Федеральное агентство по техническому регулированию и метрологии Федеральное государственное унитарное предприятие «Уральский научно-исследовательский институт метрологии» (ФГУП «УНИИМ»)

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

СИСТЕМА АВТОМАТИЗИРОВАННАЯ ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ КОММЕРЧЕСКОГО УЧЕТА ЭЛЕКТРОЭНЕРГИИ АО «РУСАЛ УРАЛ» (КРАСНОГОРСКАЯ ТЭЦ)

Методика поверки МП 85-264-2018

ПРЕДИСЛОВИЕ

1 РАЗРАБОТАНА:

ФГУП «УНИИМ»

2 ИСПОЛНИТЕЛИ:

Засыпкин С.А., Оглобличева Е.С. (ФГУП «УНИИМ»)

3 УТВЕРЖДЕНА ФГУП «УНИИМ»: « 22 » мая 2019 г.

4 ЗАРЕГИСТРИРОВАНА ФГУП «УНИИМ»: МП 85-264-2018

5 ВВЕДЕНА ВПЕРВЫЕ

СОДЕРЖАНИЕ

1 Область применения
2 Нормативные ссылки
3 Операции поверки
4 Средства поверки
5 Требования к квалификации поверителей
6 Требования безопасности
7 Условия поверки
8 Подготовка к поверке
9 Проведение поверки
10 Оформление результатов поверки
Приложение А (обязательное). Определение относительной погрешности измерительного
канала при измерении электрической энергии и средней мощности 16

Государственная система обеспечения единства измерений.
Система автоматизированная информационноизмерительная коммерческого учета электроэнергии
АО «РУСАЛ Урал» (Красногорская ТЭЦ).
Методика поверки

Дата введения в действие: «	>>	2019 г.
Harm madering a Merre ratio. "		

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая методика распространяется на систему автоматизированную информационноизмерительную коммерческого учета электроэнергии АО «РУСАЛ Урал» (Красногорская ТЭЦ) (далее – АИИС КУЭ) и устанавливает методику поверки измерительных каналов (далее – ИК) АИИС КУЭ.

АИИС КУЭ подвергают поверке покомпонентным (поэлементным) способом с учетом положений раздела 8 ГОСТ Р 8.596-2002.

Допускается проведение поверки отдельных ИК АИИС КУЭ в соответствии с заявлением владельца АИИС КУЭ, с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки. Проведение поверки отдельных ИК АИИС КУЭ и (или) средств измерений (измерительных компонентов) ИК АИИС КУЭ – измерительных трансформаторов тока (далее – ТТ), измерительных трансформаторов напряжения (далее – ТН), счетчиков электрической энергии (далее – счетчик), устройства сбора и передачи данных (далее – УСПД) – для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений не предусмотрено.

Первичную поверку АИИС КУЭ (до ввода в эксплуатацию) проводят после утверждения ее типа. Допускается при поверке использовать положительные результаты испытаний по опробованию методики поверки. При этом свидетельство о поверке оформляется только после утверждения типа АИИС КУЭ.

Периодическую поверку АИИС КУЭ проводят в процессе ее эксплуатации.

Интервал между поверками АИИС КУЭ – четыре года.

Средства измерений ИК АИИС КУЭ должны быть утвержденных типов. Средства измерений ИК АИИС КУЭ должны поверяться в соответствии с интервалами между поверками, установленными при утверждении их типа. Если очередной срок поверки средства измерений наступает до очередного срока поверки АИИС КУЭ, поверяется только этот компонент, а поверка всей АИИС КУЭ не проводится. После поверки средства измерений и восстановления ИК выполняется проверка ИК, той его части и в том объеме, который необходим для того, чтобы убедиться, что действия, связанные с поверкой средства измерений, не нарушили метрологических характеристик ИК (схема соединения, коррекция времени и т.п.).

