УТВЕРЖДАЮ

Заместитель директора MTAPHOE ФГУП «ВНИИОФИ» Филимонов И.С. « <u>И</u>» октября 2019 г

Государственная система обеспечения единства измерений

Анализатор иммуноферментный автоматический EVOLIS Twin Plus МЕТОДИКА ПОВЕРКИ МП 045.Д4-19

Главный метролог ФГУЛ «ВНИИОФИ» Негода С.Н. «<u>И</u>» октября 2019 г

Главный научный сотрудник ФГУП «ВНИИОФИ» Крутиков В.Н.

« <u>И</u>» октября 2019 г

Москва 2019 г

Введение

Настоящая методика поверки распространяется на анализатор иммуноферментный автоматический EVOLIS Twin Plus (далее – анализатор), изготовитель Bio-Rad, Франция, серийный №: 6220000684.

Анализатор предназначен для измерений оптической плотности и дозирования жидкостей при выполнении работ по оценке соответствия продукции ООО «Нанолек».

Также, в анализаторе имеется функция нагрева образца (инкубирование).

Настоящая методика поверки устанавливает порядок, методы и средства проведения его первичной и периодических поверок.

Интервал между поверками – 1 год.

1 Операции и средства поверки

 1.1 Поверку анализатора осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.

1.2 При проведении поверки должны быть выполнены операции, перечисленные в таблице 1.

	Номер пункта	Проведение операции при			
Наименование операции	документа	первичной	периодической		
	по поверке	поверке	поверке		
Внешний осмотр	6.1	да	да		
Опробование анализатора, проверка					
функции нагрева образца					
(инкубирование).	6.2	да	да		
Проверка версии программного					
обеспечения					
Определение (контроль)	6.2	70	70		
метрологических характеристик	0.5	Да	Да		
Проверка диапазона измерений	621	70	70		
оптической плотности	0.5.1	Да	Да		
Определение абсолютной					
систематической погрешности	6.3.2	да	да		
измерений оптической плотности					
Расчет относительной					
систематической погрешности	6.3.3	да	да		
измерений оптической плотности					
Расчет относительного среднего					
квадратического отклонения измерений	6.3.4	да	да		
оптической плотности					
Проверка объема дозирования					
жидкостей и определение	(25				
относительной систематической	0.3.5	да	да		
погрешности дозирования жидкостей					
Расчет относительного среднего					
квадратического отклонения	6.3.6	да	да		
дозирования жидкостей					

Таблица 1 – Операции поверки

 1.3 Допускается проведение поверки для меньшего числа измеряемых величин и для меньшего числа поддиапазонов.

1.4 При получение отрицательных результатов, при проведении той или иной операции, поверка прекращается.

2 Средства поверки

2.1 При проведении поверки должны применяться средства, указанные в таблице 2.

Номер пункта	Наименование средства поверки; номер документа,
методики	регламентирующего технические требования к средству;
поверки	основные технические характеристики
	- Комплекс измерительный iBDL ревизор iBDLR-3-U-X,
	регистрационный № 31926-12;
	пределы допускаемой абсолютной погрешности при измерении
	температуры ± 0,5 °С в диапазоне измерений
62	минус 10 °C ≤ t ≤ плюс 65 °C;
0.2	 секундомер электронный Интеграл С-01,
	регистрационный № 44154-10;
	пределы допускаемой основной абсолютной погрешности
	измерения интервалов времени $\pm (9,6 \cdot 10^{-6} \cdot T_x + 0,01)$ с,
	где Tx – значение измеренного интервала времени, с.
	Комплект светофильтров поверочный КСП-02;
	регистрационный № 38817-08;
	пределы допускаемой абсолютной погрешности значений
6.3.1 – 6.3.4	спектральной оптической плотности светофильтров:
	$\pm 0,003$ Б в диапазоне от 0,030 до 1,000 Б;
	± 0,006 Б в диапазоне от 1,001 до 2,000 Б;
	± 0,025 Б в диапазоне от 2,001 до 3,000 Б.
	Весы неавтоматического действия GH-252,
	регистрационный № 58669-14;
	класс точности I, действительная цена деления 0,01/0,1 мг;
6.3.5 - 6.3.7	- вода дистиллированная по ГОСТ 6709-72;
	Вспомогательное оборудование:
-	- планшеты 96-луночные стандартные для ИФА-анализа; 15 штук*.

