Федеральное государственное унитарное предприятие «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГУП «ВНИИМС»)

соглафвано Генеральный директор «ПМЕИИН» ФА

УТВЕРЖДАЮ Заместитель директора ФГУП «ВНИИМС» по производственной метрологии

2019 г.

2019 г.

Н.В. Иванникова MI

УСТАНОВКА ДЛЯ ПОВЕРКИ **КИЛОВОЛЬТМЕТРОВ** УПК-30ПТ

Методика поверки МП 206.1-100-2019

Настоящая методика распространяется на установку для поверки киловольтметров УПК-30ПТ, зав.№ 001, (далее — установка), изготовленную АО «НИИЭМП», г. Пенза, и устанавливает методику ее первичной и периодической поверки.

На поверку представляется установка, укомплектованная в соответствии с руководством по эксплуатации, и комплект следующей технической и нормативной документации:

- руководство по эксплуатации (РЭ);
- методика поверки.

Интервал между поверками - 1 год.

1 НОРМАТИВНЫЕ ССЫЛКИ

РМГ 51-2002 «ГСИ. Документы на методики поверки средств измерений. Основные положения»;

Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке, утверждены Приказом Минпромторга России от 02.07.2015 г. № 1815;

ПР 50.2.012-94 «ГСИ. Порядок аттестации поверителей средств измерений»;

ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения»;

ГОСТ Р 8.736-2011 «ГСИ. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения»;

ГОСТ 12.3.019-80 «Система стандартов безопасности труда (ССБТ). Испытания и измерения электрические. Общие требования безопасности»;

ГОСТ 12.2.007.0-75 «Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности»;

«Правила по охране труда при эксплуатации электроустановок» 04.08.2014 г.;

«Правила эксплуатации электроустановок потребителей», утвержденных Главгосэнергонадзором.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 Поверка проводится в объеме и в последовательности, указанные в таблице 1.

Таблица 1 - Перечень операций при первичной и периодической поверках

	Номер пункта методики поверки	Проведение операции	
Наименование операции		первичная поверка	периодиче- ская поверка
1 Внешний осмотр	8.1	Да	Да
2. Опробование	8.2	Да	Да
3 Определение относительной погрешности измерений напряжения постоянного тока	8.3	Да	Да

3. СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки установки должны применяться основные и вспомогательные средства, указанные в таблицах 2 и 3.

Таблица 2 - Основные средства поверки

Наименование		не технические стеристики Погрешность или класс точно- сти	Реко- мендуе- мый тип	Ко- личе- ство	Номер пункта методики поверки
1	2	3	4	5	6
Государственный вторичный эталон единицы электрического напряжения постоянного тока	от -1 до -100 кВ, от 1 до 100 кВ	±0,01 %	ДВИ- НА-100	1	8.2, 8.3
Вольтметр универсальный	до 1000 В	±0,01 %	B7-78/1	1	8.2, 8.3

Таблица 3 - Вспомогательные средства поверки

Измеряемая ве- личина	Диапазон измерений	Класс точности, погрешность	Тип средства измерений	
Температура	от 0 до 50 °C	±1 °C	Термометр ртутный стеклянный лабораторный ТЛ-4	
Давление	от 80 до 106 кПа	±200 Па	Барометр-анероид метеорологиче- ский БАММ-1	
Влажность	от 10 до 100 %	±1 %	Психрометр аспирационный М-34-М	

- 3.2 Для проведения поверки допускается применение других средств, не приведенных в таблицах 2 и 3, при условии обеспечения ими необходимой точности измерений.
- 3.3 Контрольно-измерительная аппаратура и средства измерений, применяемые при поверке, должны обеспечивать требуемую точность и иметь действующие свидетельства о поверке, сертификаты калибровки или аттестаты.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К проведению поверки допускают поверителей из числа сотрудников организаций, аккредитованных на право проведения поверки в соответствии с действующим законодательством РФ, изучивших настоящую методику поверки и руководство по эксплуатации на установку, имеющих стаж работы по данному виду измерений не менее 1 года.
- 4.2 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право проведения работ в электроустановках с квалификационной группой по электробезопасности не ниже III.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны соблюдаться требования ГОСТ 12.2.007.0-75, ГОСТ 12.3.019-80, «Правила по охране труда при эксплуатации электроустановок», «Правила эксплуатации электроустановок потребителей», утвержденных Главгосэнергонадзором.