После ремонта АИИС КУЭ, аварий в энергосистеме, если эти события могли повлиять на метрологические характеристики ИК, а также после замены средств измерений, входящих в его состав, проводится внеочередная поверка АИИС КУЭ в объеме первичной поверки. Допускается проводить поверку только тех ИК, которые подверглись указанным выше воздействиям, при наличии заявления владельца, что остальные ИК этим воздействиям не подвергались.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей методике использованы ссылки на следующие документы:

Приказ Минпромторга России от 2 июля 2015 г. № 1815 с изменениями, утвержденными Приказом Минпромторга России от 28 декабря 2018 г. № 5329	«Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» (Зарегистрировано в Минюсте РФ 04.09.2015, регистрационный № 38822);		
Приказ Министерства труда и социальной защиты РФ от 24 июля 2013 г. № 328н	«Об утверждении Правил по охране труда при эксплуатации электроустановок» (Зарегистрировано в Минюсте РФ 12.12.2013, регистрационный № 30593);		
Приказ Министерства энергетики РФ от 13 января 2003 г. № 6	«Об утверждении Правил технической эксплуатации электроустановок потребителей» (Зарегистрировано в Минюсте РФ 22 января 2003 г., регистрационный № 4145);		
ГОСТ Р 8.596-2002	ГСИ. Метрологическое обеспечение измерительных систем. Общие положения;		
ГОСТ 8.216-2011	ГСИ. Трансформаторы напряжения. Методика поверки;		
ΓΟCT 8.217-2003	ГСИ. Трансформаторы тока. Методика поверки;		
ГОСТ 1983-2015	Трансформаторы напряжения. Общие технические условия;		
ΓΟCT 7746-2015	Трансформаторы тока. Общие технические условия;		
ГОСТ 12.2.003-91	ССБТ. Оборудование производственное. Общие требования безопасности;		
ГОСТ 12.2.007.0-75	ССБТ. Изделия электротехнические. Общие требования безопасности;		
ГОСТ 12.2.007.3-75	Система стандартов безопасности труда. Электротехнические устройства на напряжение свыше 1000 В. Требования безопасности;		
РД 34.11.333-97	Типовая методика выполнения измерений количества электрической энергии;		
РД 34.11.334-97	Типовая методика выполнения измерений электрической		

мощности.

3 ОПЕРАЦИИ ПОВЕРКИ

При проведении первичной и периодической поверок АИИС КУЭ должны быть выполнены операции, указанные в таблице 1. В случае выявления несоответствий хотя бы по одной операции поверка соответствующего ИК приостанавливается до устранения выявленных несоответствий. В случае невозможности устранения выявленных несоответствий АИИС КУЭ бракуется в части неисправных ИК.

Таблица 1 – Операции поверки

	Номер пункта	Проведение операции	
Наименование операции	методики поверки	первичной поверке	периодической поверке
1 Внешний осмотр	9.1	да	да
2 Проверка идентификационных данных программного обеспечения АИИС КУЭ	9.2	да	да
3 Опробование:			_
3.1 Проверка функционирования счетчиков электрической энергии	9.3.1	да	да
3.2 Проверка функционирования устройства сбора и передачи данных	9.3.2	да	да
3.3 Проверка функционирования компьютеров АИИС КУЭ (сервера и/или APM)	9.3.3	да	да
3.4 Проверка функционирования вспомогательных устройств	9.3.4	да	да
3.5 Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения	9.3.5	да	да
3.6 Проверка нагрузки вторичных цепей измерительных трансформаторов тока	9.3.6	да	да
3.7 Проверка падения напряжения в линиях связи счетчиков электрической энергии с измерительными трансформаторами напряжения	9.3.7	да	да
4 Проверка метрологических характеристик:			
4.1 Поверка измерительных компонентов ИК АИИС КУЭ: измерительных трансформаторов тока, измерительных трансформаторов напряжения, счетчиков электрической энергии, устройства сбора и передачи данных	9.4.1	да	да
4.2 Определение погрешности системы обеспечения единого времени	9.4.2	да	да
4.3 Определение относительной погрешности передачи и обработки данных	9.4.3	да	да
4.4 Определение относительной погрешности вычисления приращения энергии	9.4.4	да	да
4.5 Определение относительной погрешности вычисления средней мощности	9.4.5	да	да
4.6 Определение относительной погрешности ИК при измерении электрической энергии и средней мощности	9.4.6	да	нет

4 СРЕДСТВА ПОВЕРКИ

4.1 При проведении поверки АИИС КУЭ применяют следующие средства поверки.

