

Юридический адрес: 143443, МО, г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19 ИНН: 5024145974 КПП: 502401001

ОГРН: 1145024004916

УТВЕРЖДАЮ:

Генеральный директор

ООО «ЭнергоПромРесуре»

А.С. Купцов
2020 г.

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ)

ЕНЭС ПП 220 кВ Амга

Методика поверки МП ЭПР-227-2020

Московская область, г. Красногорск 2020 г.

Содержание

ВВЕДЕНИЕ	
1 ОБЩИЕ ПОЛОЖЕНИЯ	
2 ОПЕРАЦИИ ПОВЕРКИ	
3 СРЕДСТВА ПОВЕРКИ	
4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	6
5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	6
6 УСЛОВИЯ ПОВЕРКИ	.6
7 ПОДГОТОВКА К ПОВЕРКЕ	.6
8 ПРОВЕДЕНИЕ ПОВЕРКИ	
9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	

ВВЕДЕНИЕ

Настоящая методика распространяется на измерительные каналы (далее – ИК) системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ЕНЭС ПП 220 кВ Амга (далее – АИИС КУЭ), предназначенной для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени отдельными технологическими объектами ПП 220 кВ Амга, сбора, хранения, обработки и передачи полученной информации.

Перечень ИК и их метрологические характеристики приведены в формуляре АИИС КУЭ.

1 ОБЩИЕ ПОЛОЖЕНИЯ

Поверке подлежит каждый ИК АИИС КУЭ, реализующий косвенный метод измерений электрической энергии. ИК подвергают поверке покомпонентным (поэлементным) способом с учетом положений раздела 8 ГОСТ Р 8.596-2002.

Допускается проведение поверки отдельных ИК АИИС КУЭ, с обязательным указанием в приложении к свидетельству о поверке информации об объеме проведенной поверки.

Допускается проведение поверки АИИС КУЭ с составом ИК, непосредственно применяемых для измерений в сфере государственного регулирования обеспечения единства измерений.

Первичную поверку АИИС КУЭ проводят после утверждения типа АИИС КУЭ. Допускается при поверке использовать положительные результаты испытаний по опробованию методики поверки. При этом свидетельство о поверке оформляется только после утверждения типа АИИС КУЭ.

Периодическую поверку АИИС КУЭ проводят в процессе эксплуатации АИИС КУЭ. Периодичность поверки (межповерочный интервал) АИИС КУЭ – раз в 4 года.

Средства измерений (измерительные компоненты) ИК АИИС КУЭ должны быть утвержденных типов, и поверятся в соответствии с интервалами между поверками, установленными при утверждении их типа. Если очередной срок поверки средства измерений (измерительного компонента) наступает до очередного срока поверки АИИС КУЭ, поверяется только этот компонент, а поверка всей АИИС КУЭ не проводится. После поверки средства измерений (измерительного компонента) и восстановления ИК выполняется проверка ИК, той его части и в том объеме, который необходим для того, чтобы убедиться, что действия, связанные с поверкой средства измерений (измерительного компонента), не нарушили метрологических характеристик ИК (схема соединения, коррекция времени и т.п.).

После ремонта АИИС КУЭ, аварий в энергосистеме, если эти события могли повлиять на метрологические характеристики ИК, а также после замены средств измерений (измерительных компонентов), входящих в их состав, проводится внеочередная поверка АИИС КУЭ в объеме первичной поверки. Допускается проводить поверку только тех ИК, которые подверглись указанным выше воздействиям. При этом, в случае если замененные средства измерений (измерительные компоненты) не соответствуют описанию типа АИИС КУЭ, срок действия свидетельства о поверке АИИС КУЭ в части указанных ИК устанавливается до окончания срока действия основного свидетельства о поверке. Во всех указанных случаях оформляется технический акт о внесенных изменениях, который должен быть подписан руководителем или уполномоченным им лицом и руководителем или представителем метрологической службы предприятиявладельца АИИС КУЭ. Технический акт хранится совместно со свидетельством о поверке, как неотъемлемая часть эксплуатационных документов АИИС КУЭ.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 – Операции поверки

House	Номер	Обязательность проведения операции при	
Наименование операции	пункта НД по поверке	первичной поверке	периодической поверке
1 Подготовка к поверке	7	Да	Да
2 Внешний осмотр	8.1	Да	Да
3 Подтверждение соответствия программного обеспечения	8.2	Да	Да
4 Проверка соответствия измерительных компонентов АИИС КУЭ	8.3	Да	Да
5 Проверка счетчиков электрической энергии	8.4	Да	Да
6 Проверка УСПД	8.5	Да	Да
7 Проверка функционирования компьютеров АИИС КУЭ (APM или сервера)	8.6	Да	Да
8 Проверка функционирования вспомогательных устройств	8.7	Да	Да
9 Проверка нагрузки на вторичные цепи измерительных трансформаторов напряжения	8.8	Да	Да
10 Проверка нагрузки на вторичные цепи измерительных трансформаторов тока	8.9	Да	Да
11 Проверка падения напряжения в линии связи счетчика с измерительным трансформатором напряжения	8.10	Да	Да
12 Проверка погрешности системы обеспечения единого времени	8.11	Да	Да
13 Проверка отсутствия ошибок информационного обмена	8.12	Да	Да
14 Оформление результатов поверки	9	Да	Да

3 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют средства измерений и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на средства измерений (измерительные компоненты) АИИС КУЭ, а также приведенные в таблице 2.