T-6	2	0			
гаолица.	2-	Средства	поверки	анализато	pa

*Средства предоставляются пользователем.

2.2 Допускается применение других средств, не приведенных в таблице 2, но обеспечивающих определение метрологических характеристик поверяемого средства измерений с требуемой точностью.

2.3 Средства измерений, указанные в таблице 2, должны быть поверены и аттестованы в установленном порядке.

3 Требования к квалификации поверителей и требования безопасности

3.1 К проведению поверки допускаются лица:

- прошедшие обучение на право проведения поверки в области лабораторной медицины;

 изучившие настоящую методику поверки и эксплуатационную документацию на анализатор;

- соблюдающие требования, установленные правилами по охране труда при эксплуатации электроустановок, согласно приказу Министерства труда и социальной защиты № 328Н от 24.07.13г. 3.2 При проведении поверки должны быть соблюдены требования безопасности, приведенные в руководстве по эксплуатации анализатора.

4 Условия поверки

4.1 При проведении поверки должны соблюдаться климатические следующие условия:

- температура воздуха, °С	от 15 до 25
- относительная влажность, %	от 30 до 80
 атмосферное давление, кПа 	от 86 до 106
- напряжение, В	от 100 до 240
 при частоте, Гц 	50/60
Панан нашани н.б	<i>c</i>

Перед началом работы анализатор необходимо выдержать при данных условиях не менее часа.

4.2 При проведении поверки анализатор необходимо предохранять от следующих воздействий:

- потоков воздуха от вентиляционных отверстий или кондиционера/нагревателя;

- прямых солнечных лучей.

4.3 Поверка анализатора проводится в присутствии сотрудника лаборатории/ сотрудника отдела главного метролога ООО «Нанолек».

4.4 Все операции настоящей методики поверки проводятся в соответствии с требованиями технической документации (руководство по эксплуатации, паспорт и проч.) на анализатор и на каждое средство поверки.

5 Подготовка к поверке

5.1 Подготовить средства поверки к измерениям на анализаторе:

- комплект светофильтров поверочный КСП-02 (далее - комплект) в соответствии с руководством по эксплуатации на него; при проведении поверки анализатора используются светофильтры №№: 1, 3 – 4, 6 – 8, 16 - 17 из комплекта;

 весы неавтоматического действия GH-252 (далее – весы) в соответствии с руководством по эксплуатации на них;

- комплекс измерительный iBDL ревизор iBDLR-3-U-X (далее – комплекс iBDL) в соответствии с руководством по эксплуатации на него;

 секундомер электронный Интеграл С-01 (далее – секундомер) в соответствии с руководством по эксплуатации на него;

- вода дистиллированная и планшеты должны находиться при комнатной температуре не менее двух часов перед измерениями.

5.2 Подготовить анализатор к проведению поверки в соответствии с руководством по эксплуатации на него и приложением В к настоящей методике поверки.

6 Проведение поверки

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра должно быть установлено соответствие анализатора следующим требованиям:

 отсутствие механических повреждений корпуса анализатора и элементов управления;

- наличие маркировки на анализаторе с ясным указанием типа, производителя и серийного номера.

6.1.2 Анализатор считают прошедшим операцию поверки, если:

- на корпусе анализатора отсутствуют механические повреждения;

 маркировка анализатора содержит сведения о типе, производителе и серийном номере.

6.2 Опробование анализатора, проверка функции нагрева образца (инкубирование). Проверка версии программного обеспечения

6.2.1 Провести опробование анализатора:

- на рабочем столе ПК двойным кликом мыши запустить управляющую программы анализатора «2PS»;

войти в главное меню управляющей программы.

6.2.2 Проверка функции нагрева образца:

- разместить регистраторы комплекса iBDL в анализаторе;

через управляющую программу задать анализатору температуру в инкубаторе 37 °C;

- запустить процесс нагрева образца (инкубирование) одновременно с пуском секундомера;

- на 20-ой минуте зафиксировать показание температуры в инкубаторе, отраженной на экране ПК;

- остановить инкубирование образца; выключить секундомер; извлечь регистраторы комплекса измерительного iBDL из анализатора.

