

Акционерное Общество «АКТИ-Мастер» АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ И ИНФОРМАТИКА

127106, Москва, Нововладыкинский проезд, д. 8, стр. 4 тел./факс (495)926-71-70 E-mail: <u>post@actimaster.ru</u> <u>http://www.actimaster.ru</u>

УТВЕРЖДАЮ

Генеральный директор АО «АКТИ-Мастер»

ИШ В.В. Федулов

« 30 » сентября 2019 г.

Анализаторы спектра портативные MS2090A

Методика поверки MS2090A/MП-2019

Заместитель генерального директора по метрологии АО «АКТИ-Мастер» _

Д.Р. Васильев

Настоящая методика поверки распространяется на анализаторы спектра портативные MS2090A (далее – анализаторы), изготавливаемые фирмой "Anritsu Company" (США), и устанавливает методы и средства их поверки. Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

		Проведени	ие операции
Наименование операции	пункта	при п	оверке
	методики	первичной	периодической
Внешний осмотр и подготовка к поверке	6	да	да
Опробование и идентификация	7.1	да	да
Определение усредненного уровня собственных шумов	7.2	да	да
Определение погрешности измерения частоты	7.3	да	да
Определение погрешности измерения частоты для опции 0031	7.4	да	да
Определение уровня фазовых шумов	7.5	да	да
Определение погрешности измерения уровня мощности на низких частотах		да	да
Определение погрешности измерения уровня мощности на высоких частотах	7.7	да	да
Определение уровня интермодуляционных искажений 3-го порядка	7.8	да	нет

Таблица 1 – Операции поверки

1.2 Операции поверки должны быть выполнены в полном объеме.

2 СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуется применять средства поверки, указанные в таблице 2.

Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых анализаторов с требуемой точностью.

Наименование средства поверки Номер пункта методики		Рекомендуемый тип средства поверки, регистрационный номер реестра
	Эталонь	ы (средства измерений)
Стандарт частоты	7.4, 7.5	Стандарт частоты рубидиевый Stanford Research Systems FS725; рег. № 31222-06
Генератор сигналов НЧ	7.6	Генератор сигналов сложной формы со сверхнизким уровнем искажений SRS DS360, рег. № 45344-10
Ваттметр поглощаемой мощности СВЧ	7.7	Ваттметр поглощаемой мощности Rohde & Schwarz NRP40S; рег. № 64926-16
Генератор сигналов СВЧ № 1	7.3 – 7.5 7.7, 7.8	Генератор сигналов измерительный Anritsu MG369xC с опциями 2, 4; рег. № 45035-10: модель в соответствии с частотной опцией анализатора
Генератор сигналов СВЧ № 2	7.8	Генератор сигналов измерительный Anritsu MG3692C; рег. № 45035-10
	Γ	Іринадлежности
Кабели и адаптеры Делитель мощности	7.2 – 7.9 7.7, 7.8	тип соединителей и диапазон частот в соответствии с частотной опцией анализатора

2.2 Средства поверки должны быть исправны, эталоны (средства измерений) поверены и иметь документы о поверке.

МS2090A/MП-2019 Методика поверки	стр. 2 из 11
----------------------------------	--------------

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области радиотехнических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

4.2 Во избежание несчастного случая и для предупреждения повреждения анализатора необходимо обеспечить выполнение следующих требований:

 подсоединение анализатора к сети должно производиться с помощью сетевого кабеля из комплекта;

 заземление анализатора и средств поверки должно производиться посредством заземляющих контактов сетевых кабелей;

- присоединения анализатора и оборудования следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах);

 запрещается подавать на вход анализатора сигнал с уровнем, превышающим максимально допускаемое значение;

- запрещается работать с анализатором при снятых крышках или панелях;

 запрещается работать с анализатором в условиях температуры и влажности, выходящих за пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;

- запрещается работать с анализатором в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ±5) °С, относительная влажность воздуха от 30 до 70 %;

- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра проверяются:

- чистота и исправность разъемов, отсутствие механических повреждений корпуса и ослабления крепления элементов анализатора;

- сохранность органов управления, четкость фиксации их положений;

- правильность маркировки и комплектность анализатора.