Таблица 2 – Средства поверки АИИС КУЭ

Номер пункта методики поверки	Наименование и тип основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования и (или) метрологические и технические характеристики средства поверки
9.4.1.1	Средства поверки ТТ в соответствии с ГОСТ 8.217-2003
9.4.1.2	Средства поверки ТН в соответствии с ГОСТ 8.216-2011
9.4.1.3	Средства поверки счетчиков СЭТ-4ТМ.03 в соответствии с документом «Счетчик электрической энергии многофункциональный СЭТ-4ТМ.03. Руководство по эксплуатации. Приложение Г. Методика поверки ИЛГШ.411152.124 РЭ1»
9.4.1.3	Средства поверки счетчиков СЭТ-4ТМ.03М в соответствии с документом «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2 «Методика поверки». ИЛГШ.411152.145РЭ1»
9.4.1.4	Средства поверки УСПД ЭКОМ-3000 в соответствии с документом «ГСИ. Программно-технический измерительный комплекс «ЭКОМ». Методика поверки МП 26-262-99»
9.4.2	Приемник навигационный МНП-М3, пределы допускаемой инструментальной погрешности (при доверительной вероятности 0,95) формирования метки времени, выдаваемой потребителям, по отношению к шкале времени UTC(SU) \pm 100 нс
9	Термогигрометр Ива-6А-КП-Д, зав. № 374Е; диапазон измерений температуры от -20 до +60 °C, погрешность ±0,3 °C; диапазон измерений относительной влажности от 0 до 90 %, погрешность ±2 %; диапазон измерений атмосферного давления от 70 до 110 кПа, погрешность ±0,25 кПа
9	Переносной компьютер с установленной операционной системой Windows, программным обеспечением «Конфигуратор СЭТ-4ТМ» и оптическим считывающим устройством (в соответствии с эксплуатационной документацией счетчика)
9	Компьютер (сервер <i>и/или APM</i>) с установленной операционной системой Windows, программным обеспечением «Энергосфера» и «MD5 Hasher»

- 4.2 Эталоны, применяемые при поверке, должны быть аттестованы и иметь действующие свидетельства об аттестации. Средства измерений должны иметь действующие свидетельства о поверке.
- 4.3 Допускается применение средств поверки, отличающихся от приведенных в таблице 2, при условии обеспечения ими определения метрологических характеристик с требуемой точностью.

5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 5.1 К проведению поверки АИИС КУЭ допускаются работники аккредитованного юридического лица или ИП, аккредитованного на право поверки (далее поверители), имеющие квалификационную группу по безопасности не ниже III.
- 5.2 К проведению поверки АИИС КУЭ допускаются поверители, изучившие настоящую методику поверки и руководство по эксплуатации АИИС КУЭ.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1 При выполнении измерений должны быть соблюдены требования Приказа Министерства труда и социальной защиты РФ от 24 июля 2013 г. № 328н «Об утверждении Правил по охране труда при эксплуатации электроустановок», ГОСТ 12.2.007.0-75, ГОСТ 12.2.007.3-75, Правил технической эксплуатации электроустановок потребителей, а также требования безопасности, изложенные в эксплуатационных документах на средства поверки, и средства измерений ИК АИИС КУЭ.
- 6.2 При выполнении измерений должны быть соблюдены требования безопасности, изложенные в эксплуатационной документации на средства поверки и измерительные компоненты АИИС КУЭ.

7 УСЛОВИЯ ПОВЕРКИ

Условия поверки АИИС КУЭ должны соответствовать условиям ее эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки.

8 ПОДГОТОВКА К ПОВЕРКЕ

- 8.1 Для проведения поверки представляют следующую документацию:
- эксплуатационную документацию на компоненты АИИС КУЭ и на АИИС КУЭ в целом (формуляр, инструкцию по эксплуатации);
 - описание типа АИИС КУЭ;
- свидетельства о поверке средств измерений (измерительных компонентов) ИК АИИС
 КУЭ и свидетельство о предыдущей поверке АИИС КУЭ (при периодической и внеочередной поверке);
- паспорта-протоколы информационно-измерительных комплексов АИИС КУЭ,
 актуализированные в течение истекающего межповерочного интервала АИИС КУЭ;
- рабочие журналы АИИС КУЭ с данными по климатическим и иным условиям эксплуатации за интервал между поверками (только при периодической поверке).
 - 8.2 Перед проведением поверки выполняют следующие подготовительные работы:
- определяется состав персонала, привлекаемого к проведению поверки, и проводится его инструктаж;
- проводят технические и организационные мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководствами по эксплуатации применяемого оборудования;
- средства поверки выдерживают в течение времени и в условиях, установленных в эксплуатационной документации на средства поверки;
- проверяется наличие на компьютере программы «MD5 Hasher», входящей в комплект средств поверки. В случае отсутствия необходимо установить указанную программу.