Таблица 2 — Средства поверки и вспомогательные устройства

Наименование средства изме- рений	Измеряемая величина	Метрологические характеристики	Номер пункта НД по поверке
1	2	3	4
Термометр	Температура окружающего воздуха	Диапазон измерений: от -20 до +50 °C; цена деления шкалы: 1 °C; пределы допускаемой абсолютной погрешности: ±1 °C	7
Психрометр	Относительная влажность воз- духа	Диапазон измерений: от 10 до 95 %; пределы допускаемой абсолютной погрешности: ±5 %	7

Продолжение таблицы 2

1	2	3	4
Барометр	Атмосферное давление	Диапазон измерений: от 80 до 106 кПа; пределы допускаемой абсолютной погрешно-	7
		сти измерений атмосферного давления: ±1 кПа	
Миллитесламетр	Магнитная ин- дукция внеш-	Диапазон измерений: от 0,01 до 19,99 мТл;	7
	него проис- хождения	пределы основной относительной погрешности измерений средневыпрямленных значений переменного магнитного поля в диапазоне частот 20-400 Гц: ±[2,5+0,2·(Вп/Ви-1)] %	
Измеритель напряжения с токовыми кле-щами	Действующее значение силы тока	Диапазон измерений: от 0 до 10 А; от 1 до 120 % от Іном Пределы допускаемой относительной погрешности (δ_1): ± 7 %	8.8, 8.9, 8.10
	Действующее значение напряжения	Диапазон измерений: от 0 до 20 В; от 80 до 115 % от Uном пределы допускаемой относительной по- грешности (δ∪): ±7 %	8.8, 8.9, 8.10
Приемник сиг- налов точного времени, при- нимающий сиг- налы спутнико- вой навигацион-	Сигналы точ- ного времени	Предел допускаемой абсолютной погрешности привязки фронта выходного импульса 1 Гц к шкале координированного времени UTC: ±1 мкс	8.11
ной системы GPS/ГЛОНАСС			

Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы

Перечень рекомендуемых эталонов, средств измерений и вспомогательного оборудования:

- для проведения измерений действующих значений силы тока и напряжения мультиметр «Ресурс-ПЭ», вольтамперфазометр «Парма ВАФ-Т», прибор энергетика многофункциональный для измерения электроэнергетических величин «ПЭМ-02 И», измеритель потерь напряжения «СА 210»;
- для проведения измерений температуры и влажности прибор комбинированный «Testo 608-H2», термогигрометр «CENTER» (мод. 315);
 - в качестве сигналов точного времени используют эталонные сигналы времени:
- сигналы, передаваемые по телевизионному каналу в зоне действия наземной сети;
 - сигналы тайм-серверов ФГУП «ВНИИФТРИ», передаваемые в сеть Интернет;
 - сигналы, передаваемые спутниковой навигационной системой GPS/ГЛОНАСС;
- сигналы длинноволновых и коротковолновых радиостанций, входящих в систему передачи эталонных сигналов времени и частоты.

Примечания:

- 1 Допускается применение других средств поверки с метрологическими характеристиками, обеспечивающими требуемые точности измерений (согласно таблице 2).
- 2 Все средства измерений, применяемые при поверке, должны быть утвержденного типа, а также иметь действующие свидетельства о поверке.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- **4.1** К проведению поверки АИИС КУЭ допускают поверителей, изучивших настоящую методику поверки и руководство по эксплуатации на АИИС КУЭ.
- 4.2 Измерение вторичной нагрузки измерительных трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ МИ 3196-2018 «Методика измерений мощности нагрузки трансформаторов тока в условиях эксплуатации». Измерение проводят не менее двух специалистов, имеющих допуск к работам в электроустановках выше 1000 В, один из которых должен иметь группу по электробезопасности не ниже IV.
- 4.3 Измерение вторичной нагрузки измерительных трансформаторов напряжения, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ МИ 3195-2018 «Методика измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации». Измерение проводят не менее двух специалистов, имеющих допуск к работам в электроустановках выше 1000 В, один из которых должен иметь группу по электробезопасности не ниже IV.
- 4.4 Измерение потерь напряжения в линии соединения счетчика с измерительным трансформатором напряжения, входящими в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ МИ 3598-2018 «Методика измерений потерь напряжения в линиях связи счетчика с трансформатором напряжения в условиях эксплуатации». Измерение проводят не менее двух специалистов, имеющих допуск к работам в электроустановках выше 1000 В, один из которых должен иметь группу по электробезопасности не ниже IV.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- **5.1** При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.2.007.0-75, ГОСТ 12.2.007.3-75, «Правилами техники безопасности при эксплуатации электроустановок потребителей», «Правилами технической эксплуатации электроустановок потребителей», «Правилами по охране труда при эксплуатации электроустановок», а также требования безопасности на средства поверки, поверяемые трансформаторы и счетчики, изложенные в их руководствах по эксплуатации.
- **5.2** При применении эталонов, средств измерений, вспомогательных средств поверки и оборудования должны обеспечиваться требования безопасности согласно ГОСТ 12.2.003-91, ГОСТ 12.2.007.3-75, ГОСТ 12.2.007.7-73.