6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого анализатора, его направляют в сервисный центр для ремонта.

6.2 Подготовка к поверке

6.2.1 Перед началом работы следует изучить руководство по эксплуатации анализатора, а также руководства по эксплуатации применяемых средств поверки.

6.2.3 Подсоединить анализатор и средства поверки к сети электропитания 220 V; 50 Hz. Включить питание анализатора и средств поверки.

Перед началом выполнения операций средства поверки и анализатор должны быть выдержаны во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева анализатора 30 минут.

MS2090A/MII-2019	Метолика поверки	стр 3 из 11
110207010101112017	истодика поверки	CID. 5 N3 11

7 ПРОВЕДЕНИЕ ПОВЕРКИ

Общие указания по проведению поверки

В процессе выполнения операций результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах настоящего раздела документа.

При получении отрицательных результатов по какой-либо операции необходимо повторить операцию. При повторном отрицательном результате анализатор следует направить в сервисный центр изготовителя для проведения регулировки и/или ремонта.

7.1 Опробование и идентификация

7.1.1 Войти в меню SYSTEM ("≡" вверху слева), выбрать SYSTEM INFORMATION.

7.1.2 Проверить идентификационную информацию: Model Number: MS2090A Options: наличие опции 0031 (GPS) и установленную частотную опцию 07xx Serial Number: проверить совпадение с заводским номером на шильдике задней панели Package Version: версия должна быть не ниже V2019.6.1

7.1.3 Войти в меню MODE (вторая клавиша вверху слева), выбрать SPECTRUM ANALYZER.

При выполнении действий по пунктам 7.1.1 – 7.1.3 не должно быть сообщений об ошибках.

7.2 Определение усредненного уровня собственных шумов

7.2.1 Установить на разъем "RF In" анализатора согласованную нагрузку 50 Ω, используя при необходимости соответствующий адаптер:

- тип N для моделей с опцией 0709, 0714, 0720

- тип К для моделей с опцией 0726, 0732, 0743

7.2.2 Выполнить установки: PRESET: PRESET MODE SWEEP: CONTINUOUS, POINTS 1000 TRACE, DETECTOR TYPE RMS/Avg AMPLITUDE, AUTO ATTEN Off, ATTEN LEVEL 0 dB PRE AMP Off, REF LEVEL -20 dBm BANDWITDH: AUTO RBW Off, AUTO VBW Off, VBW TYPE Logarifmic MARKER, MARKER FUNCTION: Noise

7.2.3 Ввести значения полосы пропускания и полосы огибающей: BANDWITDH: RBW 1 MHz, VBW 1 kHz

7.2.4 Установить конечную и начальную частоту в соответствии с таблицей 7.2: FREQ SPAN: STOP FREQUENCY, START FREQUENCY

7.2.5 Найти пик сигнала на шумовой дорожке и записать его в столбец 3 таблицы 7.2: MARKER, PEAK SEARCH ←, PEAK SEARCH

7.2.6 Выполнить действия по пунктам 7.2.4, 7.2.5 для всех интервалов частоты, указанных в таблице 7.2, с учетом частотной опции поверяемого анализатора.

7.2.7 Активировать на анализаторе предварительный усилитель и изменить опорный уровень: AMPLITUDE, PRE AMP On, REF LEVEL –50 dBm

7.2.8 Выполнить действия по пунктам 7.2.4 – 7.2.6 для режима предварительного усилителя.