9 ПРОВЕДЕНИЕ ПОВЕРКИ

9.1 Внешний осмотр

- 9.1.1 При проведении внешнего осмотра необходимо убедиться, что:
- фактический состав средств измерений ИК АИИС КУЭ соответствует оборудованию, указанному в описании типа АИИС КУЭ и в эксплуатационной документации АИИС КУЭ;
- фактический состав технических и программных средств информационновычислительных комплексов соответствует указанному в эксплуатационной документации АИИС КУЭ;
 - присутствуют необходимые для средств коммерческого учета пломбы и клейма;
- измерительные компоненты, входящие в состав ИК, исправны и на них нет видимых механических повреждений;
 - в местах подключения проводных линий отсутствуют следы коррозии и нагрева;
- условия эксплуатации средств измерений и оборудования из состава ИК АИИС КУЭ соответствуют требованиям, указанным в эксплуатационной документации АИИС КУЭ.
- 9.1.2 АИИС КУЭ считается выдержавшей внешний осмотр, если она соответствует приведенным в п.9.1.1 требованиям.

9.2 Проверка идентификационных данных программного обеспечения АИИС КУЭ

- 9.2.1 Для проверки идентификационных данных программного обеспечения (далее ПО) АИИС КУЭ запустить программу «MD5 Hasher». В главном окне программы «MD5 Hasher» нажать кнопку «Обзор», после чего в открывшемся окне найти каталог, в котором находится рассматриваемый файл. Выбрать этот файл, кликнув на нем левой кнопкой мыши и нажать кнопку «Открыть». Сразу после этого в окне программы «MD5 Hasher.exe» появится цифровой идентификатор рассматриваемого файла.
- 9.2.2 Результаты проверки идентификационных данных ПО АИИС КУЭ считают положительными, если идентификационное наименование ПО, номер версии и цифровой идентификатор ПО соответствуют значениям, приведенном в таблице 3.

Таблица 3 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	pso_metr.dll	
Номер версии (идентификационный номер) ПО	не ниже 7.1	
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B	
Алгоритм вычисления цифрового идентификатора	MD5	

9.3 Опробование

9.3.1 Проверка функционирования счетчиков электрической энергии

При проверке функционирования счетчиков выполняют следующие операции:

- проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на каждом счетчике. При отсутствии или нарушении таких пломб дальнейшие операции по поверке АИИС КУЭ выполняют после исправления обнаруженных недостатков;
- проверяют работу всех сегментов индикаторов, отсутствие кодов ошибок или предупреждений, прокрутку параметров в заданной последовательности;
- проверяют работоспособность оптического порта счетчика с помощью переносного компьютера. Оптический порт подключают к любому последовательному порту переносного компьютера. Опрашивают счетчик по установленному соединению. Опрос счетчика считается успешным, если получен отчет, содержащий данные, зарегистрированные счетчиком;
- проверяют соответствие индикации даты в счетчике календарной дате (число, месяц, год). Проверку осуществляют визуально или с помощью переносного компьютера через оптопорт.

Проверка функционирования счетчиков считается успешной, если несоответствий не выявлено.

9.3.2 Проверка функционирования устройства сбора и передачи данных

При проверке функционирования УСПД выполняют следующие операции:

- проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на УСПД;
- проверяют правильность функционирования УСПД в соответствии с его эксплуатационной документацией. Проверка считается успешной, если подсоединенный к УСПД счетчик опрошен и нет сообщений об ошибках;
 - проверяют отсутствие сообщений УСПД о текущих нештатных ситуациях.

Проверка функционирования УСПД считается успешной, если несоответствий не выявлено.