6 УСЛОВИЯ ПОВЕРКИ

Влияющие величины, определяющие условия поверки АИИС КУЭ, должны находиться в пределах, указанных в описании типа и формуляре АИИС КУЭ, описаниях типа и технической документации её измерительных компонентов и средств поверки.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки выполняют следующие подготовительные работы:
- проводят технические и организационные мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководствами по эксплуатации применяемого оборудования;
- средства поверки выдерживают в условиях и в течение времени, установленных в их эксплуатационных документах;
- все средства измерений, которые подлежат заземлению, должны быть надежно заземлены, подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение – после всех отсоединений.
 - 7.2 Для проведения поверки подготавливают следующую документацию:
 - формуляр АИИС КУЭ;
 - описание типа АИИС КУЭ;

- паспорта заводов-изготовителей средств измерений (измерительных компонентов) с оттисками клейма поверителя или свидетельства о поверке средств измерений (измерительных компонентов), входящих в ИК, и свидетельство о предыдущей поверке АИИС КУЭ (при периодической и внеочередной поверке);
- паспорта-протоколы на ИК, оформленные в соответствии с требованиями пп. 3-6 настоящей методики поверки и/или требованиями документов: МИ 3195-2018 «Методика измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации», МИ 3196-2018 «Методика измерений мощности нагрузки трансформаторов тока в условиях эксплуатации», МИ 3598-2018 «Методика измерений потерь напряжения в линиях связи счетчика с трансформатором напряжения в условиях эксплуатации»;
- рабочие журналы АИИС КУЭ с данными по климатическим и иным условиям эксплуатации за межповерочный интервал (только при периодической поверке);
- акты допуска приборов учета в эксплуатацию в электроустановках напряжением до и выше 1000 В (при наличии) или аналогичные документы.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

8.1.1 Проверяют целостность корпусов и отсутствие видимых повреждений средств измерений (измерительных компонентов), наличие пломб энергосбытовых (энергосетевых) организаций и маркировку средств измерений (измерительных компонентов) и технических средств в соответствии с ГОСТ 22261-94.

Результаты проверки считаются положительными, если не выявлено видимых повреждений средств измерений (измерительных компонентов), а также имеются перечисленные выше пломбы на средствах измерений (измерительных компонентах).

При обнаружении отсутствия пломб на средствах измерений (измерительных компонентах) и испытательных коробках дальнейшие операции по поверке ИК, в который входят данные средства измерений (измерительные компоненты) и испытательные коробки, выполняют после соответствующего опломбирования.

Если выявлены видимые повреждения средств измерений (измерительных компонентов) и маркировка технических средств не соответствует требованиям ГОСТ 22261-94, а также если указанные выше замечания не были устранены за время поверки, то результаты проверки ИК, в который входят данные средства измерений (измерительные компоненты), считаются отрицательными, выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.1.2 Проверяют наличие заземления корпусов компонентов АИИС КУЭ и металлических шкафов, в которых они расположены.

Результаты проверки считают положительными, если корпуса компонентов и шкафы, в которых они установлены, имеют защитное заземление.

В противном случае результаты проверки соответствующих ИК считаются отрицательными, выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.1.3 Проверяют наличие напряжения питания на счетчиках, устройстве сбора и передачи данных (УСПД), устройстве синхронизации системного времени (УССВ), вспомогательном оборудовании (модемы, преобразователи интерфейса и пр.).

Результаты проверки считаются положительными, если:

- работает жидкокристаллический индикатор каждого счетчика;
- светятся соответствующие светодиоды, сигнализирующие о наличии питания, расположенные на УСПД, УССВ, вспомогательном оборудовании, и при этом не светятся светодиоды, сигнализирующие о наличии ошибок (если такие светодиоды имеются).

В противном случае дальнейшие операции по поверке ИК, в который входят данные компоненты, выполняют после восстановления питания.

Если отсутствует возможность подачи напряжения питания на компоненты АИИС КУЭ, то результаты проверки ИК, в который входят данные компоненты, считаются от-

рицательными, выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.1.4 Проверяют отсутствие следов коррозии и нагрева в местах подключения проводных линий.

Результаты проверки считаются положительными, если не выявлено следов коррозии и нагрева.

В противном случае дальнейшие операции по поверке ИК, в составе которых обнаружены проводные линии со следами коррозии и/или нагрева, выполняют после устранения несоответствий.

Если указанные выше замечания не были устранены за время поверки, то результаты проверки соответствующих ИК считаются отрицательными, выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.2 Подтверждение соответствия программного обеспечения

- **8.2.1** Проводят проверку соответствия заявленных идентификационных данных программного обеспечения, указанных в описании типа:
 - наименование программного обеспечения;
 - идентификационное наименование программного обеспечения;
 - номер версии (идентификационный номер) программного обеспечения;
- цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода);
 - алгоритм вычисления цифрового идентификатора программного обеспечения.
- **8.2.2** Проверку выполняют в соответствии с Р 50.2.077-2014 «ГСИ. Испытания средств измерений в целях утверждения типа. Проверка защиты программного обеспечения» и ГОСТ Р 8.654-2015 «ГСИ. Требования к программному обеспечению средств измерений. Основные положения».
 - 8.2.2.1 Проверка документации в части программного обеспечения

На проверку представляют документацию на программное обеспечение: Руководство пользователя. Представленная документация должна соответствовать ГОСТ Р 8.654-2015.

