Федеральное государственное унитарное предприятие «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГУП «ВНИИМС»)

СИСТЕМЫ ИЗМЕРЕНИЯ ПОТЕРЬ В ТРАНСФОРМАТОРАХ LIMOS

Методика поверки МП 206.1-124-2019 Настоящая методика поверки распространяется на системы измерения потерь в трансформаторах LiMOS (далее - системы), изготавливаемые HIGHVOLT Prüftechnik Dresden GmbH, Германия, и устанавливает методы и средства их первичной и периодической поверки.

На поверку представляются системы, укомплектованные в соответствии с руководством по эксплуатации, и комплект следующей технической и нормативной документации:

- руководство по эксплуатации;
- методика поверки.

Интервал между поверками – 2 года.

1 НОРМАТИВНЫЕ ССЫЛКИ

РМГ 51-2002 «ГСИ. Документы на методики поверки средств измерений. Основные положения»;

Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке, утвержден Приказом Минпромторга России от 02.07.2015 г. № 1815;

ПР 50.2.012-94 «ГСИ. Порядок аттестации поверителей средств измерений»;

ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения»;

ГОСТ Р 8.736-2011 «ГСИ. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения»;

ГОСТ 12.3.019-80 «Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности»;

ГОСТ 12.2.007.0-75 «Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности»;

«Правила по охране труда при эксплуатации электроустановок» 04.08.2014 г.:

«Правила эксплуатации электроустановок потребителей», утвержденных Главгосэнергонадзором.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 Поверка проводится в объеме и последовательности, указанной в таблице 1.

Таблица 1 - Перечень операций при первичной и периолических поверках аппаратов

	Номер пунк-	Проведение операции		
Наименование операции	та методики поверки	первичная поверка	периодиче- ская поверка	
1 Внешний осмотр	8.1	Да	Да	
2 Опробование	8.2	Да	Да	
3 Проверка относительной погрешности измерений напряжения переменного тока	8.3	Да	Да	
4 Проверка относительной погрешности измерений силы переменного тока	8.4	Да	Да	
5 Проверка абсолютной погрешности измерений частоты переменного тока	8.5	Да	Да	
6 Проверка относительной погрешности измерений погрешности измерений полной и активной составляющей мощности	8.6	Да	Да	

3. СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки систем должны применяться основные и вспомогательные средства, указанные в таблицах 2 и 3.

Таблица 2 - Основные средства поверки

		емые технические арактеристики	Рекомен- Ко-		Номер пунк- та методики
Наименование	Диапазон измере- ния	Погрешность или класс точности	дуемый тип	личе- ство	поверки
1	2	3	4	5	6
Делитель напряжения эталонный	от 1 до 200 кВ	±0,05 %	ДН-230	1	8.3
Калибратор уни- версальный	до 1000 В до 3 А до 200 Гц	$\pm (0,0005 \cdot U_{\text{BMX}} + 126 \text{ MB})$ $\pm (0,001 \cdot I_{\text{BMX}} + 480 \text{ MKA})$ $\pm 0,000025 \cdot F_{\text{BMX}}$	Fluke 9100	1	8.2, 8.3, 8.4, 8.5
Калибратор пере- менного тока	до 1,5 кВт	±(0,1+0,02·(S _{ном} /P – 1))	Ресурс-К2	1	8.6
Трансформатор тока эталонный двухступенчатый	до 3000 А	±0,01 %	ИТТ- 3000.5	1	8.4
Трансформатор тока измерительный лабораторный	до 4000 А	±0,05 %	ТТИ- 5000.5	1	8.4
Мультиметр циф- ровой прецизион- ный	до 1000 В до 5 А	$\pm (0,0004 \cdot U_{\text{изм}} + 0,0002 \cdot U_{\text{д}})$ $\pm (0,001 \cdot I_{\text{изм}} + 0,0002 \cdot I_{\text{д}})$	Fluke 8508A	1	8.2, 8.3, 8.4

Таблица 3 - Вспомогательные средства поверки

		е технические геристики	Рекомен-	Коли-	Номер пункта методики поверки	
Наименование	Диапазон измерения	Погрешность или класс точности	дуемый тип	чество		
1	2	3	4	5	6	
Измеритель нелиней- ных искажений	20 Гц - 200 кГц 20 Гц -1 МГц	±(0,05 Kγκ+0,06) % ±(0,05 Kγκ+0,02) %; ±(0,1Kγκ+0,1)%;	C6-11	1	6.2	
Термометр ртутный лабораторный	от 0 до 50 °C	±1 °C	ТЛ-4	1	6.1	
Барометр-анероид метеорологический	от 80 до 106 кПа	±200 Па	БАММ- 1	1	6.1	
Психрометр аспирационный	от 10 до 100 %	±1 %	M-34-M	1	6.1	
Установка для испытания высоким напряжением	до 200 кВ	±3 %	УИВ- 230	1	8.3	
Регулируемый источник тока	до 4000 А	±3 %	РИТ- 5000	1	8.4	