6.2.3 Проверка версии ПО:

- в главном меню управляющей программы «2PS» последовательно выбрать: «Помощь» → «о программе 2PS».

6.2.4 Анализатор считают прошедшим операцию поверки, если на мониторе ПК отразилось:

 – главное меню управляющей программы анализатора; процесс прошел без обозначения ошибок;

 температура в инкубаторе анализатора находится в пределах (37 ± 1) °С на 20-ой минуте инкубирования; допускается проверка функции нагрева образца (инкубирование) при другом значении температуры, согласованным с сотрудником лаборатории пользователя;

- версия ПО соответствует таблице 2 настоящей методики поверки.

Таблица 2 –	Иденти	рикационные	данные ((признаки)	анализатор	a
-------------	--------	-------------	----------	------------	------------	---

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	2PS		
Номер версии (идентификационный номер) ПО	не ниже 3.0.4		
Цифровой идентификатор ПО	-		

6.3 Определение (контроль) метрологических характеристик

6.3.1 Проверка диапазона измерений оптической плотности

6.3.1.1 Проверку диапазона измерений оптической плотности совмещают с операцией определения абсолютной систематической погрешности измерений оптической плотности.

6.3.1.2 Анализатор считают прошедшим операцию поверки, если диапазон измерений оптической плотности составляет от 0,03 до 3,00 Б.

6.3.2 Определение абсолютной систематической погрешности измерений оптической плотности

6.3.2.1 В соответствии с приложением Б настоящей методики поверки провести по пять измерений оптической плотности светофильтров №№: 1, 3 – 4, 6 – 8, 16 – 17 из комплекта на длинах волн: 405, 450, 492, 620 нм (количество длин волн обсуждается с пользователем).

6.3.2.2 Рассчитать среднее арифметическое значение оптической плотности, *D_{cp}*, *Б*, для каждого светофильтра на каждой длине волны по формуле

$$D_{cp} = \frac{\sum_{i=1}^{n=5} D_i}{5},$$
 (1)

где *D_i* – измеренное значение оптической плотности, Б, анализатором.

6.3.2.3 Рассчитать абсолютную систематическую погрешность измерений оптической плотности, ΔD_i, *Б*, для каждого светофильтра на каждой длине волны по формуле

$$\Delta D_i = \mathbf{D}_{cp} - D_{j_{a}} \tag{2}$$

где D_{j_2} – значение оптической плотности светофильтра, Б, на длине волны из действующего свидетельства о поверке комплекта.

6.3.2.4 Анализатор считают прошедшим операцию поверки, если абсолютная систематическая погрешность измерений оптической плотности в диапазоне измерений оптической плотности от 0,03 до 0,30 Б включительно находится в пределах ± 0,005 Б.

6.3.3 Расчет относительной систематической погрешности измерений оптической плотности

6.3.3.1 Рассчитать относительную систематическую погрешность измерений оптической плотности ΔD_{0i} , %, для каждого светофильтра на каждой длине волны по формуле

$$\Delta D_{0i} = \frac{D_{cp} - D_{j_3}}{D_{j_3}} \cdot 100, \qquad (3)$$

6.3.3.2 Анализатор считают прошедшим операцию поверки, если относительная систематическая погрешность измерений оптической плотности в диапазоне измерений оптической плотности свыше 0,30 до 3,00 Б находится в пределах ± 2,5 %.

6.3.4 Расчет относительного среднего квадратического отклонения измерений оптической плотности

6.3.4.1 Рассчитать абсолютное среднее квадратическое отклонение измерений оптической плотности *S*_{абс}, Б, для каждого светофильтра на каждой длине волны по формуле

$$S_{abc} = \sqrt{\frac{\sum_{i=1}^{n} (D_i - D_{cp})^2}{n-1}},$$
(4)

6.3.4.2 Рассчитать относительное среднее квадратическое отклонение измерений оптической плотности *S*_{отн}, %, для каждого светофильтра на каждой длине волны по формуле

$$S_{omm} = \frac{S_{abc}}{D_{cp}} \cdot 100, \qquad (5)$$

6.3.4.3 Анализатор считают прошедшим операцию поверки, если относительное среднее квадратическое отклонение измерений оптической плотности не более 1,0 %.