8.2.2.2 Проверка идентификации программного обеспечения АИИС КУЭ

Загружают ПО и в разделе «Справка» проверяют идентификационное наименование и номер версии программного обеспечения.

8.2.2.3 Проверка цифрового идентификатора программного обеспечения

На выделенных модулях ПО проверяют цифровые идентификаторы и алгоритм вычисления цифрового идентификатора.

Проверка цифрового идентификатора программного обеспечения производится на сервере (с помощью APM), где установлено ПО. Запускают менеджер файлов, позволяющий производить хэширование файлов или специализированное ПО, предоставляемое разработчиком. В менеджере файлов открывают каталог и выделяют файлы, указанные в описании типа АИИС КУЭ. Далее, запустив соответствующую программу, из состава ПО АИИС КУЭ, просчитывают хэш. По результатам формируются файлы, содержащие коды алгоритмов вычисления цифровых идентификаторов в текстовом формате. Наименование файлов алгоритмов вычисления цифровых идентификаторов должно соответствовать наименованию файлов, для которых проводилось хэширование.

- 8.2.3 Результаты проверки считаются положительными, если:
- идентификационное наименование и номер версии программного обеспечения соответствуют заявленным;
- цифровые идентификаторы ПО соответствуют указанным в описании типа АИИС КУЭ.

В противном случае результаты проверки считаются отрицательными, и выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.3 Проверка соответствия измерительных компонентов АИИС КУЭ

- 8.3.1 Проверяют правильность расположения и монтажа средств измерений (измерительных компонентов), правильность схем подключения ТТ и ТН к счетчикам электрической энергии; правильность прокладки проводных линий связи по проектной документации на АИИС КУЭ.
- 8.3.2 Проверяют соответствие типов, классов точности и заводских номеров фактически использованных средств измерений (измерительных компонентов), а также коэффициентов трансформации измерительных трансформаторов указанным в описании типа АИИС КУЭ и/или формуляре. При необходимости производят отключение электроустановки.
- 8.3.3 Проверяют результаты поверки всех средств измерений (измерительных компонентов), входящих в состав АИИС КУЭ: измерительных трансформаторов тока и напряжения, счетчиков электрической энергии, УСПД, УССВ (свидетельства о поверке данных средств измерений (измерительных компонентов) или паспорта заводов-изготовителей средств измерений (измерительных компонентов) с оттисками клейма поверителя) и срок их действия.

Допускается при обнаружении просроченных свидетельств о поверке средств измерений (измерительных компонентов) проводить их поверку на месте эксплуатации в процессе поверки АИИС КУЭ. Средства измерений (измерительные компоненты) поверяются по методикам поверки, утвержденным при утверждении их типа.

- 8.3.4 Результаты проверки считаются положительными, если:
- не выявлено несоответствий по пп. 8.3.1-8.3.2;
- срок действия результатов поверки средств измерений (измерительных компонентов), входящих в состав АИИС КУЭ, не истек.

В противном случае:

- дальнейшие операции по поверке ИК, в который входят указанные средства измерений (измерительные компоненты), выполняют после поверки этих средств измерений (измерительных компонентов);
- в случае невозможности поверки указанных средств измерений (измерительных компонентов), а также при выявлении несоответствий по пп. 8.3.1-8.3.2, результаты проверки считаются отрицательными, и выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.4 Проверка счетчиков электрической энергии

- 8.4.1 Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения счетчика к цепям тока и напряжения, в частности, правильность чередования фаз. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения счетчиков к цепям тока и напряжения (соответствие схем подключения схемам, приведенным в паспорте на счетчик). Проверяют последовательность чередования фаз с помощью измерителя напряжения с токовыми клещами. При проверке последовательности чередования фаз действуют в соответствии с указаниями, изложенными в руководстве по его эксплуатации.
- **8.4.2** Проверяют работу всех сегментов индикаторов счетчиков, отсутствие кодов ошибок или предупреждений, прокрутку параметров в заданной последовательности.
- **8.4.3** Проверяют работоспособность оптического порта счетчика с помощью переносного компьютера. Оптический преобразователь подключают к последовательному порту переносного компьютера. Опрашивают счетчик по установленному соединению.
- **8.4.4** Проверяют соответствие индикации даты в счетчике календарной дате (число, месяц, год). Проверку осуществляют визуально или с помощью переносного компьютера через оптический порт.
- 8.4.5 Проверяют программную защиту счетчиков от несанкционированного доступа. Подключают оптический порт к инфракрасному порту счетчика и порту USB переносного компьютера, запускают на переносном компьютере ПО для работы со счетчиком. Или с помощью специализированного ПО конфигурирования счетчиков, установленного на сервере, посред-

ством удаленного доступа в соответствии с описанием ПО устанавливают связь со счетчиком. В поле «пароль» вводят неправильный код.