9.3.3 Проверка функционирования компьютеров АИИС КУЭ (сервера и/или АРМ)

При проверке функционирования компьютеров АИИС КУЭ (сервера и/или АРМ) выполняют следующие операции:

- с помощью сервера, оснащенного ПО «Энергосфера», проводят опрос счетчиков, входящих в АИИС КУЭ;
- проверяют, что глубина хранения результатов измерений, состояний объектов и средств измерений на сервере АИИС КУЭ составляет не менее 3,5 лет;
- проверяют защиту ПО на компьютере АИИС КУЭ от несанкционированного доступа, для чего запускают на выполнение программу сбора данных и в поле «Пароль» вводят неправильный код;
- проверяют правильность значений коэффициентов трансформации ТТ и ТН,
 хранящихся на сервере АИИС КУЭ.

Проверка функционирования компьютеров АИИС КУЭ (сервера и/или APM) считается успешной, если несоответствий не выявлено.

9.3.4 Проверка функционирования вспомогательных устройств

При проверке функционирования вспомогательных устройств проводят опрос счетчиков и/или УСПД, подключенные с помощью проверяемого вспомогательного оборудования. Вспомогательные устройства считаются исправными, если были установлены коммутируемые соединения и по установленным соединениям успешно прошел опрос счетчиков и/или УСПД.

- 9.3.5 Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения При проверке нагрузки вторичных цепей ТН выполняют следующие операции:
- проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на клеммных соединениях, имеющихся на линии связи ТН со счетчиком. При отсутствии или нарушении таких пломб дальнейшие операции по поверке АИИС КУЭ выполняют после исправления обнаруженных недостатков;
- проверяют значения мощности нагрузки вторичных цепей ТН. Проверка нагрузки вторичных цепей ТН считается успешной, если согласно паспорту-протоколу, утвержденному в установленном порядке, значения мощности нагрузки вторичных цепей измерительных ТН соответствуют требованиям ГОСТ 1983-2015.
 - 9.3.6 Проверка нагрузки вторичных цепей измерительных трансформаторов тока

При проверке нагрузки вторичных цепей ТТ проверяют значения мощности нагрузки ТТ, указанные в паспортах-протоколах. Проверка нагрузки вторичных цепей ТТ считается успешной, если согласно паспорту-протоколу, утвержденному в установленном порядке, значения мощности нагрузки вторичных цепей ТТ соответствуют требованиям ГОСТ 7746-2015.

9.3.7 Проверка падения напряжения в линии связи счетчиков электрической энергии с измерительными трансформаторами напряжения

При проверке падения напряжения в линии связи счетчиков с ТН проверяют значения падения напряжения, указанные в паспортах-протоколах. Проверка падения напряжения в линии связи счетчиков с ТН считается успешной, если согласно паспорту-протоколу, утвержденному в установленном порядке, значения падения напряжения в линиях связи счетчиков с ТН не превышают 0,25 % от номинальных значений напряжения на вторичных обмотках ТН.

9.4 Проверка метрологических характеристик

ИК АИИС КУЭ характеризуется следующими составляющими погрешности измерения электрической энергии и мощности:

- пределы допускаемой относительной погрешности напряжения δ_U , %, и угловой погрешности Θ_U , угл.мин, измерительного трансформатора напряжения, определяемый классом точности трансформатора;
- пределы допускаемой относительной токовой погрешности δ_l , %, и угловой погрешности Θ_l , угл.мин, измерительного трансформатора тока, определяемый классом точности трансформатора;
- пределы допускаемой относительной погрешности измерения электрической энергии счетчиком, определяемый классом точности счетчика, δ_{cu} , %;
- пределы допускаемой относительной погрешности передачи и обработки данных δ_l равны $\pm~0.01~\%$;
- пределы допускаемой относительной погрешности вычисления приращения энергии δ_2 равны \pm 0,01 %;
- пределы допускаемой относительной погрешности вычисления средней мощности δ_3 равны \pm 0,01 %;
- пределы допускаемой абсолютной погрешности отсчета текущего времени Δt равны $\pm \, 5$ с.

Относительная погрешность измерительного канала при измерении электрической энергии и средней мощности определяется расчетным путем согласно Приложению A на основе приведенных выше составляющих погрешности ИК.

