УТВЕРЖДАЮ

Технический директор

ответство ООО «ИЦРМ»

м. С. Казаков

м.п.

Модули аналоговые серии BMXSAI0410 Методика поверки

ИЦРМ-МП-135-19

Содержание

1 ВВОДНАЯ ЧАСТЬ	3
2 ОПЕРАЦИИ ПОВЕРКИ	3
2 CDE HOTEL HODEDIGH	ند
3 СРЕДСТВА ПОВЕРКИ	4
4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	4
5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	4
6 УСЛОВИЯ ПОВЕРКИ	4
7 ПОДГОТОВКА К ПОВЕРКЕ	5
8 ПРОВЕДЕНИЕ ПОВЕРКИ	5
9 ОФОМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	7
Приложение А (рекомендуемое)	
приложение <i>г</i> а (рекомендуемое)	

1 ВВОДНАЯ ЧАСТЬ

- 1.1 Настоящая методика устанавливает объем, средства и методы первичной и периодической поверок модулей аналоговых серий BMXSAI0410 (далее модули) серийного производства.
- 1.2 Первичную поверку модулей выполняют после выпуска из производства перед их вводом в постоянную эксплуатацию, а также после ремонта. Периодическую поверку модулей выполняют в процессе их эксплуатации.
- 1.3 Предусмотрена возможность проведения поверки отдельных измерительных каналов модулей на основании письменного заявления владельца модулей, оформленного в произвольной форме с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.

При выпуске из производства допускается проведение первичной поверки на основании выборки (п. 15 Приказа Минпромторга № 1815 от 02.07.2015 г.). При этом объем выборки модулей из партии, подвергаемой первичной поверке, определяется в соответствии с ГОСТ 24660-81 "Статистический приемочный контроль по альтернативному признаку на основе экономических показателей".

После производства не менее чем 10 партий модулей по стабильному технологическому процессу (п.1.6. ГОСТ 24660-81) допускается переход к проведению первичной поверки на основании выборки. Выборочная поверка модулей, согласно таблице 1 ГОСТ 24660-81 проводится для партии модулей от 26 шт.

Для определения приемочного уровня дефектности (qo) при выборе плана контроля качества по альтернативному признаку на основе экономических показателей для штучной и нештучной (в упаковочных единицах) продукции необходимо проведение выборочной или сплошной поверки от 10 до 20 партий продукции изготовленной при стабильном технологическом процессе. При этом определяется приемочный уровень дефектности qo в зависимости от количества счетчиков, не прошедших поверку и общего количества счетчиков в поверяемой партии. Если значение qo $\leq 0,01$, для выбора плана контроля следует брать qo= 0,01. Далее по таблицам 1-22 выбираются показатели контроля n – количество выборки из партии и с – приемочное число. Согласно п. 2.1 ГОСТ 24660-81 партию продукции следует считать соответствующей установленным требованиям, если найденное число дефектных единиц продукции в выборке меньше или равно приемочному числу для данного плана контроля.

Пример выбора плана контроля и количества поверяемых счетчиков приведен в Приложении А.

Первичной поверке после ремонта подлежит каждый модуль.

1.4 Интервал между поверками - 4 года.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 - Операции поверки

Наименование операции	Раздел	Обязательность проведения операции при поверке	
	настоящей		
	методики	первичной	периодической
Внешний осмотр	8.1	Да	Да
Проверка идентификационных данных программного обеспечения	8.2	Да	Да
Опробование	8.3	Да	Да

Наименование операции	Раздел	Обязательность проведения операции при поверке	
	настоящей		
	методики	первичной	периодической
Определение основной приведенной (к диапазону преобразований) погрешности преобразований си-	8.4	Да	Да
лы постоянного тока			
Оформление результатов поверки	9	Да	Да

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки рекомендуется применять средства поверки, приведённые в таблице 2.

Таблица 2 – Рекомендуемые средства поверки

No	Наименование средства поверки	Номер пункта Методики	Рекомендуемый тип средства поверки и его регистрационный номер в Федеральном информационном фонде или метрологические характеристики			
	Основные средства поверки					
1	Калибратор	8.2, 8.3	Калибратор электрических сигналов CA100, рег. № 19612-03			
	Вспомогательные средства поверки (оборудование)					
2	Термогигрометр электронный	8.1 – 8.3	Термогигрометр электронный «CENTER» модель 313, рег. № 22129-09			
3	Персональный компьютер	8.2, 8.3	Наличие интерфейса Ethernet; объем оперативной памяти не менее 1 Гб; объем жесткого диска не менее 10 Гб; дисковод для чтения CD-ROM; операционная система Windows			