- 8.4.6 Результаты проверки считаются положительными, если:
- подтверждена правильность подключения счетчиков к цепям тока и напряжения, а также последовательность чередования фаз;
- все сегменты индикаторов счетчиков работают, отсутствуют коды ошибок или предупреждений;
- при опросе счетчика по оптическому порту с помощью переносного компьютера получен отчет, содержащий данные, зарегистрированные счетчиком;
 - календарная дата в счетчике соответствует текущей календарной дате;
- при вводе неправильного пароля программа опроса счетчика выдает сообщение об ошибке и не разрешает продолжить работу.

При обнаружении каких-либо несоответствий по пп. 8.4.1-8.4.5 дальнейшие операции по поверке ИК, в который входит данный счетчик, выполняют после устранения несоответствий.

Если указанные выше замечания не были устранены за время поверки, то результаты проверки считаются отрицательными, и выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.5 Проверка УСПД

- **8.5.1** Проверяют правильность функционирования УСПД в соответствии с его эксплуатационной документацией с помощью тестового программного обеспечения, поставляемого в комплекте УСПД.
- **8.5.2** Проверяют программную защиту УСПД от несанкционированного доступа в соответствии с эксплуатационным документом на УСПД.
 - 8.5.3 Результаты проверки считаются положительными, если:
 - все подсоединенные к УСПД счетчики опрошены и нет сообщений об ошибках;
- при вводе неправильного пароля программа опроса выдает сообщение об ошибке и не разрешает продолжить работу.

При обнаружении каких-либо несоответствий по пп. 8.5.1-8.5.2 дальнейшие операции по поверке ИК, в который входит данное УСПД, выполняют после устранения несоответствий.

Если указанные выше замечания не были устранены за время поверки, то результаты проверки считаются отрицательными, и выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.6 Проверка функционирования компьютеров АИИС КУЭ (АРМ или сервера)

- 8.6.1 Проводят опрос текущих показаний всех счетчиков электроэнергии.
- **8.6.2** Проверяют глубину хранения измерительной информации в центральном сервере АИИС КУЭ.
- **8.6.3** Проверяют защиту программного обеспечения на компьютере АИИС КУЭ от несанкционированного доступа. Для этого запускают на выполнение программу сбора данных и в поле «пароль» вводят неправильный код.
- **8.6.4** Проверяют работу аппаратных ключей. Выключают компьютер и снимают аппаратную защиту (отсоединяют ключ от порта компьютера). Включают компьютер, загружают операционную систему и запускают программу.
- **8.6.5** Проверяют правильность значений коэффициентов трансформации измерительных трансформаторов, хранящихся в памяти сервера.
 - 8.6.6 Результаты проверки считаются положительными, если:
- все счетчики опрошены и нет сообщений об ошибках, а также получен отчет, содержащий данные, зарегистрированные счетчиком;
- глубина хранения измерительной информации соответствует заявленной в описании типа;
- при вводе неправильного пароля программа сбора данных выдает сообщение об ошибке и не разрешает продолжить работу;

- при отсутствии аппаратного ключа получено сообщение об отсутствии «ключа защиты»;
- значения коэффициентов трансформации измерительных трансформаторов, хранящиеся в памяти сервера, соответствуют значениям коэффициентов трансформации измерительных трансформаторов, указанных в формуляре и описании типа АИИС КУЭ.

При обнаружении каких-либо несоответствий по пп. 8.6.1-8.6.5 дальнейшие операции по поверке ИК АИИС КУЭ выполняют после устранения несоответствий.

Если указанные выше замечания не были устранены за время поверки, то результаты проверки считаются отрицательными, и выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.7 Проверка функционирования вспомогательных устройств

8.7.1 Проверка функционирования модемов (при их наличии)

Проверяют функционирование модемов, используя коммуникационные возможности специальных программ из состава ПО АИИС КУЭ, определяемых согласно руководству пользователя ПО. По установленным с помощью модемов соединениям проводят опрос всех счетчиков или УСПД.

Допускается автономная проверка модемов с использованием тестового программного обеспечения.

8.7.2 Проверка функционирования адаптеров интерфейса (при их наличии)

Подключают к адаптеру переносной компьютер с ПО. Проводят опрос всех счетчиков, подключенных к данному адаптеру.

- 8.7.3 Результаты проверки считаются положительными, если:
- с помощью модемов были установлены коммутируемые соединения и по установленным соединениям успешно прошел опрос счетчиков или УСПД;
 - удалось опросить все счетчики, подключенные к адаптеру.

При обнаружении каких-либо несоответствий по пп. 8.7.1-8.7.2 дальнейшие операции по поверке ИК, в который входят данные модемы и/или адаптеры интерфейса, выполняют после устранения несоответствий.

