уровень генератора так, чтобы отсчет ваттметра на данной частоте был равен опорному уровню Pref, зафиксированному в пункте 7.7.6.

Помещать маркер анализатора на пик сигнала и записывать отсчеты маркера в столбец 2 таблицы 7.7 для данной центральной частоты.

7.7.8 Установить центральную частоту Center Frequency на анализаторе и частоту на генераторе СВЧ равной 1000 MHz.

7.7.9 Выполнить действия по пунктам 7.7.6, 7.7.7 для данной центральной частоты.

7.7.10 Установить центральную частоту Center Frequency на анализаторе и частоту на генераторе СВЧ равной 5750 MHz.

7.7.11 Выполнить действия по пунктам 7.7.6 – 7.7.7 для данной центральной частоты.

7.7.12 Отключить выход генератора сигналов СВЧ.

Частота, MHz	Измеренное значение, dBm	Пределы допуска, dBm	Частота	Измеренное значение, dBm	Пределы допуска, dBm
1	2	3	1	2	3
Ce	enter Frequency 30	0 MHz	Cer	ter Frequency 100	00 MHz
30	0.00	-	1000	0.00	-
10		±0.5	980		±0.5
14		±0.5	984		±0.5
18		±0.5	988		±0.5
22		±0.5	992		±0.5
26		±0.5	996		±0.5
34		±0.5	1004		±0.5
38		±0.5	1008		±0.5
42		±0.5	1012		±0.5
46		±0.5	1016		±0.5
50		±0.5	1020		±0.5
Cer	nter Frequency 57	50 MHz			
5750	0.00	-			
5730		±0.5			
5734		±0.5			
5738		±0.5			
5742		±0.5			
5746		±0.5			
5754		±0.5			
5758		±0.5			
5762		±0.5			
5766		±0.5			
5770		±0.5			

Таблица 7.7 - Неравномерность АЧХ в полосе частот анализа в реальном времени

7.8 Определение уровня интермодуляционных искажений 3-го порядка

7.8.1 Выполнить заводскую установку и подстройку анализатора:

- выбрать в меню программы Presets > Main

- выбрать в меню программы Tools > Alignments > Align Now

7.8.2 Выполнить соединения двух генераторов сигналов СВЧ, делителя мощности и поверяемого анализатора:

- соединить кабелем BNC(m,m) выход "10 MHz Ref Out" первого генератора сигналов СВЧ с входом "10 MHz Ref In" второго генератора;

- соединить кабелем BNC(m,m) выход "10 MHz Ref Out" второго генератора сигналов СВЧ с разъемом "Ref In" поверяемого анализатора;

- используя адаптер N(m)-N(m), присоединить входное плечо делителя мощности непосредственно к входу "RF In" анализатора;

- соединить кабелем N(m,m) выход "RF Out" первого генератора СВЧ с одним из выходных плеч делителя мощности;

- соединить кабелем N(m,m) выход "RF Out" второго генератора СВЧ с другим выходным плечом делителя мощности.

7.8.3 Сделать установки на анализаторе:
Setup > Acquire > Frequency Reference, External (10 MHz)
Процесс перехода на внешнюю синхронизацию займет несколько секунд.
Убедиться в том, что на панели индицируется статус Ref: Ext.
Setup > Settings > Traces > Detection > +PEAK

Function > Avg (Vrms), Count 10

Settings > BW > Filter Shape > Flat-top

Setup > Settings > Amplitude > Internal Settings > Auto (uncheck) > 0, Attenuation 0 dB Reference Level -20 dBm

Center Frequency 2.13 GHz; Span 10 MHz; RBW 1 kHz Markers > Peak

7.8.4 Установить на первом генераторе СВЧ уровень –20 dBm, частоту 2.129 GHz. Активировать выход генератора СВЧ.

7.8.5 Установить на втором генераторе СВЧ уровень –20 dBm, частоту 2.131 GHz. Активировать выход генератора СВЧ.