- 3.2 Для проведения поверки допускается применение других средств, не приведенных в таблицах 2 и 3, при условии обеспечения ими необходимой точности измерений.
- 3.3 Контрольно-измерительная аппаратура и средства измерений, применяемые при поверке, должны обеспечивать требуемую точность и иметь действующие свидетельства о поверке, сертификаты калибровки или аттестаты.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К проведению поверки допускают поверителей из числа сотрудников организаций, аккредитованных на право проведения поверки в соответствии с действующим законодательством РФ, изучивших настоящую методику поверки и руководство пользователя/руководство по эксплуатации на аппараты, имеющих стаж работы по данному виду измерений не менее 1 года.
- 4.2 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право проведения работ в электроустановках с квалификационной группой по электробезопасности не ниже III.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны соблюдаться требования ГОСТ 12.2.007.0-75, ГОСТ 12.3.019-80, «Правила по охране труда при эксплуатации электроустановок», «Правил эксплуатации электроустановок потребителей», утвержденных Главгосэнергонадзором.

Должны быть также обеспечены требования безопасности, указанные в эксплуатационных документах на средства поверки.

6 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

6.1 Поверка систем должна проводиться при нормальных условиях применения:

• температура окружающей среды, °С

от 15 до 25;

• атмосферное давление, кПа

от 84 до 106;

• относительная влажность воздуха, %

от 10 до 80.

6.2 Напряжение питающей сети переменного тока частотой 50 Гц, действующее значение напряжения 220 В. Допускаемое отклонение от нормального значения при поверке ±22 В. Коэффициент искажения синусоидальности кривой напряжения не более 5 %.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Средства поверки должны быть подготовлены к работе согласно указаниям, приведенным в соответствующих эксплуатационных документах.
- 7.2 До проведения поверки поверителю надлежит ознакомиться с эксплуатационной документацией на систему и входящие в ее комплект компоненты.

8 МЕТОДЫ ПОВЕРКИ

8.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие поверяемой системы следующим требованиям:

- комплектность должна соответствовать данным, приведенным в паспорте;
- все разъемы, клеммы и измерительные провода не должны иметь повреждений, следов окисления и загрязнений;
- маркировка и функциональные надписи должны читаться и восприниматься однозначно;
- наружные поверхности корпуса, разъемы, соединительные кабели и органы управления не должны иметь механических повреждений и деформаций, которые могут повлиять на работоспособность системы.

При несоответствии по вышеперечисленным позициям системы бракуется и направляется в ремонт.

8.2 Опробование

8.2.1 Соберите схему, приведенную на рисунке 1.

Внимание!!! Подключение напряжения к блоку датчиков LiMO производите со стороны P1, где установлена перемычка с токоведущей жилы на корпус.

Включите приборы и дайте им прогреться. При включении необходимо проверить номер версии программного обеспечения, установленного в поверяемой системе.

Рисунок 1 - Схема измерений на напряжении переменного тока до 1000 В

- 8.2.2 На калибраторе FLUKE 9100 (далее калибратор FLUKE) установите режим работы на напряжении переменного тока частотой 50 Гц.
- 8.2.3 Задайте на калибраторе FLUKE значение выходного напряжения, равное $100~\mathrm{B}.$ Проведите измерения и затем отключите подачу напряжения.
- 8.2.4 Задайте на калибраторе FLUKE значение выходного напряжения, равное 1000 В. Проведите измерения и затем отключите подачу напряжения.
- 8.2.5 Результаты измерений считаются удовлетворительными, если система измеряет напряжение с погрешностью $\pm 0.2~\%$ и номер версии программного обеспечения не ниже, чем 18.9.1.0.

8.3 Проверка относительной погрешности измерений напряжения переменного тока

8.3.1 Соберите схему, приведенную на рисунке 1.

Внимание!!! Подключение напряжения к блоку датчиков LiMO производите со стороны P1, где установлена перемычка с токоведущей жилы на корпус.