Если указанные выше замечания не были устранены за время поверки, то результаты проверки считаются отрицательными, и выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

- 8.8 Проверка нагрузки на вторичные цепи измерительных трансформаторов напряжения
- **8.8.1** Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения первичных и вторичных обмоток ТН. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения первичных и вторичных обмоток ТН.
- **8.8.2** Убеждаются, что отклонение вторичного напряжения при нагруженной вторичной обмотке составляет не более ± 10 % от U_{HOM} .
- **8.8.3** Проверяют наличие номинального значения мощности нагрузки на вторичные цепи ТН S_{НОМ}, указанного в технической документации на данный ТН или указанного в паспортепротоколе на соответствующий измерительный канал. В случае отсутствия этих документов производят отключение электроустановки и проверяют значение S_{НОМ}, указанное на табличке ТН.
- **8.8.4** Измерение мощности нагрузки на вторичные цепи ТН проводят в соответствии с МИ 3195-2018 «Методика измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации».

Приписанная характеристика погрешности результата измерений мощности нагрузки TH- доверительные границы допускаемой относительной погрешности результата измерений мощности нагрузки TH при доверительной вероятности 0.95 не превышает ± 6 % с учетом условий выполнения измерений, приведенных в документе MU 3195-2018.

Примечания

- 1 Допускается измерение мощности нагрузки на вторичные цепи ТН не проводить, если такое измерение проводилось при составлении паспорта-протокола на данный измерительный канал в течение истекающего интервала между поверками АИИС КУЭ, и если в измерительный канал не вносились изменения, не зафиксированные в соответствующем паспортепротоколе.
- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам ТН.
- 3 Допускается проведение измерений мощности нагрузки на вторичные цепи ТН в соответствии с другими аттестованными методиками измерений.
- 4 Предоставленные паспорта-протоколы должны быть согласованы территориальными органами Федерального агентства по техническому регулированию и метрологии. Проверяют средства измерений, применяемые при проведении измерений вторичных нагрузок ТН: средства измерений должны быть утверждённого типа, поверены (проверяют также, что срок действия поверки данных СИ не истек) и соответствовать требованиям МИ 3195-2018. Предоставленные паспорта-протоколы должны содержать информацию о результатах измерений вторичных нагрузок ТН. Для проверки результатов измерений вторичных нагрузок ТН проводят выборочный контроль путём измерения данных параметров согласно пп. 8.8.2-8.8.4.

8.8.5 Результаты проверки считаются положительными, если:

- измеренное значение мощности нагрузки на вторичные цепи ТН соответствует требованиям соответствующего нормативного документа (ГОСТ 1983-2015 или другого нормативного документа, действующего в срок выпуска ТН);
- или подтверждается выполнение указанного выше условия для ТН в паспортепротоколе.

При обнаружении каких-либо несоответствий по пп. 8.8.1-8.8.4 дальнейшие операции по поверке ИК, в который входит данный ТН, выполняют после устранения несоответствий.

Если указанные выше замечания не были устранены за время поверки, то результаты проверки считаются отрицательными, и выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

- 8.9 Проверка нагрузки на вторичные цепи измерительных трансформаторов тока
- **8.9.1** Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения вторичных обмоток ТТ. При отсутствии таких документов проверяют правильность подключения вторичных обмоток ТТ.
- 8.9.2 Проверяют наличие номинального значения мощности нагрузки на вторичные цепи ТТ S_{НОМ}, указанного в технической документации на данный ТТ или указанного в паспортепротоколе на соответствующий измерительный канал. В случае отсутствия этих документов производят отключение электроустановки (при необходимости) и проверяют значение S_{НОМ}, указанное на табличке ТТ.
- **8.9.3** Измерение вторичной нагрузки ТТ проводят в соответствии с МИ 3196-2018 «Методика измерений мощности нагрузки трансформаторов тока в условиях эксплуатации».

Приписанная характеристика погрешности результата измерений мощности нагрузки TT- доверительные границы допускаемой относительной погрешности результата измерений мощности нагрузки TT при доверительной вероятности 0,95 не превышает ± 6 % с учетом условий выполнения измерений, приведенных в документе МИ 3196-2018.

Примечания

- 1 Допускается измерение мощности нагрузки на вторичные цепи ТТ не проводить, если такое измерение проводилось при составлении паспорта-протокола на данный измерительный канал в течение истекающего интервала между поверками АИИС КУЭ, и если в измерительный канал не вносились изменения, не зафиксированные в соответствующем паспорте-протоколе.
- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам ТТ.

- 3 Допускается проведение измерений мощности нагрузки на вторичные цепи ТТ в соответствии с другими аттестованными методиками измерений.
- 4 Предоставленные паспорта-протоколы должны быть согласованы территориальными органами Федерального агентства по техническому регулированию и метрологии. Проверяют средства измерений, применяемые при проведении измерений вторичных нагрузок ТТ: средства измерений должны быть утверждённого типа, поверены (проверяют также, что срок действия поверки данных СИ не истек) и соответствовать требованиям МИ 3196-2018. Предоставленные паспорта-протоколы должны содержать информацию о результатах измерений вторичных нагрузок ТТ. Для проверки результатов измерений вторичных нагрузок ТТ проводят выборочный контроль путём измерения данных параметров согласно пп. 8.9.2-8.9.3.
 - 8.9.4 Результаты проверки считаются положительными, если:
- измеренное значение мощности нагрузки на вторичные цепи ТТ соответствует требованиям соответствующего нормативного документа (ГОСТ 7746-2015 или другого нормативного документа, действующего в срок выпуска ТТ);
- или подтверждается выполнение указанного выше условия для ТТ в паспортепротоколе.