Начальная частота обзора (Start Frog)	Конечная частота обзора (Stop Free)	Измеренное значение уровня шумов, dPm/Иz	Верхний предел допускаемых
(Start Freq)	(Stop Freq)		значений, ubiii/112
1 5	2	3	4
оез предусилителя (Рг	eamp Off)		
10 MHz	4 GHz		-145
4 GHz	9 GHz		-142
9 GHz	14 GHz		-136
14 GHz	20 GHz		-138
20 GHz	26.5 GHz		-135
26.5 GHz	32 GHz		-135
32 GHz	43.5 GHz		-135
с предусилителем (Рге	amp On)		
10 MHz	4 GHz		-161
4 GHz	9 GHz		-159
9 GHz	14 GHz		-156
14 GHz	20 GHz		-156
20 GHz	26.5 GHz		-154
26.5 GHz	32 GHz		-154
32 GHz	43.5 GHz		-152

Таблица 7.2 – Усредненный уровень собственных шумов

7.3 Определение погрешности измерения частоты

7.3.1 Выполнить соединения:

- соединить кабелем BNC(m-m) выход "10 MHz" стандарта частоты с входом синхронизации "Ref In" генератора сигналов № 1 и убедиться в том, что генератор перешел в режим внешней синхронизации, при необходимости выполнить соответствующую настройку;

- используя соответствующий кабель (и адаптер при необходимости), соединить выход "RF Out" генератора сигналов СВЧ № 1 с входом "RF In" анализатора.

7.3.2 Установить на генераторе уровень -10 dBm и частоту 1 GHz.

7.3.3 Выполнить на анализаторе установки: PRESET: PRESET MODE SWEEP: CONTINUOUS, POINTS 1000 TRACE, DETECTOR TYPE RMS/Avg AMPLITUDE, AUTO ATTEN On, PRE AMP Off, REF LEVEL 0 dBm FREQ SPAN: CENTER FREQUENCY 1 GHz, SPAN 200 Hz BANDWITDH: AUTO RBW Off, RBW 20 Hz, AUTO VBW Off, VBW 3 Hz MARKER, PEAK SEARCH ←, PEAK SEARCH

7.3.4 Записать измеренное значение частоты в столбец 3 таблицы 7.3.

Установленное значение частоты, GHz	Нижний предел допускаемых значений, GHz	Измеренное значение частоты, GHz	Верхний предел допускаемых значений, GHz
1	2	3	4
1.000 000 000	$1.000\ 000\ 000 - \Delta F$		$1.000\ 000\ 000 + \Delta F$

Таблица 7.3 – Погрешность измерения частоты

 $\Delta F = F \cdot (\delta_0 + N \cdot \delta_A), N - округленное в большую сторону количество лет со дня выпуска или последней заводской подстройки, <math display="inline">\delta_0 = 0,3 \cdot 10^{-6}, \, \delta_A = 0,1 \cdot 10^{-6}$

MS2090A/MII-2019	Методика поверки
------------------	------------------

7.4 Определение погрешности измерения частоты для опции 0031

7.4.1 Выполнить соединения и установки по пунктам 7.3.1 – 7.3.3.

7.4.2 Подсоединить антенну GPS из комплекта анализатора к разъему "GPS", используя при необходимости удлиняющий кабель SMA и адаптер.

Установить анализатор вблизи окна помещения так, чтобы антенна была в зоне приема сигналов от спутников системы GPS.

7.4.3 Нажать на анализаторе клавишу SYSTEM ("≡" вверху слева), выбрать SETTINGS, GPS. Активировать функцию GPS/GNSS.

Дождаться установления приема сигнала, при этом через несколько минут в окне GPS должна отобразиться индикация "Good Fix".

7.4.4 Выждать 30 минут для стабилизации. Найти пик сигнала: MARKER, PEAK SEARCH ←, PEAK SEARCH Записать измеренное значение частоты в столбец 2 таблицы 7.4.

7.4.5 Отсоединить антенну GPS от разъема "GPS", через несколько минут индикатор FREQ REFERENCE в меню STATUS (в колонке слева внизу) должен перейти в состояние Int Std Accy.

7.4.6 Выждать 30 минут. Найти пик сигнала: MARKER, PEAK SEARCH Записать измеренное значение частоты в столбец 3 таблицы 7.4.