9.4.1 Поверка измерительных компонентов ИК АИИС КУЭ: измерительных трансформаторов тока, измерительных трансформаторов напряжения, счетчиков электрической энергии, устройства сбора и передачи данных

Проверяют наличие свидетельств о поверке и срок их действия для всех измерительных компонентов ИК АИИС КУЭ: ТТ, ТН, счетчиков, УСПД. При обнаружении просроченных свидетельств о поверке измерительных компонентов или свидетельств, срок действия которых близок к окончанию, дальнейшие операции по поверке ИК, в который они входят, выполняют после поверки этих измерительных компонентов.

9.4.1.1 Поверка измерительных трансформаторов тока

ТТ из состава ИК АИИС КУЭ поверяют согласно ГОСТ 8.217-2003 с периодичностью, установленной при утверждении их типа. В ходе поверки проверяется соответствие токовой и угловой погрешностей ТТ нормативным требованиям.

9.4.1.2 Поверка измерительных трансформаторов напряжения

ТН из состава ИК АИИС КУЭ поверяют согласно ГОСТ 8.216-2011 с периодичностью, установленной при утверждении их типа. В ходе поверки проверяется соответствие фактических значений погрешности напряжения и угловой погрешности трансформатора напряжения нормативным требованиям.

9.4.1.3 Поверка счетчиков электрической энергии

Счетчики СЭТ-4ТМ.03 из состава ИК АИИС КУЭ поверяют в соответствии с документом «Счетчик электрической энергии многофункциональный СЭТ-4ТМ.03. Руководство по эксплуатации. Приложение Г. Методика поверки ИЛГШ.411152.124 РЭ1».

Счетчики СЭТ-4ТМ.03М из состава ИК АИИС КУЭ поверяют в соответствии с документом «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2 «Методика поверки». ИЛГШ.411152.145РЭ1».

В ходе поверки проверяется соответствие метрологических характеристик счетчика нормативным требованиям.

9.4.1.4 Поверка устройства сбора и передачи данных

УСПД поверяют согласно документу «ГСИ. Программно-технический измерительный комплекс «ЭКОМ». Методика поверки МП 26-262-99»». В ходе поверки проверяется соответствие метрологических характеристик УСПД нормативным требованиям.

9.4.2 Определение погрешности системы обеспечения единого времени

Погрешность определяют для каждого счетчика из состава ИК АИИС КУЭ.

9.4.2.1 Проверка хода часов сервера

Готовят к работе и включают в соответствии с п.2 Руководства по эксплуатации ЦВИЯ.468157.080 РЭ навигационный приемник МНП-МЗ. В конце любого часа по показаниям приемника МНП-МЗ проверяют показания часов сервера. Расхождение показаний часов сервера с показаниями приемника по модулю не должно превышать 1 с.

9.4.2.2 Проверка хода часов УСПД

В конце любого часа по показаниям приемника МНП-М3 проверяют показания часов УСПД. Расхождение показаний часов УСПД с показаниями приемника по модулю не должно превышать 1 с.

9.4.2.3 Проверка коррекции времени встроенных часов счетчиков

Распечатывают журнал событий счетчика.

Расхождение времени часов счетчика и УСПД в момент времени, предшествующий коррекции, по модулю не должно превышать 2 с.

9.4.2.4 Для определения погрешности системы обеспечения единого времени Δt , с, необходимо зафиксировать показания используемого в соответствии с п. 9.4.2.1 источника точного времени t_0 . Вызвать на экран индикаторного табло и зафиксировать показания счетчика по времени t_{c4} . Значение погрешности системы обеспечения единого времени Δt , с, вычисляют по формуле

$$\Delta t = t_{cq} - t_0. \tag{1}$$

Результат поверки считают положительным, если полученное значение погрешности Δt по модулю не превышает 5 с.

9.4.3 Определение относительной погрешности передачи и обработки данных Погрешность определяют для каждого ИК АИИС КУЭ.

Выводят на экран компьютера с помощью ПО «Энергосфера» данные за прошедшие полные сутки по поверяемому ИК: значения электрической энергии за 30-минутные интервалы времени $E(i)_{AUUC}$, кВт-ч (квар-ч), где i — номер 30-минутного интервала времени, i = 1, 2, 3,..., 48.

С помощью установленного на переносном компьютере ПО «Конфигуратор СЭТ-4ТМ» считывают значения профиля мощности счетчика из состава поверяемого ИК за те же сутки N(i), i=1,2,3,...,48.