6.3.5 Проверка объема дозирования жидкостей и определение относительной систематической погрешности дозирования жидкостей

6.3.5.1 Поочередно и пятикратно задать анализатору объём дозирования жидкостей: 20, 100, 200 мкл.

6.3.5.2 Рассчитать значение объёма дозирования жидкостей V_д, мкл, одной лунки каждого 96-луночного планшета для ИФА-анализа для каждого объема дозирования жидкостей по формуле

$$V_{\mathcal{A}} = \frac{m_{3} - m_{n}}{96 \cdot \rho} \cdot 1000,$$
(6)

где *m*₃ – масса заполненной дистиллированной водой планшеты, г (см. п. В.4.4 приложения В настоящей методики поверки);

m_n – масса пустой планшеты, г (см. п. В.4.2 приложения В настоящей методики поверки);

ρ- плотность дистиллированной воды при текущих значениях температуры, г/см³ (см. приложение Б настоящей методики поверки).

6.3.5.3 Рассчитать среднее арифметическое значение объёма дозирования жидкостей *V*_{Дср}, мкл, для каждого объема дозирования жидкостей по формуле

$$V_{\mathcal{A}cp} = \frac{\sum_{i=1}^{r} V_{\mathcal{A}i}}{5}, \qquad (7)$$

6.3.5.4 Определить относительную систематическую погрешность дозирования ΔV_{0i} , %, для каждого объема дозирования жидкостей по формуле

$$\Delta V_{0i} = \frac{V_{\mathcal{A}cp} - V_{\mathcal{A}}}{V_{\mathcal{A}}} \cdot 100, \qquad (8)$$

6.3.5.5 Анализатор считают прошедшим операцию поверки, если относительная систематическая погрешность дозирования не превышает:

10 % для объёма дозирования жидкостей 20 мкл;

5 % для объёма дозирования жидкостей 100 мкл;

5 % для объёма дозирования жидкостей 200 мкл.

6.3.6 Расчет относительного среднего квадратического отклонения дозирования жидкостей

6.3.6.1 Рассчитать абсолютное среднее квадратическое отклонение дозирования жидкостей, ∆_i, мкл, для каждого объема дозирования по формуле

$$\Delta_{i} = \sqrt{\frac{\sum_{i=1}^{5} \left(V_{\mathcal{A}_{i}} - V_{\mathcal{A}cp} \right)^{2}}{4}}, \qquad (9)$$

6.3.6.2 Рассчитать относительное среднее квадратическое отклонение дозирования жидкостей, ∆_{0i}, %, для каждого объема дозирования по формуле

$$\Delta_{0i} = \frac{\Delta_i}{V_{\text{dep}}} \cdot 100 \,. \tag{10}$$

6.3.6.3 Анализатор считают прошедшим операцию поверки, если относительное среднее квадратическое отклонение дозирования жидкостей не превышает:

10 % для объёма дозирования 20 мкл;

5 % для объёма дозирования 100 мкл;

5 % для объёма дозирования 200 мкл.

7 Оформление результатов поверки

7.1 Результаты поверки анализатора заносятся в протокол поверки, который хранится в организации, проводившей поверку (см. приложение А к настоящей методике поверки).

7.2 Если анализатор прошел поверку с положительным результатом, он признается годным и допускается к применению.

7.2.1 Результаты поверки оформляются свидетельством о поверке; наносится знак поверки в соответствии с требованиями Приказа Минпромторга России от 02.07.2015 № 1815 (в ред. Приказа Минпромторга России от 28.12.2018 № 5329) «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

7.2.2 Знак поверки наносится на свидетельство о поверке анализатора.