Установленное значение частоты, GHz	Нижний предел допускаемых значений, GHz	Измеренное значение частоты, GHz	Верхний предел допускаемых значений, GHz
1	2	3	3
	после подклю	чения антенны GPS	
1.000 000 000	0.999 999 975		1.000 000 025
	после отключ	ения антенны GPS	
1.000 000 000	0.999 999 950		1.000 000 050

Таблица 7.4 – Погрешность измерения частоты для опции 0031

7.5 Определение уровня фазовых шумов

7.5.1 Выполнить соединения:

- соединить кабелем BNC(m-m) выход "10 MHz" стандарта частоты с входом синхронизации "Ref In" генератора сигналов СВЧ № 1 и убедиться в том, что генератор перешел в режим внешней синхронизации, при необходимости выполнить соответствующую настройку;

- соединить кабелем BNC(m)-SMB(f) выход "10 MHz" стандарта частоты с входом синхронизации "Ref In" анализатора и убедиться в том, что в меню STATUS (в колонке слева внизу) отобразилось состояние FREQ REFERENCE External;

- используя соответствующий кабель (и адаптер при необходимости), соединить выход "RF Out" генератора сигналов СВЧ № 1 с входом "RF In" анализатора.

7.5.2 Установить на генераторе сигналов уровень -2 dBm и частоту 1 GHz.

7.5.3 Выполнить на анализаторе установки:
PRESET: PRESET MODE
SWEEP: CONTINUOUS, POINTS 1000
TRACE, DETECTOR TYPE Peak, TYPE: AVERAGE, AVERAGES 20
AMPLITUDE, REF LEVEL 0 dBm, AUTO ATTEN On

7.5.4 Установить на анализаторе частотные параметры, как указано в столбцах 1 – 3 таблицы 7.5 и найти пик сигнала:

MARKER, PEAK SEARCH ←, PEAK SEARCH

7.5.5 Войти в основное меню PEAK SEARCH ← и ввести MODE Delta.

Ввести в меню MARKER отстройку частоты ΔF (FREQUENCY), как указано в столбце 4 таблицы 7.5. Зафиксировать отсчет М1 $\Delta 2$.

7.5.6 Вычислить значение уровня фазовых шумов P_N по формуле

 $P_N = M1\Delta 2 - 30 \text{ dB}$ для отстройки частоты $\Delta F = 10 \text{ kHz}$

Записать значение уровня фазовых шумов Р_N в столбец 6 таблицы 7.5.

7.5.7 Ввести MODE Normal и вернуться в основное меню PEAK SEARCH.

7.5.8 Выполнять действия по пунктам 7.5.4 – 7.5.7 для остальных значений частотных параметров, указанных в столбцах 1 – 3 таблицы 7.5.

Вычислять значения уровня фазовых шумов P_{N} по формулам

 $P_N = M1\Delta 2 - 40 \text{ dB}$ для отстройки частоты $\Delta F = 100 \text{ kHz}$

 $P_N = M1\Delta 2 - 50 \text{ dB}$ для отстройки частоты $\Delta F = 1 \text{ MHz}$

 $P_N = M1\Delta 2 - 60 \text{ dB}$ для отстройки частоты $\Delta F = 10 \text{ MHz}$

Записывать значения уровня фазовых шумов P_N в столбец 5 таблицы 7.5.

Центральная частота (Center Freq), GHz	Полоса Обзора (Span)	Полоса пропускания (RBW / VBW)	Отстройка от центральной частоты ΔF (Frequency)	Измеренное значение уровня фазовых шумов Р _N , dBc/Hz	Верхний предел допускаемого уровня фазовых шумов, dBc/Hz
1	2	3	4	5	6
1.000 005	20 kHz	1 kHz/3 Hz	10 kHz		-102
1.000 05	200 kHz	10 kHz / 30 Hz	100 kHz		-106
1.000 5	2 MHz	100 kHz/300 Hz	1 MHz		-111
1.005	20 MHz	1 MHz / 3 kHz	10 MHz		-123

Таблица 7.5 – Уровень фазовых шумов

7.6 Определение погрешности измерения уровня мощности на низких частотах

7.6.1 Соединить кабелем BNC разъем BNC+ генератора сигналов HЧ с входом "RF In" анализатора, используя соответствующий адаптер.