- 3.2 Применяемые средства поверки должны быть исправны, средства измерений поверены и иметь действующие документы о поверке.
- 3.3 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых модулей с требуемой точностью.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К проведению поверки допускают лица, изучившие настоящую методику, руководства по эксплуатации на модули, и имеющие опыт работы со средствами поверки и вспомогательным оборудованием.
- 4.2 К проведению поверки допускают лица, являющиеся специалистами органа метрологической службы, юридического лица или индивидуального предпринимателя, аккредитованного на право поверки, непосредственно осуществляющие поверку средств измерений.
- 4.3 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением до 1000 В с квалификационной группой по электробезопасности не ниже III.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

- 5.2 Во избежание несчастного случая и для предупреждения повреждения поверяемого модуля необходимо обеспечить выполнение следующих требований:
- подсоединение оборудования к сети должно производиться с помощью кабеля или адаптера и сетевых кабелей, предназначенных для данного оборудования;
- заземление должно производиться посредством заземляющего провода или сетевого адаптера, предназначенного для данного оборудования;
- присоединения поверяемого модуля и оборудования следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах);
 - запрещается работать с оборудованием при снятых крышках или панелях;
- запрещается работать с поверяемым модулем в условиях температуры и влажности, выходящих за допустимые значения, а также при наличии в воздухе взрывоопасных веществ;
- запрещается работать с поверяемым модулем в случае обнаружения его повреждения.

6 УСЛОВИЯ ПОВЕРКИ

- 6.1 Экспериментальные работы по подтверждению метрологических характеристик модулей выполняют в нормальных условиях измерений:
 - температура окружающей среды

от +20 до +30 °C;

- относительная влажность

от 30 до 80 %.

- 6.2 Напряжение питания модуля при проведении экспериментальных работ: от 23 до 25 В постоянного тока.
- 6.3 Контроль климатических условий и напряжения питающей сети проводится непосредственно перед проведением экспериментальных работ и в процессе их выполнения.
- 6.4 Средства измерений, применяемые при поверке, должны быть поверены и иметь действующие свидетельства о поверке.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки представляют следующие документы на поверяемый модуль:
 - описание типа;
 - методику поверки;
 - паспорт;
 - предыдущее свидетельство о поверке (при периодической поверке).
- 7.2 Выдержать модуль в условиях окружающей среды, указанных в п. 6.1 не менее 1 ч, если они находились в климатических условиях, отличающихся от указанных в п. 6.1.
- 7.3 Измеряют и заносят в протокол поверки значения температуры и влажности окружающего воздуха, атмосферного давления.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

- 8.1 Внешний осмотр
- 8.1.1 Проверяют целостность корпуса проверяемого модуля и отсутствие видимых повреждений, а также следов коррозии и нагрева в местах подключения проводных линий.
- 8.1.2 При обнаружении несоответствий по п. 8.1.1 дальнейшие операции по поверке модуля приостанавливают до устранения выявленных несоответствий или подтверждения отсутствия влияния обнаруженных дефектов на функционирование и метрологические характеристики модуля.

Результаты испытаний считать положительными, если выполняются требования п. 8.1.1.

- 8.2 Опробование и проверка идентификационных данных программного обеспечения
- 8.2.1 Записать коэффициент пропорциональности сигнала силы постоянного тока и кода АЦП, указанный на главной странице при запуске программы.
 - 8.2.2 Проводят конфигурацию модуля.
 - 8.2.3. Подают с калибратора сигнал силы постоянного тока, равный 4 мА.
- 8.2.4 Наблюдать пропорциональную зависимость изменения сигнала, отображаемого в программном окне.
- 8.2.5 При наличии ошибок в визуализации измеряемых модулем параметров (несоответствие диапазонов измерений, отображаемых единиц величин и т.п.) проводят дополнительную настройку ВПО Unity Pro и модулей до устранения выявленных несоответствий.
- 8.2.6 Сравнивают наименование и номер версии внешнего программного обеспечения (далее ВПО) модулей, установленного на станции оператора (компьютере), с данными, приведёнными в таблице 2.

Таблица 2 – Идентификационные данные ВПО модулей

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	Программный пакет Unity Pro XLS	
Номер версии (идентификационный номер ПО), не ниже	13.1	
Цифровой идентификатор ПО	•	

Результаты испытаний считать положительными, если идентификационные данные ВПО, установленного на станции оператора (компьютере), соответствуют данным, приведённым в таблице 2, конфигурирование модуля произошло без ошибок и при подаче сигнала с калибратора в программном окне наблюдается пропорциональная зависимость сигнала, отображаемого в программном окне.