Проверяют наличие данных, соответствующих каждому 30-ти минутному интервалу времени. Пропуск данных не допускается.

Для каждого 30-ти минутного интервала времени вычисляют действительное значение электрической энергии, кВт·ч (квар·ч), по формуле

$$E(i) = N(i) \cdot K_T \cdot K_H / 2, \qquad (2)$$

где N(i) – значение из регистров средних мощностей за 30 минутный интервал времени, хранящееся в соответствующем массиве профиля мощности счетчика, кВт (квар);

 K_T и K_H — коэффициенты трансформации по току и напряжению соответственно, указанные в технической документации на измерительные трансформаторы.

Относительную погрешность передачи и обработки данных δ_1 , %, вычисляют по формуле

$$\delta_1' = \left(\frac{E_{(i)AHUC}}{E_{(i)}} - 1\right) \cdot 100 ,$$
 (3)

Результат поверки считают положительным, если полученное значение относительной погрешности δ_1 по модулю не превышает 0,01 %.

9.4.4 Определение относительной погрешности вычисления приращения энергии Погрешность определяют для каждого ИК АИИС КУЭ.

Выводят на экран компьютера с помощью ПО «Энергосфера» следующие данные по поверяемому ИК: значение приращения энергии за прошедшие сутки E_{AUUC} , кBт \cdot ч (квар \cdot ч); значения электрической энергии за 30-минутные интервалы времени рассматриваемых суток $E(i)_{AUUC}$, кBт \cdot ч (квар \cdot ч), i=1,2,3,...,48.

Относительную погрешность вычисления приращения энергии δ_2 ′, %, вычисляют по формуле

$$\delta_2' = \left(\frac{E_{(i)AHUC}}{\sum_{i=1}^{48} E_{(i)}} - 1\right) \cdot 100 . \tag{4}$$

Результат поверки считают положительным, если полученное значение относительной погрешности δ_2 по модулю не превышает 0,01 %.

9.4.5 Определение относительной погрешности вычисления средней мощности Погрешность определяют для каждого ИК АИИС КУЭ.

Выводят на экран компьютера с помощью ПК «Энергосфера» следующие данные по поверяемому ИК: значение средней мощности за выбранный 30-ти минутный интервал времени прошедших суток P(i)_{AUUC}, кВт (квар); значение приращения энергии за рассматриваемый 30-ти минутный интервал времени E(i)_{AUUC}, кВт·ч (квар·ч).

Относительную погрешность вычисления средней мощности δ_3 , %, вычисляют по формуле

$$\delta_3' = \left(\frac{P_{(i)AHUC}}{2 \cdot E_{(i)AHUC}} - 1\right) \cdot 100 , \qquad (5)$$

где і – номер выбранного 30-минутного интервала времени.

Результат поверки считают положительным, если полученное значение относительной погрешности δ_3 по модулю не превышает 0,01 %.

9.4.6 Определение относительной погрешности ИК при измерении электрической энергии и средней мощности

Относительная погрешность ИК при измерении электрической энергии и средней мощности определяется расчетным путем согласно Приложению А.

10 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 10.1 Результаты поверки оформляются протоколом поверки произвольной формы.
- 10.2 Если по результатам поверки, проведенной аккредитованными юридическими лицами или индивидуальными предпринимателями, АИИС КУЭ признана пригодной к применению, то оформляют свидетельство о поверке в соответствии с Приказом Минпромторга от 02.07.2015 г. № 1815. В приложении к свидетельству о поверке указываются перечень и состав ИК с указанием наименований, типов, заводских номеров средств измерений (измерительных компонентов), входящих в состав каждого ИК, в соответствии со свидетельством об утверждении типа.
- 10.3 Если по результатам поверки отдельные ИК АИИС КУЭ признаны пригодными к применению, то на эти ИК оформляют свидетельство о поверке в соответствии с Приказом Минпромторга от 02.07.2015 г. № 1815. В приложении к свидетельству о поверке указываются перечень и состав ИК с указанием наименований, типов, заводских номеров средств измерений (измерительных компонентов), входящих в состав каждого ИК, в соответствии со свидетельством об утверждении типа.
- 10.4 Если по результатам поверки АИИС КУЭ признано не пригодным к применению, то выписывается извещение о непригодности к применению в соответствии с Приказом Минпромторга от 02.07.2015 г. № 1815. В приложении к извещению о непригодности указываются перечень и состав ИК с указанием наименований, типов, заводских номеров средств измерений (измерительных компонентов), входящих в состав каждого ИК, в соответствии со свидетельством об утверждении типа.

