ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГУП «ВНИИМС»)

Датчики давления и температуры WEPS-162

МЕТОДИКА ПОВЕРКИ

МП 207-022-2019

1. ВВЕДЕНИЕ

Настоящая методика поверки распространяется на единичные образцы (в кол-ве 4-х шт.) датчиков давления и температуры WEPS-162 (далее — датчики) производства фирмы «Siemens AS», Норвегия. Датчики предназначены для измерений и непрерывного преобразования (в цифровой выходной сигнал) избыточного давления и температуры пластового продукта в подводных газодобывающих комплексах Киринского газоконденсатного месторождения, расположенного на шельфе о. Сахалин.

Настоящая методика устанавливает процедуру первичной поверки датчиков до ввода в эксплуатацию. Периодической поверке датчики не подлежат.

Метрологические характеристики датчиков приведены в Приложении A настоящей методики.

2. ОПЕРАЦИИ ПОВЕРКИ

При проведении первичной поверки выполняют операции, приведённые в таблице 1.
Таблица 1

Наименование операции	Номер пункта методики			
Внешний осмотр, проверка комплектности и маркировки	6.1			
Опробование	6.2			
Проверка метрологических характеристик	6.3			

2.2. Не допускается возможность проведения поверки отдельных измерительных каналов из состава средств измерений для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений.

3. СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки применяют следующие средства измерений (эталоны) и испытательное (вспомогательное) оборудование:
- Рабочие эталоны КТ 0,005 и 1-го разряда по ГОСТ Р 8.802-2012 манометры избыточного давления грузопоршневые МП-2,5; МП-6; МП-2500; (Регистрационный № 52189-16);
- Рабочий эталон 3-го разряда по ГОСТ 8.558-2009 термометр сопротивления эталонный ЭТС-100/1 (Регистрационный № 19916-10);
- Термометр лабораторный электронный ЛТ-300 (регистрационный № 61806-15)
- Измеритель температуры многоканальный прецизионный МИТ 8 (мод. МИТ 8.15) (Регистрационный № 19736-11).
- Камера тепла-холода (климатическая) с диапазоном воспроизводимых температур от -30 до +100 °C и нестабильностью поддержания заданного значения температуры в полезном объеме не более 1/5 от предельно допустимой погрешности.
- 3.2 Допускается применение аналогичных указанным в п.3.1 средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.
- 3.3 Все средства измерений и эталоны должны быть поверены аккредитованными в соответствии с законодательством Российской Федерации об аккредитации в национальной системе аккредитации юридическими лицами или индивидуальными предпринимателями.
- Испытательное оборудование должно быть аттестовано.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 Поверка приборов должна выполняться специалистами, аттестованными в качестве поверителей данного вида средств измерений, ознакомленные с руководством по эксплуатации и освоившими работу с приборами.
- 4.2 При проведении поверки необходимо соблюдать требования безопасности, установленные в следующих документах:
- ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности;
- «Правила технической эксплуатации электроустановок потребителей»;
- «Правила по охране труда при эксплуатации электроустановок» ПОТЭУ (2014);
- требования разделов «Указания мер безопасности» эксплуатационной документации на применяемые средства поверки.

5. УСЛОВИЯ ПОВЕРКИ

- 5.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха: от плюс 15 до плюс 25 °C;
- относительная влажность окружающего воздуха, %, не более 80;
- атмосферное давление: от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст);
- частота питающей сети: (50±0,5) Гц.
- 5.2 Электрическое питание термостатов должно осуществляться стабилизированным напряжением, изменение напряжения не должно превышать 2 %.
- 5.3 Все приборы, установки должны быть заземлены, сопротивление заземления не более 0,1 Ом, сечение проводов заземления не менее 0,75 мм².
- 5.4 Средства поверки, оборудование готовят в соответствии с руководствами по их эксплуатации.
- 5.5 Поверяемые приборы и используемые средства поверки должны быть защищены от вибраций, тряски, ударов, влияющих на их работу.
- 5.6 Операции, проводимые со средствами поверки и поверяемыми приборами должны соответствовать указаниям, приведенным в эксплуатационной документации.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр, проверка комплектности и маркировки

При внешнем осмотре устанавливают:

- соответствие внешнего вида, комплектности прибора технической и эксплуатационной документации;
 - наличие и четкость маркировки;
- отсутствие на приборе и кабеле загрязнений, дефектов, механических повреждений, влияющих на работоспособность датчика;
 - прочность соединения кабеля, отсутствие следов коррозии.

Результат проверки положительный, если выполняются все вышеперечисленные требования.

Не допускается к дальнейшей поверке датчик, у которого обнаружено хотя бы один недостаток (несоответствие).

Примечание – при оперативном устранении пользователем датчика недостатков, замеченных при внешнем осмотре, поверка продолжается по следующим операциям.

6.2 Опробование

При опробовании проверяют работоспособность датчиков. Проверку работоспособности датчиков выполняют в следующей последовательности:

- 6.2.1 Подключить датчик с помощью кабеля связи через специализированный разъем к компьютеру, оснащенному специальным программным обеспечением;
- 6.2.2 В соответствии с руководством по эксплуатации открыть и запустить на компьютере специализированное ПО для просмотра и фиксации текущих показаний датчика.

- 6.2.3 Подключить поверяемый датчик к грузопоршневому манометру при помощи специальных трубок.
- 6.2.4 Проверку работоспособности датчика по каналу измерений температуры проводят, наблюдая текущие значения температуры окружающего воздуха, измеренные датчиком с монитора ПК.
- 6.2.5 Проверку работоспособности датчика по каналу измерений давления проводят, изменяя давление от нижнего до верхнего предельного значения, при этом, значения давления, измеренные датчиком, должны изменяться соответственно изменяемому давлению.