7.6.2 Установить на генераторе сигналов частоту 10 kHz и уровень -10 dBm.

7.6.3 Выполнить на анализаторе установки: PRESET: PRESET MODE SWEEP: CONTINUOUS, POINTS 1000 TRACE, DETECTOR TYPE Peak AMPLITUDE, PRE AMP Off, REF LEVEL 0 dBm, AUTO ATTEN Off, ATTEN LEVEL 10 dB FREQ SPAN: CENTER FREQUENCY 10 kHz, SPAN 10 kHz BANDWITDH: AUTO RBW Off, RBW 1 kHz, AUTO VBW Off, VBW 10 Hz

7.6.4 Найти на анализаторе пик сигнала: MARKER, PEAK SEARCH ←, PEAK SEARCH Записать измеренное маркером значение в столбец 4 таблицы 7.6.

7.6.5 Устанавливать на генераторе значения уровня и частоты, указанные в столбцах 1 и 2 таблицы 7.6, вводить соответствующие значения центральной частоты CENTER FREQUENCY на анализаторе, и выполнять действия по пункту 7.6.4.

MS2090A/MП-2019	Методика поверки	
-----------------	------------------	--

7.6.6 Установить на генераторе сигналов частоту 10 kHz и уровень -50 dBm.

7.6.7 Включить на анализаторе предварительный усилитель, сделав установки: AMPLITUDE, PRE AMP On, REF LEVEL –40 dBm, AUTO ATTEN Off, ATTEN LEVEL 0 dB MARKER, PEAK SEARCH

7.6.8 Найти на анализаторе пик сигнала: MARKER, PEAK SEARCH ←, PEAK SEARCH Записать измеренное маркером значение в столбец 4 таблицы 7.6.

7.6.9 Выполнить действия по пункту 7.6.5 для частоты 10 kHz и уровня -50 dBm.

Установки генератора		Нижний предел	Измеренное	Верхний предел	
Частота, kHz	Уровень, dBm	значений, dBm	значение, dBm	значений, dBm	
1	2	3	4	5	
без предусилит	еля (Preamp Off)				
	-10	-11.30		-8.70	
10	-20	-21.30		-18.70	
	-30	-31.30		-28.70	
	-10	-11.30		-8.70	
100	-20	-21.30		-18.70	
	-30	-31.30		-28.70	
с предусилителем (Preamp On)					
10	-50	-51.30		-48.70	
100	-50	-51.30		-48.70	

Таблица 7.6 – Погрешность измерения уровня мощности на низких частотах

7.7 Определение погрешности измерения уровня мощности на высоких частотах

7.7.1 Подготовить к работе ваттметр поглощаемой мощности СВЧ, выполнить установку нуля, ввести количество усреднений 64.

7.7.2 Выполнить соединения стандарта частоты с входами синхронизации генератора и поверяемого анализатора:

- соединить кабелем BNC(m-m) выход "10 MHz" стандарта частоты с входом синхронизации "Ref In" генератора сигналов СВЧ № 1 и убедиться в том, что генератор перешел в режим внешней синхронизации, при необходимости выполнить соответствующую настройку;

- соединить кабелем BNC(m)-SMB(f) выход "10 MHz" стандарта частоты с входом синхронизации "Ref In" анализатора и убедиться в том, что в меню STATUS (в колонке слева внизу) отобразилось состояние FREQ REFERENCE External.

7.7.3 Выполнить соединения в СВЧ тракте, используя делитель мощности, кабели и адаптеры (при необходимости) в соответствии с частотной опцией анализатора:

- присоединить одно из выходных плеч делителя мощности непосредственно к входному разъему "RF In" анализатора;

 присоединить ко второму выходному плечу делителя мощности разъем ваттметра поглощаемой мощности СВЧ;

- соединить кабелем СВЧ выход "RF Out" генератора с входным плечом делителя мощности.

7.7.4 Установить на генераторе частоту 50 MHz и уровень -4 dBm.