Должны быть также обеспечены требования безопасности, указанные в эксплуатационных документах на средства поверки.

6 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

6.1 Поверка установки должна проводиться при следующих условиях:

- температура окружающей среды, °С

от +15 до +25;

- атмосферное давление, кПа

от 84 до 106;

- относительная влажность воздуха, %

от 10 до 80.

6.2 Напряжение питающей сети переменного тока частотой 50 Гц, действующее значение напряжения 220 В. Допускаемое отклонение от нормального значения при поверке ±4,4 В. Коэффициент искажения синусоидальности кривой напряжения не более 5 %.

Остальные характеристики сети переменного тока должны соответствовать ГОСТ 32144-2013.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Средства поверки должны быть подготовлены к работе согласно указаниям, приведенным в соответствующих эксплуатационных документах.
- 7.2 До проведения поверки поверителю надлежит ознакомиться с эксплуатационной документацией на установку и входящими в ее комплект компонентами.

8 МЕТОДЫ ПОВЕРКИ

8.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие поверяемой установки следующим требованиям:

- комплектность должна соответствовать данным, приведенным в Руководстве по эксплуатации;
- маркировка и функциональные надписи должны читаться и восприниматься однозначно;
- наружные поверхности корпуса, разъемы, соединительные кабели и органы управления не должны иметь механических повреждений и деформаций, которые могут повлиять на работоспособность установки.

При несоответствии по вышеперечисленным позициям установка бракуется и направляется в ремонт.

8.2 Опробование

8.2.1 Соберите схему, приведенную на рисунке 1.

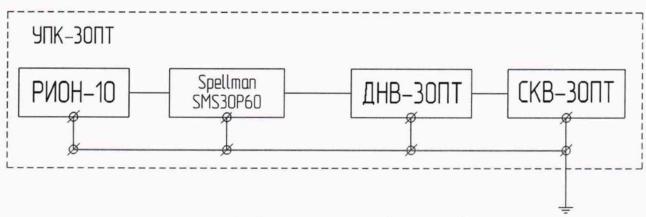


Рисунок 1 - Схема подключений для опробования

- 8.2.2 Включите питание приборов. При включении питания блока киловольтметра СКВ-30ПТ необходимо проверить номер версии ПО.
- 8.2.3 Регулируемым источником высокого напряжения РИОН-10 задайте управляющее напряжение $U_{\text{рион}}$ =0,333 B, что должно соответствовать напряжению $U_{\text{уивн}}$ =1 кВ на выходе управляемого источника высокого напряжения Spellman SMS30P60.
- 8.2.4 Нажатием кнопки «КАНАЛ 1» блока РИОН-10 включите высокое напряжение на выходе Spellman SMS30P60. Контроль $U_{\text{уивн}}$ производите на выходе цифрового киловольтметра, состоящего из делителя напряжения высоковольтного ДНВ-30ПТ и вольтметра СКВ-30ПТ (далее киловольтметр).
- 8.2.5 Повторите операции по п.8.2.4 задавая последовательно на источнике РИОН-10 напряжения, приведенные в таблице 4. По окончании измерений отключите высокое напряжение.

Таблица 4 - Соответствие напряжения на выходе РИОН-1 и на выходе Spellman SMS30P60

Регулируемый источник высокого напряжения РИОН-10	Управляемый источник высокого напряжения Spellman SMS30P60		
U _{рион} , В			
0,333	1		
1,666	5		
3,333	. 10		
5,000	15		
6,666	20		
8,333	25		
1000	30		

8.2.5 Результаты опробования считаются положительными, если для всех задаваемых $U_{\text{рион}}$ по таблице 4 на выходе киловольтметра отображаются $U_{\text{уивн}}$ с погрешностью $\pm 3~\%$ и номер версии ПО не ниже v 1.0.