6.3 Проверка метрологических характеристик

Проверка метрологических характеристик датчиков (допускаемой приведенной (к верхнему пределу измерений) погрешности измерений давления и определение абсолютной погрешности измерений температуры) проводится параллельно в рабочем объеме климатической камеры в трех контрольных температурных точках: -30, 0, +100°C, следующим образом:

- 6.3.1 Поместить поверяемый датчик в климатическую камеру.
- 6.3.2 Подключить датчик при помощи специальных трубок к грузопоршневому манометру выведя трубки, кабель питания и связи через технологическое отверстие камеры.
- 6.3.3 Поместить эталонный термометр в рабочий объем камеры и зафиксировать его таким образом, чтобы измерение температуры проводилось максимально близко к измерительному щупу датчика с первичными преобразователями.
- 6.3.4 Подключить датчик с помощью кабеля связи через специализированный разъем к компьютеру, оснащенному специальным программным обеспечением (ПО).
- 6.3.5 В соответствии с руководством по эксплуатации открыть и запустить на компьютере специализированное ПО для просмотра и фиксации текущих показаний датчика.
- 6.3.6 В соответствии с эксплуатационной документацией на камеру устанавливают первую температурную точку.
- 6.3.7 Не менее, чем через 60 минут после выхода камеры на заданный режим и установления теплового равновесия между эталонным термометром, датчиком и термостатирующей средой (стабилизации показаний), выполняют отсчеты показаний по эталонному термометру и датчику с монитора ПК (с помощью специализированного ПО) в течении 5 мин. Вычисляют средние арифметические значения измерений.
- 6.3.8 Рассчитывают абсолютную погрешность канала измерений температуры по формуле 1:

$$\Delta_T = \overline{T}_{CM} - \overline{T}_{\Im}, \tag{1}$$

где T_{CH} - измеренное среднее арифметическое значение температуры поверяемого датчика, °C; T_{\Im} - среднее арифметическое значение показаний эталонного термометра, °C.

- 6.3.9 Подать на датчик от грузопоршневого манометра МП-1000 и цифрового манометра МТ-210 давление $P_{\partial e \bar{u} cms}$, МПа в контрольных точках в соответствии с таблицей 2. При этом, на грузопоршневом манометре последовательно:
- задать и зафиксировать давление при подходе со стороны меньших значений (прямой ход ПХ);
- при достижении максимального значения диапазона измерений выдержать датчик в течение пяти минут и повторно зафиксировать показания датчика;
- задать и зафиксировать давление со стороны больших значений (обратный ход ОХ).
- 6.3.10 Занести в соответствующую ячейку таблицы 2 показания эталонного прибора в колонку $P_{\text{эт}}$ и измеренное значение давления в колонку $P_{u_{3M}}$ при ПХ для подхода со стороны меньших значений давления или колонки ОХ для подхода со стороны больших значений давления.
- 6.3.11 Выполнить операции по п.п. 6.3.9...6.3.10 для 3 цикла измерений.

Таблица 2

Номинальное	Показания	Показания 1 цикл 2 цикл		икл	3 цикл		0/												
значение	эталонного	$\Pi X \mid OX \mid \Pi X$	ПХ	ПХ	ПХ	ПХ	ПХ	ПХ	ПХ	ПХ	ПХ	ПХ	ПХ	ПХ	ПХ	OX			γ_{Π} , %
измеряемого	прибора (P_{3T}),																		
параметра	МПа	Ризм	Ризм	Ризм	Ризм	Ризм	Ризм												
$(P_{\partial e \bar{u} cm \theta})$, МПа																			
0,00																			
17,25																			
34,50																			
51,75																			
69,00																			

6.3.12 Рассчитать и занести в колонку γ_{II} , % таблицы 2 значение абсолютной погрешности, для измеренных значений давления по формуле 2:

$$\gamma_{\Pi} = \frac{P_{\text{HIM}} - P_{\text{JT}}}{P_{\text{R}}} \cdot 100 \%,$$
 (2)

где Ризм - значение давления, измеренного датчиком;

 $P_{\text{эт}}$ - значение давления, измеренного эталонным средством измерений;

Р_в - верхний предел измерений;

- 6.3.13 Повторить п.п. 6.3.9...6.3.12 для всех значений $P_{\partial e \bar{u} cms}$ таблицы 2.
- 6.3.14 Операции по п.п. 6.3.6...6.3.13 повторяют для всех остальных температурных точек, находящихся в интервале измеряемых температур поверяемого датчика.
- 6.3.15 Результат проверки считается положительным, если значения абсолютной погрешности измерений по каналу температуры и приведенной погрешности измерений по каналу давления в каждой контрольной точке не превышают нормированного значения предельно допускаемой погрешности измерений, указанной в Приложении А настоящей методики.

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Приборы, прошедшие поверку с положительным результатом, признаются годными и допускаются к применению. В соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015г. на них оформляется свидетельство о поверке.
- 7.2 При отрицательных результатах поверки, в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г., оформляется извещение о непригодности.

Разработчики настоящей методики:

Начальник отдела 207

Начальник отдела 202

А.А. Игнатов

Е.А. Ненашева

приложение а

Таблица А1 - Метрологические характеристики датчиков

Наименование характеристики	Значение от 0 до 69 (от 0 до 690)		
Диапазон измерений избыточного давления, МПа (бар)			
Диапазон измерений температуры, °С	от -30 до +150		
Пределы допускаемой приведенной погрешности измерений давления, % (от ВПИ)	±0,10		
Пределы допускаемой абсолютной погрешности измерений температуры, °C	±1,00		
Разрешающая способность по давлению, бар	0,01		
Разрешающая способность по температуре, °C	0,01		