7.7.5 Выполнить на анализаторе установки:
PRESET: PRESET MODE
SWEEP: CONTINUOUS, POINTS 1000
TRACE, DETECTOR TYPE Peak
AMPLITUDE, PRE AMP Off, REF LEVEL 0 dBm, AUTO ATTEN Off, ATTEN LEVEL 10 dB
FREQ SPAN: CENTER FREQUENCY 50 MHz, SPAN 10 kHz
BANDWITDH: AUTO RBW Off, RBW 1 kHz, AUTO VBW Off, VBW 10 Hz

7.7.6 Ввести на ваттметре частоту, равную частоте генератора и центральной частоте анализатора, подстроить уровень не генераторе так, чтобы отсчет ваттметра был равен значению, указанному в столбце 2 таблицы 7.7 с отклонением не более ±0.03 dB.

7.7.7 Найти на анализаторе пик сигнала: MARKER, PEAK SEARCH ←, PEAK SEARCH Записать измеренное маркером значение в столбец 4 таблицы 7.7.

Цаатото	Отсчет уровня по	Нижний предел	Измеренное	Верхний предел			
Hactora	ваттметру, dBm	значений, dBm	значение, dBm	значений, dBm			
1	2	3	4	5			
без предусил	без прелусилителя (Preamp Off)						
	-10	-11.30		-8.70			
50 MHz	-20	-21.30		-18.70			
	-30	-31.30		-28.70			
	-10	-11.30		-8.70			
8 GHz	-20	-21.30		-18.70			
	-30	-31.30		-28.70			
	-10	-11.30		-8.70			
13 GHz	-20	-21.30		-18.70			
	-30	-31.30		-28.70			
	-10	-11.30		-8.70			
18 GHz	-20	-21.30		-18.70			
	-30	-31.30		-28.70			
	-10	-11.80		-8.20			
25 GHz	-20	-21.80		-18.20			
	-30	-31.80		-28.20			
	-10	-11.80		-8.20			
31 GHz	-20	-21.80		-18.20			
	-30	-31.80		-28.20			
	-10	-11.80		-8.20			
40 GHz	-20	-21.80		-18.20			
	-30	-31.80		-28.20			
с предусили	телем (Preamp On)						
50 MHz	-50	-51.30		-48.70			
8 GHz	-50	-51.30		-48.70			
13 GHz	-50	-51.30		-48.70			
18 GHz	-50	-51.30		-48.70			
25 GHz	-50	-51.80		-48.20			
31 GHz	-50	-51.80		-48.20			
40 GHz	-50	-51.80		-48.20			

Таблица 7.7 – Погрешность измерения уровня мощности на высоких частотах

7.7.8 Вводить остальные значения частоты на генераторе, ваттметре и центральной частоты CENTER FREQUENCY на анализаторе, указанные в столбце 1 таблицы 7.7, с учетом частотной опции поверяемого анализатора.

Устанавливать уровень на генераторе так, чтобы отсчет ваттметра был равен значениям, указанным в столбце 2 таблицы 7.7 для данной частоты.

Выполнять действия по пункту 7.7.7.

7.7.9 Активировать на анализаторе предварительный усилитель и изменить опорный уровень: AMPLITUDE, PRE AMP On, REF LEVEL -40 dBm, ATTEN LEVEL 0 dB

7.7.10 Вводить значения частоты на генераторе, ваттметре и центральной частоты CENTER FREQUENCY на анализаторе, указанные в столбце 1 таблицы 7.7, с учетом частотной опции поверяемого анализатора.

Устанавливать уровень на генераторе так, чтобы отсчет ваттметра был равен значениям, указанным в столбце 2 таблицы 7.7 для данной частоты.

Выполнять действия по пункту 7.7.7.