- 8.3.2 Включите приборы и дайте им прогреться.
- 8.3.3 Задайте на калибраторе FLUKE значение выходного напряжения переменного тока частотой 50 Γ ц, равное 100 В. Проведите измерения. Результаты занесите в таблицу 4 и затем отключите подачу напряжения.
 - 8.3.4 Повторите операцию по п. 8.3.3 задавая на калибраторе FLUKE значения вы-

ходного напряжения 500 и 1000 В.

8.3.5 Соберите схему, приведенную на рисунке 2.

Внимание!!! Подключение напряжения к блоку датчиков LiMO производите со стороны P1, где установлена перемычка с токоведущей жилы на корпус.

- 8.3.6 Задайте с источника высокого напряжения переменного тока значение выходного напряжения, равное 0,1 · U_{ном}. Проведите измерения. Результаты занесите в таблицу 4.
- 8.3.7 Повторите операцию по п. 8.3.6 задавая с источника высокого напряжения переменного тока значения выходного напряжения, равные $0.25 \cdot U_{\text{ном}}$, $0.5 \cdot U_{\text{ном}}$, $0.75 \cdot U_{\text{ном}}$ и $1.0 \cdot U_{\text{ном}}$. По окончании измерений снимите высокое напряжение, отключите и заземлите установку.
 - 8.3.8 Рассчитайте погрешность измерений напряжения по формуле:

$$\delta U = (U_x - U_3)/U_3$$
 (1).

Где:

U₃ - значение напряжения, измеренное эталонным оборудованием, кВ;

 U_x - результаты измерений напряжения поверяемой системой, кВ.

8.3.9 Результаты расчетов занесите в таблицу 4.

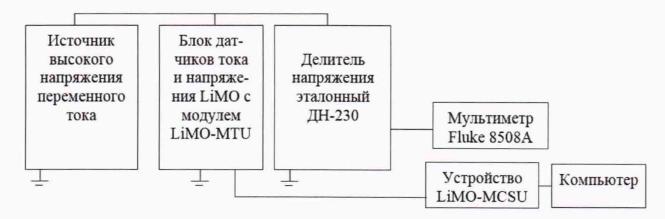


Рисунок 2 - Схема измерений на напряжении переменного тока свыше 1000 В

Таблица 4 - Результаты измерений напряжения переменного тока

U _{ном} , кВ	U _э , кВ	U_x , к B	Погрешность δU, %	Допускаемый предел погрешности $\delta U_{\rm Д}$, %
0,01				
0,5				_
1,0				_
0,1·U _{HOM} 0,25·U _{HOM}				±0,2
0,5 · U _{ном}				
0,75 · U _{ном}				
1,0·U _{ном}				

Где:

 $U_{\text{ном}}$ - номинальное значение напряжения для поверяемой модификации, равное 100 или $200~\mathrm{kB}$.

8.3.10 Результаты измерений считаются удовлетворительными, если полученные значения погрешностей измерений не превышают пределов, указанных в таблице 4.

8.4 Проверка относительной погрешности измерений силы переменного тока

8.4.1 Соберите схему, приведенную на рисунке 3. В качестве источника переменного тока используйте калибратор FLUKE.

Рисунок 3 - Схема измерений силы переменного тока до 20 А

- 8.4.2 Включите приборы и дайте им прогреться.
- 8.4.3 Задайте на калибраторе FLUKE значение силы переменного тока частотой 50 Гц, равное 0,1 А. Проведите измерения поверяемой системой и мультиметром. Результаты занесите в таблицу 5 и затем отключите подачу тока.
- 8.4.4 Повторите операцию по п. 8.4.3 задавая на калибраторе FLUKE значения выходного тока 1 и $20~\mathrm{A}.$
- 8.4.5 Соберите схему, приведенную на рисунке 4. В качестве эталонного трансформатора тока используйте ИТТ-3000.5.

Внимание!!! В каждой измеряемой точке переключайте обмотки эталонного трансформатора так, чтобы на его выходе всегда было номинальное значение вторичного тока, равное $5\ A$.