8.3 Определение относительной погрешности измерения напряжения постоянного тока

- 8.3.1 Соберите схему, приведенную на рисунке 2.
- 8.3.2 Измеритель ДВИНА-100 включите для работы на напряжении 1 кВ.

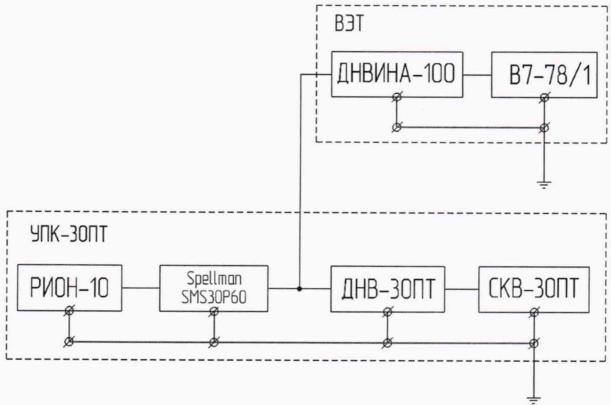


Рисунок 2 - Схема подключений для определения относительной погрешности измерения напряжения постоянного тока

- 8.3.3 Включите питание приборов. Нажатием кнопки «АВТО/РУЧ» включите ручной выбор предела измерений на блоке СКВ-30ПТ.
- 8.3.4 Регулируемым источником высокого напряжения РИОН-10 задайте управляющее напряжение $U_{\text{рион}}$ =0,333 B, что должно соответствовать напряжению $U_{\text{уивн}}$ =1 кВ на выходе управляемого источника высокого напряжения Spellman SMS30P60.
- 8.3.5 Нажатием кнопки «КАНАЛ 1» блока РИОН-10 включите высокое напряжение на выходе Spellman SMS30P60.
- 8.3.6 Произведите одновременный отсчет показаний напряжения U_x на выходе поверяемого киловольтметра и эталонной установки U_3 состоящей из ДВИНА-100 и В7-78/1 (далее

- эталонная установка). Результаты зафиксируйте в таблице 5. По окончании измерений отключите высокое напряжение.
- 8.3.6 Повторите операции по п.п.8.3.3-8.3.5 задавая последовательно на источнике РИ-OH-10 напряжения $U_{\text{рион}}$, приведенные в таблице 4. При этом измеритель ДВИНА-100 на каждой ступени должен быть включен для работы на соответствующее напряжение $U_{\text{уивн}}$.
 - 8.3.7 Выключите поверяемую установку и эталонную систему.
- 8.3.8 Для каждой ступени напряжения $U_{\text{ном}}$ в соответствии с журналом калибровки на измеритель ДВИНА-100 определите по измеренному U_{31} соответствующее ему U_{32} . Результаты занесите в таблицу 5.
- 8.3.9 Для каждой ступени напряжения $U_{\text{ном}}$ определите относительную погрешность измерений напряжения δU поверяемой установкой по формуле:

$$\delta U = 100 \cdot (U_x - U_{32}) / U_{32}, \%$$
 (1).

8.3.10 Полученные значения погрешностей занесите в таблицу 5.

Таблица 5 - Результаты определения относительной погрешности измерения напряжения

U _{ном} , кВ	U _x , кВ	U ₂ I, B	Uэ2, кВ	δU, %	Допустимое значение погрешности $\delta U_{\rm д}$, %
1					
5					
10					
15					±0,1
20					7
25					
30					

8.3.11 Результаты поверки считаются положительными, если полученные значения относительной погрешности измерения напряжения δU не превышают $\delta U_{\text{д}}$.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Положительные результаты поверки оформляются свидетельством о поверке согласно требованиям нормативных документов (НД) Федерального агентства по техническому регулированию и метрологии.
- 9.2 При отрицательных результатах свидетельство о поверке не выдается, ранее выданное свидетельство о поверке аннулируется, запись о поверке в паспорте на стенд гасится, и выдается извещение о непригодности согласно требованиям НД Федерального агентства по техническому регулированию и метрологии.

Начальник отдела 206.1 ФГУП «ВНИИМС» С.Ю. Рогожин

Научный сотрудник отдела 206.1 ФГУП «ВНИИМС» А.В. Леонов