При обнаружении каких-либо несоответствий по пп. 8.9.1-8.9.3 дальнейшие операции по поверке ИК, в который входит данный ТТ, выполняют после устранения несоответствий.

Если указанные выше замечания не были устранены за время поверки, то результаты проверки считаются отрицательными, и выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.10 Проверка падения напряжения в линии связи счетчика с измерительным трансформатором напряжения

8.10.1 Измеряют падение напряжения U_л в проводной линии связи для каждой фазы по документу МИ 3598-2018 «Методика измерений потерь напряжения в линиях связи счетчика с трансформатором напряжения в условиях эксплуатации».

Приписанная характеристика погрешности результата измерений потерь напряжения — доверительные границы допускаемой относительной погрешности результата измерений потерь напряжения при доверительной вероятности 0.95 не превышает ± 1.5 % с учетом условий выполнения измерений, приведенных в документе МИ 3598-2018.

Примечания

- 1 Допускается измерение падения напряжения в линии связи счетчика с измерительным трансформатором напряжения не проводить, если такое измерение проводилось при составлении паспорта-протокола на данный измерительный канал в течение истекающего интервала между поверками АИИС КУЭ, и если в измерительный канал не вносились изменения, не зафиксированные в соответствующем паспорте-протоколе.
- 2 Допускается падение напряжения в линии связи счетчика с измерительным трансформатором напряжения определять расчетным путем, если известны параметры проводной линии связи и сила электрического тока, протекающего через линию связи.
- 3 Допускается проведение измерений падения напряжения в линии связи счетчика с измерительным трансформатором напряжения в соответствии с другими аттестованными методиками измерений.
- 4 Предоставленные паспорта-протоколы должны быть согласованы территориальными органами Федерального агентства по техническому регулированию и метрологии. Проверяют средства измерений, применяемые при проведении измерений потерь напряжения в линии связи счетчика с измерительным трансформатором напряжения: средства измерений должны быть утверждённого типа, поверены (проверяют также, что срок действия поверки данных СИ не истек) и соответствовать требованиям МИ 3598-2018. Предоставленные паспорта-протоколы должны содержать информацию о результатах измерений потерь напряжения в линии связи счетчика с измерительным трансформатором напряжения. Для проверки результатов измерений потерь напряжения в линии связи счетчика с измерительным трансформатором напряжения проводят выборочный контроль путём измерения данных параметров согласно п. 8.10.1.

8.10.2 Результаты проверки считаются положительными, если:

- измеренное значение падения напряжения в линии связи счетчика с измерительным трансформатором напряжения не превышает 0,25 % от номинального значения на вторичной обмотке ТН;
- или подтверждается выполнение указанного выше условия в паспорте-протоколе. При обнаружении каких-либо несоответствий по п. 8.10.1 дальнейшие операции по поверке ИК, в который входит данный ТН, выполняют после устранения несоответствий.

Если указанные выше замечания не были устранены за время поверки, то результаты проверки считаются отрицательными, и выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.11 Проверка погрешности системы обеспечения единого времени

8.11.1 Включают приемник сигналов точного времени, принимающий сигналы спутниковой навигационной системы GPS/ГЛОНАСС, и сверяют показания часов УСПД, получающего сигналы точного времени от подключенного к нему УССВ, по сигналам точного времени.

Проверку работы системы коррекции времени сервера не проводят, так как сервер входит в состав АИИС КУЭ Единой национальной электрической сети, тип которой утверждён, регистрационный номер в Федеральном информационном фонде 59086-14.

Примечание

В качестве сигналов точного времени могут использоваться эталонные сигналы времени:

- сигналы, передаваемые по телевизионному каналу в зоне действия наземной сети;
- сигналы NTP-серверов ФГУП «ВНИИФТРИ», передаваемые в сеть Интернет;
- сигналы, передаваемые спутниковой навигационной системой GPS/ГЛОНАСС;
- сигналы длинноволновых и коротковолновых радиостанций, входящих в систему передачи эталонных сигналов времени и частоты.

8.11.2 Проверка часов счетчиков и УСПД

Распечатывают журнал событий счетчика и УСПД, выделив события, соответствующие сличению часов корректируемого и корректирующего компонента. Проверяют расхождение времени часов: счетчик – УСПД, УСПД – УССВ в момент, предшествующий коррекции. Проверяют отклонение показаний часов счетчиков относительно шкалы UTC (часы счетчика – часы УСПД – УССВ).

8.11.3 Результаты проверки считаются положительными, если:

- расхождение показаний часов УСПД с сигналами точного времени не превышает значения, указанного в описании типа АИИС КУЭ;
- расхождение времени часов: счетчик УСПД, УСПД –УССВ в момент, предшествующий коррекции, не превышает предела допускаемого расхождения, указанного в описании типа АИИС КУЭ;
- максимальное отклонение показаний часов счетчика относительно шкалы UTC по абсолютному значению не превышает 5 с.

При обнаружении каких-либо несоответствий по пп. 8.11.1-8.11.2 дальнейшие операции по поверке соответствующего ИК выполняют после устранения несоответствий.