10.5 Если по результатам поверки отдельные ИК АИИС КУЭ признаны не пригодными к применению, то на эти ИК выписывается извещение о непригодности к применению в соответствии с Приказом Минпромторга от 02.07.2015 г. № 1815 с указанием причин непригодности. В приложении к извещению о непригодности указываются перечень и состав ИК с указанием наименований, типов, заводских номеров средств измерений (измерительных компонентов), входящих в состав каждого ИК, в соответствии со свидетельством об утверждении типа.

Shuy

Заведующий лабораторией 264

Ведущий инженер лаборатории 264

С.А. Засыпкин

Е.С. Оглобличева

Приложение А

(обязательное)

Определение относительной погрешности измерительного канала при измерении электрической энергии и средней мощности

Относительная погрешность измерения активной и реактивной электрической энергии и мощности определяется расчетным путем аналогично РД 34.11.333-97, РД 34.11.334-97 на основе приведенных выше составляющих погрешности ИК АИИС КУЭ, и дополнительных погрешностей, соответствующих условиям применения.

A.1 В качестве показателей точности измерений электрической энергии и мощности принимаются соответственно границы \pm δ_E и \pm δ_P , в пределах которых находится с доверительной вероятностью P=0.95 суммарная погрешность измерений электрической энергии и мощности в рабочих условиях эксплуатации.

А.2 Верхняя $(+\delta_E)$ и нижняя $(-\delta_E)$ границы интервала, в котором с доверительной вероятностью P=0.95 находится относительная погрешность измерения электрической энергии ИК за интервал времени τ , кратный периоду профиля мощности счетчика, рассчитывается на основании соотношения

$$\begin{split} \delta_{\rm E} = & 1,\! 1 \! \cdot \! \sqrt{\delta_I^2 + \delta_U^2 + \delta_\theta^2 + \delta_{J\!I}^2 + \delta_{C\!I}^2 + \delta_1^2 + \delta_2^2}} \;, \\ & \tau_{\rm ZE} = & 0,\! 0.29 \sqrt{\theta_I^2 + \theta_U^2} \cdot \! \sqrt{1 \! - \! \cos^2 \varphi} \big/ \! \cos \varphi - \\ & - \mathsf{для} \; {\rm активной энергии, \%;} \\ \delta_\theta = & 0,\! 0.29 \sqrt{\theta_I^2 + \theta_U^2} \cdot \! \cos \varphi \big/ \sqrt{1 \! - \! \cos^2 \varphi} - \\ & - \mathsf{для} \; {\rm реактивной энергии, \%;} \end{split}$$

 δ_I и δ_U – пределы допускаемых значений амплитудных погрешностей трансформаторов тока и напряжения соответственно, %;

 θ_I и θ_U – пределы допускаемых значений угловых погрешностей трансформаторов тока и напряжения соответственно, угловые минуты;

 $\cos \varphi$ – коэффициент мощности контролируемого присоединения;

 δ_{π} – предел допускаемой погрешности из за потери напряжения в линии присоединения счетчика к трансформатору напряжения, %;

 δ_{cq} – предел допускаемой погрешности счетчика в рабочих условиях $\cos \varphi$, %.

А.3 Верхняя $(+\delta_P)$ и нижняя $(-\delta_P)$ границы интервала, в котором с доверительной вероятностью P=0,95 находится относительная погрешность измерения средней мощности, усредненной за интервал времени τ , кратный периоду профиля мощности счетчика, рассчитывается на основании соотношения

$$\delta_{P} = 1,1 \cdot \sqrt{\delta_{I}^{2} + \delta_{U}^{2} + \delta_{\theta}^{2} + \delta_{II}^{2} + \delta_{CY}^{2} + \delta_{1}^{2} + \delta_{3}^{2} + \delta_{\tau}^{2}}, \quad (A.2)$$

где $\delta_{\tau} = 100 \cdot \Delta t / \tau$, %;

 $\Delta t = 5$ с — предел допускаемой погрешности системы обеспечения единого времени; τ — рассматриваемый интервал времени, с.