7.8 Определение уровня интермодуляционных искажений 3-го порядка

7.8.1 Выполнить соединения стандарта частоты с входами синхронизации генераторов и поверяемого анализатора:

- соединить кабелем BNC(m-m) выход "10 MHz" стандарта частоты с входом синхронизации "Ref In" генератора сигналов СВЧ № 1 и убедиться в том, что генератор перешел в режим внешней синхронизации, при необходимости выполнить соответствующую настройку;

- соединить кабелем BNC(m-m) выход "10 MHz" стандарта частоты с входом синхронизации "Ref In" генератора сигналов СВЧ № 2 и убедиться в том, что генератор перешел в режим внешней синхронизации, при необходимости выполнить соответствующую настройку;

- соединить кабелем BNC(m)-SMB(f) выход "10 MHz" стандарта частоты с входом синхронизации "Ref In" анализатора и убедиться в том, что в меню STATUS (в колонке слева внизу) отобразилось состояние FREQ REFERENCE External.

7.8.2 Выполнить соединения в СВЧ тракте, используя делитель мощности, кабели и адаптеры (при необходимости) в соответствии с частотной опцией анализатора:

- присоединить входное плечо делителя мощности к входному разъему "RF In" анализатора;

- соединить кабелем СВЧ одно из выходных плеч делителя мощности с выходом "RF Out" генератора сигналов СВЧ № 1;

- соединить кабелем СВЧ второе выходное плечо делителя мощности с выходом "RF Out" генератора сигналов СВЧ № 2.

7.8.3 Установить на генераторах № 1 и № 2 уровень –13 dBm. Установить на генераторе № 1 частоту F1 = 2399 MHz. Установить на генераторе № 1 частоту F2 = 2401 MHz.

7.8.4 Выполнить на анализаторе установки: PRESET: PRESET MODE SWEEP: CONTINUOUS, POINTS 1000 TRACE, DETECTOR TYPE RMS/Avg, TYPE: AVERAGE, AVERAGES 10 AMPLITUDE, PRE AMP Off, REF LEVEL –15 dBm, AUTO ATTEN Off, ATTEN LEVEL 0 dB FREQ SPAN: CENTER FREQUENCY 2400 MHz, SPAN 6 MHz BANDWITDH: AUTO RBW Off, RBW 10 kHz, AUTO VBW Off, VBW 10 Hz 7.8.5 Найти на анализаторе пик сигнала: MARKER, PEAK SEARCH \leftarrow , PEAK SEARCH

Подстроить уровень на соответствующем генераторе сигналов так, чтобы отсчет маркера был равен $Pin = -(20 \pm 0.1) dBm$.

Переместить маркер (вводом функций NEXT PEAK RIGHT, NEXT PEAK LEFT) на пик сигнала от другого генератора и подстроить на этом генераторе уровень так, чтобы отсчет маркера был равен Pin = –(20 ±0.1) dBm.

7.8.6 Поместить маркер на пик большего из сигналов интермодуляции, если он наблюдается. Сигналы интермодуляции могут наблюдаться на комбинационных частотах:

[(2F1 - F2)] = 2398 MHz

[(2F2 - F1)] = 2402 MHz

7.8.7 Зафиксировать отсчет маркера как М

Вычислить уровень интермодуляционных искажений 3-го порядка Im по формуле

$$Im = M - Pin$$

<u>Например</u>: отсчет маркера на пике большего из сигналов интермодуляции M = –92 dBm. Pin = –20 dBm. Тогда Im = [–92 –(–20)] = –72 dBc.

Записать измеренное значение интермодуляционных искажений 3-го порядка в таблицу 7.8. Если сигналов интермодуляции не наблюдается, сделать запись «не обнаружено».

Таблица 7.8 – Уровень интермодуляционных искажений 3-го порядка

Измеренное значение уровня интермодуляционных искажений 3-го порядка	Верхний предел допускаемого значения, dBc *
	-68
<u>Примечание</u> : минимальное допускае 3-го порядка TOI(min) = Pin – Im/2 =	емое значение точки пересечения [–20 – (–68/2)] = +14 dBm

ПОВЕРКА ЗАВЕРШЕНА

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

При выполнении операций поверки оформляется протокол в произвольной форме. В протоколе поверки разрешается привести качественные результаты измерений о соответствии метрологических характеристик допускаемым значениям.

8.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.