7.3 Если анализатор прошел поверку с отрицательным результатом, он признается непригодным, не допускается к применению; на него выдаётся извещение о непригодности в соответствии с требованиями Приказа Минпромторга России от 02.07.2015 № 1815 (в ред. Приказа Минпромторга России от 28.12.2018 № 5329) «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

<u>Начальник отдела Д-4</u> (должность)

Начальник сектора <u>МО СИМН отдела Д-4</u> (должность)

(полнись)

Иванов А.В. (расшифровка подписи)

(подпись)

<u>Грязских Н.Ю.</u> (расшифровка подписи)

Ведущий инженер отдела Д-4 (должность)

(полнисн

Швалёва И.Н. (расшифровка подписи)

ПРИЛОЖЕНИЕ А

(рекомендуемое) к методике поверки МП 045.Д4-19 анализатора иммуноферментного автоматического EVOLIS Twin Plus серийный №: 6220000684

ПРОТОКОЛ ПЕРВИЧНОЙ/ПЕРИОДИЧЕСКОЙ ПОВЕРКИ

Средство измерений:	Анализатор иммуноферментный автоматический EVOLIS Twin Plus
Заводской номер:	6220000684
Владелец СИ:	
ИНН владельца СИ:	
Применяемые	
эталоны:	
Применяемая	МП 045.Д4-19
методика поверки	«ГСИ. Анализатор иммуноферментный автоматический EVOLIS Twin Plus»

Условия поверки:

Проведение поверки:

А.1 Внешний осмотр

А.2 Опробование анализатора, проверка функции нагрева образца (инкубирование). Проверка версии программного обеспечения

А.3 Проверка диапазона измерений оптической плотности. Определение абсолютной и относительной систематической погрешности измерений оптической плотности, относительного СКО измерений оптической плотности

А.4 Проверка объема дозирования жидкостей. Определение относительной систематической погрешности дозирования жидкостей и относительного СКО

дозирования жидкостей

Заключение по результатам поверки:

Поверитель:

Дата поверки:

ПРИЛОЖЕНИЕ Б

(обязательное) к методике поверки МП 045.Д4-19 анализатора иммуноферментного автоматического EVOLIS Twin Plus серийный №: 6220000684

Значение плотности дистиллированной воды при значениях температуры в соответствии с ГОСТ 31992.1-2012 (ИСО 2811)

Температура, °С	Плотность, г/см ³	Температура, °С	Плотность, г/см ³
15	0,9991	22,3	0,9977
16	0,9989	22,4	0,9977
17	0,9988	22,5	0,9977
18	0,9986	22,6	0,9976
19	0,9984	22,7	0,9976
20	0,9982	22,8	0,9976
20,1	0,9982	22,9	0,9976
20,2	0,9982	23	0,9975
20,3	0,9981	23,1	0,9975
20,4	0,9981	23,2	0,9975
20,5	0,9981	23,3	0,9975
20,6	0,9981	23,4	0,9974
20,7	0,9981	23,5	0,9974
20,8	0,9980	23,6	0,9974
20,9	0,9980	23,7	0,9974
21	0,9980	23,8	0,9973
21,1	0,9980	23,9	0,9973
21,2	0,9980	24	0,9973
21,3	0,9979	24,1	0,9973
21,4	0,9979	24,2	0,9972
21,5	0,9979	24,3	0,9972
21,6	0,9979	24,4	0,9972
21,7	0,9978	24,5	0,9972
21,8	0,9978	24,6	0,9971
21,9	0,9978	24,7	0,9971
22	0,9978	24,8	0,9971
22,1	0,9978	24,9	0,9971
22,2	0,9977	25	0,9970

Таблица Б.1 – Значение плотности дистиллированной воды

ПРИЛОЖЕНИЕ В

(обязательное) к методике поверки МП 045.Д4-19 анализатора иммуноферментного автоматического EVOLIS Twin Plus серийный №: 6220000684

В.1 Подготовка анализатора к измерениям:

- вначале включить анализатор (выключатель «ON/OFF»), затем – ПК;

- далее, запустить управляющую программу «2PS» на рабочем столе ПК.

Анализатор проведет самодиагностику, при положительном исходе которой будет отражено «Прошёл» на мониторе ПК.

	6	
Дата:	19.08.2	019
Время:	22 09 2	9
Oneparop.	admin	
Пипетирование	Прошел	E
Вошер	Прошёл	
Фотометр	Прошел	
Инкубатор	Прошел	
COP	Прошал	
Транспорт планшета	Прошел	

Рисунок В.1 – Результат самодиагностики

В.2 Нагрев образца (инкубирование)

В главном меню управляющей программы анализатора выбрать последовательно: «Настройка» → «Сервис» → «Инкубаторы». Появится окно настройки параметров инкубатора.