- 8.3 Определение приведенной (к диапазону преобразований) погрешности преобразований силы постоянного тока
- 8.3.1 Для определения погрешности канала модуля выбирают 5 проверяемых точек Z_i , i=1, 2, 3, 4, 5, равномерно распределенных по диапазону преобразований силы постоянного электрического тока (например, 0 5 %, 25 %, 50 %, 75 % и 95 100 % от диапазона).
- 8.3.2 Подключают калибратор силы постоянного тока ко входу модуля согласно схеме, приведенной на рисунке 1.
 - 8.3.3 Для каждой точки Z_i проводят операции в следующей последовательности:
 - 1) устанавливают на калибраторе значение сигнала, соответствующее значению Z_i;
- 2) считывают с экрана компьютера значение выходного сигнала X_i отображаемого в виде кода АЦП;

Примечание - при нестабильности показаний X_i проводят не менее 4 отсчетов показаний, и выбирают из них результат, наиболее отклоняющийся от заданного значения.

3) определяют значение силы постоянного тока, соответствующее отображаемому коду АЦП по формуле:

$$Y_i = \frac{X_i}{K}$$

где К - коэффициент пропорциональности сигнала силы постоянного тока и кода АЦП.

4) вычисляют абсолютную погрешность Δ_i ИК в проверяемой точке по формуле:

$$\Delta_i = Y_i - Z_i$$

5) вычисляют приведенную (к диапазону преобразований) погрешность преобразования γ_i по формуле:

$$\gamma_{\rm i} = \frac{\Delta_{\rm i}}{X_n} \cdot 100 \%,$$

где X_n – диапазон преобразований, мА.

Рисунок 1 - Схема подключений при определении погрешностей каналов, реализующих линейное аналого-цифровое преобразование сигналов силы постоянного тока 8.3.4 Повторить операции пункта 8.3.3 поочередно для всех каналов.

Результаты проверки считают удовлетворительными, если в каждой из проверяемых точек Z_i выполняется неравенство $|\gamma_i| < |\gamma|$, где γ - предел допускаемой основной приведенной к диапазону погрешности, равный ± 0.3 %.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Положительные результаты поверки СИ оформляют свидетельством о поверке по форме, установленной в документе «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденному приказом Минпромторга России от 2 июля 2015 г. № 1815 и нанесением знака поверки.
 - 9.2 Знак поверки наносится на свидетельство о поверке и на корпус модуля.
- 9.3 При отрицательных результатах поверки СИ не допускаются к применению до выяснения причин неисправностей и их устранения.

После устранения обнаруженных неисправностей проводят повторную поверку, результаты повторной поверки - окончательные.

Отрицательные результаты поверки СИ оформляют извещением о непригодности по форме, установленной в документе «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденному приказом Минпромторга России от 2 июля 2015 г. № 1815, свидетельство о предыдущей поверке аннулируют, а СИ не допускают к применению.

Mms.

Технический директор ООО «ИЦРМ»

М. С. Казаков

Инженер отдела испытаний ООО «ИЦРМ»

М. И. Чернышова

приложение а

(рекомендуемое)

Выбор плана контроля и количества поверяемых модулей в соответствии с ГОСТ 24660-81

Принятые условные обозначения:

N – объем контролируемой партии (шт.);

M – отношение убытков от забракованной партии к затратам на контроль одной единицы продукции. При неразрушающем контроле с последующим сплошным контролем M=N (п. 1.3 ГОСТ 24660-81);

qн – входной уровень дефектности в процентах;

qо – приемочный уровень дефектности в процентах;

n - объем выборки;

с – допускаемое количество дефектных счетчиков в выборке;

E – средний относительный уровень затрат. При неразрушающем контроле $E \approx qo$.

Пример принятия решения о выборочном контроле для проведения первичной поверки модулей, состоящей из 10 партий по 100 штук модулей в каждой (N=M=100).

До принятия решения о выборочном контроле необходимо провести сплошной контроль 10 партий по 100 штук модулей в каждой (N=M=100) на соответствие модулей п.8 настоящей методики. Среди общего числа модулей, поверенных на соответствие метрологических характеристик (1000 шт.), дефектных не было (0 шт.).

Входной уровень дефектности по соответствию метрологических характеристик $q_H = 0.100/1000 = 0$ %.

По таблице (для M=64-100) ГОСТ 24660-81, соблюдая условие целесообразности применения ГОСТ 24660-81 (п. 1.7, п 1.8), выбираем qo = 0,01, E=0,25 и устанавливаем план выборочного одноступенчатого контроля: n=20, c=0.

В соответствии с п. 2.2 ГОСТ 24660-81, ведется контроль выборки случайно извлеченных 20 модулей из партии 100 штук модулей на соответствие п.8 настоящей методики. При отсутствии в выборке дефектных модулей по метрологическим характеристикам всю партию принимают, при наличии хотя бы одного дефектного модуля всю партию бракуют и подвергают сплошному контролю.