Если указанные выше замечания не были устранены за время поверки, то результаты проверки считаются отрицательными, и выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

8.12 Проверка отсутствия ошибок информационного обмена

Операция проверки отсутствия ошибок информационного обмена предусматривает экспериментальное подтверждение идентичности числовой измерительной информации в счетчиках электрической энергии (исходная информация), и памяти центрального сервера.

В момент проверки все технические средства, входящие в проверяемый ИК, должны быть включены.

- 8.12.1 На центральном компьютере (сервере) АИИС КУЭ отображают или распечатывают значения активной и реактивной электрической энергии, зарегистрированные с 30 минутным интервалом за полные предшествующие дню проверки сутки, по всем ИК. Проверяют наличие данных, соответствующих каждому 30 минутному интервалу времени. Пропуск данных не допускается за исключением случаев, когда этот пропуск был обусловлен отключением ИК или устраненным отказом какого-либо компонента АИИС КУЭ.
- **8.12.2** Отображают на экране компьютера или распечатывают журнал событий счетчика, УСПД и сервера и отмечают моменты нарушения связи между измерительными компонентами АИИС КУЭ. Проверяют сохранность измерительной информации в памяти УСПД и центральном сервере АИИС КУЭ на интервалах времени, в течение которых была нарушена связь.
- 8.12.3 Отображают на экране компьютера или распечатывают на центральном компьютере (сервере) профиль нагрузки за полные сутки, предшествующие дню поверки. Используя переносной компьютер, считывают через оптический порт профиль нагрузки за те же сутки, хранящийся в памяти счетчика. Различие значений активной (реактивной) мощности, хранящейся в памяти счетчика (с учетом коэффициентов трансформации измерительных трансформаторов) и базе данных центрального сервера не должно превышать одной единицы младшего разряда учтенного значения.
- 8.12.4 Рекомендуется вместе с проверкой по п. 8.12.3 сличать показания счетчика по активной и реактивной электрической энергии строго в конце получаса (часа) и сравнивать с данными, зарегистрированными в центральном компьютере (сервере) АИИС КУЭ для того же момента времени. Для этого визуально или с помощью переносного компьютера через оптический порт считывают показания счетчика по активной и реактивной электрической энергии и сравнивают эти данные (с учетом коэффициентов трансформации измерительных трансформаторов), с показаниями, зарегистрированными в центральном компьютере (сервере) АИИС КУЭ. Расхождение не должно превышать две единицы младшего разряда.
- **8.12.5** Результаты проверки считаются положительными, если выполнены требования пп. 8.12.1-8.12.4.

При обнаружении каких-либо несоответствий по пп. 8.12.1-8.12.4 дальнейшие операции по поверке соответствующего ИК выполняют после устранения несоответствий.

Если указанные выше замечания не были устранены за время поверки, то результаты проверки считаются отрицательными, и выписывается извещение о непригодности в соответствии с разделом 9 данной методики поверки.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 На основании положительных результатов подтверждения соответствия по пунктам раздела 8 выписывают свидетельство о поверке АИИС КУЭ, по форме и содержанию удовлетворяющее требованиям Приказа Минпромторга от 02.07.2015 г. № 1815. В приложении к свидетельству указывают перечень и состав ИК с указанием их наименований, типов (в соответствии со свидетельствами об утверждении типа СИ), заводских номеров средств измерений (измерительных компонентов) (для счетчиков электрической энергии также указывается условное обозначение модификации и варианта исполнения в соответствии со свидетельством об утверждении типа СИ), прошедших поверку и пригодных к применению. Знак поверки наносится на свидетельство о поверке.
- 9.2 При отрицательных результатах поверки АИИС КУЭ в части каналов, не прошедших поверку (подтверждение соответствия по пунктам раздела 8), признается непригодной к дальнейшей эксплуатации и на нее выдают извещение о непригодности, по форме и содержанию удовлетворяющее требованиям Приказа Минпромторга от 02.07.2015 г. № 1815, с указанием причин непригодности. В приложении к извещению о непригодности указывают перечень и состав ИК с указанием их наименований, типов (в соответствии со свидетельствами об утверждении типа СИ), заводских номеров средств измерений (измерительных компонентов) (для счетчиков электрической энергии также указывается условное обозначение модификации и

варианта исполнения в соответствии со свидетельством об утверждении типа СИ), не соответствующих метрологическим требованиям, установленным в описании типа АИИС КУЭ.

- 9.3 Результаты первичной поверки АИИС КУЭ оформляются только после утверждения типа АИИС КУЭ. Допускается при проведении испытаний в целях утверждения типа и опробования методики поверки одновременно оформлять результаты калибровки ИК и использовать их в дальнейшем при поверке АИИС КУЭ при условии выполнения требований Постановления Правительства Российской Федерации от 02.04.2015 г. № 311.
- 9.4 В ходе поверки оформляется протокол поверки, отражающий выполнение процедур по пунктам раздела 8 и их результаты. Протокол поверки оформляют в произвольной форме.

Разработал:

Ведущий инженер по метрологии ООО «ЭнергоПромРесурс»

А.С. Косьянова