Рисунок В.2 – Параметры инкубации

В.З Измерения оптической плотности

В.3.1 Подготовить комплект светофильтров поверочный КСП-02 (далее – комплект) к измерениям на анализаторе:

- установить светофильтры №№ 1, 3, 4, 6-8, 16, 17 в оправку комплекта и, далее, в рамку комплекта в ряд № 2;

- в ряд № 1 и ряды №№ 3 - 12 рамки установить оправки 96-луночного планшета для ИФА-анализа.

Рисунок В.3 – Вид рамки, подготовленной для измерений

В.3.2 Подготовить анализатор к измерению оптической плотности на длине волны 405 нм:

- нажать клавишу «Новый Раб. лист» - клавиша 2 на панели главного меню;

EVOLIS	версия 2.00) - [HI¥ Ultr	a Ag-Ab SP Bl	(V15.asy]								
💭 Файл	Правка Ви	д Сервис	Окно Справн	a	in the state					A State of the sta		A Standard The
		6		8	RD	ß					3	
1	2	3	4	5	6	7	8	9	10	11	12	13 14

Рисунок В.4 – Панель главного меню управляющей программы

- нажать «Добавить планшет» → «Добавить протокол» → выбрать «405 нм» → «Изменить раскладку»;

- в появившимся окне «Раскладка планшета протокола» снять все выделения лунок и установить выделение для ряда \mathbb{N} 2 планшета (т.е. по факту расположения КСП-02) \rightarrow «ОК» \rightarrow «ОК» \rightarrow «СТАРТ»; анализатор начнет подготовку к заданному протоколу измерений оптической плотности;

- по запросу анализатора разместить подготовленную по п. В.3.1 настоящего приложения рамку в фотометрический отсек анализатора – угол A1 рамки должен находится в дальнем правом углу.

Рисунок В.5 – Установка рамки в анализатор

В.3.3 Нажать «Старт» для начала измерений оптической плотности на длине волны 405 нм; результаты измерений отразятся на мониторе ПК. Изъять рамку из анализатора.

В.3.4 Для повтора измерений оптической плотности на выбранной длине волны повторить операции по п.п. В.3.2 – В.3.3 необходимое количество раз. В.3.5 Для смены длины волны при выборе «Добавить планшет» — «Добавить протокол» — выбрать необходимую длину волны.

В.4 Дозирование жидкостей

В.4.1 Подготовить анализатор к дозированию:

 разместить наконечники анализатора 300 мл для дозирующего устройства на рабочем столе анализатора;

Рисунок В.6 - Размещение наконечников

установить бутыль с дистиллированной водой в анализатор;

- в главном меню анализатора выбрать: «Пипетирование» \rightarrow «Вставить шаг» \rightarrow «ОК»;

- в окне «Пипетирование» выбрать: «Новый шаг» → выбрать «галочки» по всем лункам → нажать «Изменить шаг» → указать объём дозирования 20 мкл → «ОК».

Рисунок В.7 - Окно пипетирования

Далее, в данной позиции также будут устанавливаться объёмы дозирования 100 и 200 мкл.

В.4.2 Подготовить 96-луночные планшеты для ИФА-анализа (далее – планшет):

- пронумеровать 15 планшет;

 взвесить каждую планшету на весах; зафиксировать массу *m_n*, г, каждой планшеты в протокол поверки (см. приложение А к настоящей методике поверки);

- разместить в открытом состоянии первую планшету в анализаторе.

В.4.3 Нажать «Старт» для запуска дозирования объёмом 20 мкл - анализатор наполнит установленную планшету дистиллированной водой в соответствии с заданным методом. По окончанию процедуры извлечь планшету и закрыть.

В.4.4 Взвесить на весах закрытую планшету, наполненную дистиллированной водой; зафиксировать массу m_3 , г, каждой наполненной планшеты в протокол поверки (см. приложение А к настоящей методике поверки).

В.4.5 Повторить процедуру дозирования жидкости еще 4 раза для объёма 20 мкл.

В.4.6 Провести операции п.п.В.4.3 – В.4.5 для объёмов дозирования 100 и 200 мкл.