7.8.6 Поместить маркер анализатора на пик сигнала первого генератора частотой 2.129 GHz.

Подстроить уровень на первом генераторе СВЧ так, чтобы отсчет маркера на анализаторе был равен (-25.0 ±0.1) dBm.

7.8.7 Поместить маркер анализатора на пик сигнала второго генератора частотой 2.131 GHz.

Подстроить уровень на втором генераторе СВЧ так, чтобы отсчет маркера на анализаторе был равен (-25.0 ±0.1) dBm.

7.8.8 Поместить маркер анализатора на пик большего из двух сигналов интермодуляции (частотой 2.127 GHz или 2.133 GHz).

Вычислить значение уровня интермодуляции как Pim = Pm + 25 dBm и записать это значение в столбец 2 таблицы 7.8.

7.8.9 Отключить выходы генераторов СВЧ.

7.8.10 Отсоединить кабели и адаптеры от анализатора.

RSA518A/MП-2019	Методика поверки. 25.06.2019	стр. 12 из 14
-----------------	------------------------------	---------------

Таблица 7.8 – У	ровень интермодуляционных искажений 3-го поряди	ка
-----------------	---	----

Значения частот, GHz	Измеренное значение уровня сигнала интермодуляции, dBm	Верхний предел допускаемых значений, dBm
1	2	3
2.129 / 2.131		-78

7.9 Определение погрешности уровня мощности следящего генератора (для опции 04)

7.9.1 Выполнить заводскую установку и подстройку анализатора:

- выбрать в меню программы Presets > Main

- выбрать в меню программы Tools > Alignments > Align Now

7.9.2 Подготовить к работе ваттметр СВЧ поглощаемой мощности, выполнить установку нуля ваттметра, ввести количество усреднений 128.

7.9.3 Присоединить разъем преобразователя мощности ваттметра СВЧ к выходу "RF Out" поверяемого анализатора.

7.9.4 Войти на анализаторе в меню следящего генератора: Setup > Displays > Tracking Generator

7.9.5 Выполнить установки на следящем генераторе анализатора: Setup > Settings Center Freq 10 MHz Span 1 MHz Track Gen tab > Output Power Level –5 dBm

7.9.6 Записать отсчет ваттметра СВЧ на частоте 10 MHz в столбец 2 таблицы 7.9.

7.9.7 Устанавливать на следящем генераторе анализатора следующие значения частоты Center Freq, указанные в столбце 1 таблицы 7.9.

Записывать отсчеты ваттметра СВЧ на соответствующих частотах в столбец 2 таблицы 7.9.

7.9.8 Отсоединить преобразователь мощности ваттметра от поверяемого анализатора.

Частота	Измеренное значение, dBm	Пределы допуска, dBm	Частота	Измеренное значение, dBm	Пределы допуска, dBm
1	2	3	1	2	3
10 MHz		-(6.5 3.5)	4 GHz		-(6.5 3.5)
100 MHz		-(6.5 3.5)	4.5 GHz		-(6.5 3.5)
500 MHz		-(6.5 3.5)	5 GHz		-(6.5 3.5)
1 GHz		-(6.5 3.5)	5.5 GHz		-(6.5 3.5)
1.5 GHz		-(6.5 3.5)	6 GHz		-(6.5 3.5)
2 GHz		-(6.5 3.5)	6.5 GHz		-(6.5 3.5)
2.5 GHz		-(6.5 3.5)	7 GHz		-(6.5 3.5)
2.99 GHz		-(6.5 3.5)	7.49 GHz		-(6.5 3.5)

Таблица 7.9 – Погрешность уровня мощности следящего генератора (-5 dBm)

ПОВЕРКА ЗАВЕРШЕНА

RSA518A/MП-2019	Методика поверки. 25.06.2019	стр. 13 из 14
-----------------	------------------------------	---------------

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

При выполнении операций поверки оформляется протокол в произвольной форме.

8.2 Свидетельство о поверке

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.