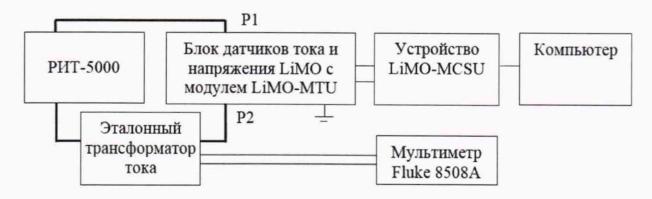


Рисунок 4 - Схема измерений силы переменного тока свыше 20 А

- 8.4.6 Задайте с источника РИТ-5000 силу тока значением 50 А и проведите измерения. Результаты занесите в таблицу 5. Отключите источник тока.
- 8.4.7 Повторите операцию по п. 8.4.6 задавая с источника РИТ-5000 значения силы тока, равные 250, 500, 1000 и 2000 А для всех модификаций, а для модификаций LiMOS 4000/100 и LiMOS 4000/200 дополнительно значение 3000 А. По окончании измерений отключите источник тока.
- 8.4.8 В качестве эталонного трансформатора тока в схеме, приведенной на рисунке 4, включите ТТИ-5000.5.
- 8.4.9 Только для модификаций LiMOS 4000/100 и LiMOS 4000/200 повторите операцию по п. 8.4.6 задавав с источника РИТ-5000 значение силы тока, равное 4000 А. По окончании измерений отключите источник тока.

8.4.10 Рассчитайте погрешность измерений силы тока по формуле:

$$\delta I = (I_x - I_9)/I_9 \tag{2}.$$

Где:

I_э - значение силы тока, измеренное эталонным оборудованием, А;

I_х - результаты измерений силы тока поверяемой системой, А.

8.4.11 Результаты расчетов занесите в таблицу 5.

Таблица 5 - Результаты измерений силы переменного тока

I _{HOM} , A	I ₃ , A	I _x , A	Погрешность δI, %	Допускаемый предел погрешности $\delta I_{\rm д}$, %
0,1				
1				
20				
50				
250				10.2
500				±0,2
1000				
2000				
3000*				
4000*				

Примечание: * - только для модификаций LiMOS 4000/100 и LiMOS 4000/200.

8.4.12 Результаты измерений считаются удовлетворительными, если полученные значения погрешностей измерений не превышают пределов, указанных в таблице 5.

8.5 Проверка абсолютной погрешности измерений частоты переменного тока

8.5.1 Соберите схему, приведенную на рисунке 1.

Внимание!!! Подключение напряжения к блоку датчиков LiMO производите со стороны P1, где установлена перемычка с токоведущей жилы на корпус.

- 8.5.2 Включите приборы и дайте им прогреться.
- 8.5.3 Задайте на калибраторе FLUKE значение выходного напряжения переменного тока $100~\mathrm{B}$ частотой $40~\mathrm{\Gamma}$ ц. Проведите измерения. Результаты занесите в таблицу $6~\mathrm{u}$ затем отключите подачу напряжения.
- 8.5.4 Повторите операцию по п. 8.5.3 задавая на калибраторе FLUKE значение выходного напряжения 100 В частотой 50, 75, 100, 150 и 200 Γ ц.
 - 8.5.5 Рассчитайте погрешность измерений частоты по формуле:

$$\Delta f = f_x - f_3 \tag{3}.$$

1 де:

f_э - значение частоты, задаваемое на калибраторе FLUKE, Гц;

 f_x - результаты измерений частоты поверяемой системой, Γ ц.

8.5.6 Результаты расчетов занесите в таблицу 6.

Таблица 6 - Результаты измерений частоты переменного тока

f _{ном} , Гц	f _э , Гц	f _x , Гц	Погрешность	Допускаемый предел погрешности Δf_{π} , Γ ц
40				
50				
75				10.05
100				±0,05
150				
200				

8.5.7 Результаты измерений считаются удовлетворительными, если полученные значения погрешностей измерений не превышают пределов, указанных в таблице 6.

8.6 Проверка относительной погрешности измерений погрешности измерений полной и активной составляющей мощности

- 8.6.1 Соберите схему, приведенную на рисунке 5.
- 8.6.2 Включите приборы и дайте им прогреться.
- $8.6.3~\mathrm{B}$ меню калибратора Ресурс-К2 установите $I_{\mathrm{Hom}}=5~\mathrm{A}$ и $U_{\mathrm{Hom}}=220~\mathrm{B}$ с углом сдвига фаз между ними 0^{o} .
- 8.6.4 Задайте с калибратора I=5 A и U=220 B, что соответствует номинальной мощности $P_{\text{ном}}$ =1100 Bт и $S_{\text{ном}}$ =1100 B·A. Произведите измерения. Результаты занесите в таблицу 8.
- 8.6.5 Повторите операцию по п.п. 8.6.3-8.6.4 задавая с калибратора Ресурс-К2 значения I=5 A и U=220 B с углами сдвига фаз между током и напряжением в соответствии с таблицей 8.
 - 8.6.6 Рассчитайте погрешности измерений мощности по формулам:

$$\delta S = (S_x - S_{\text{Hom}})/S_{\text{Hom}} \tag{4};$$

$$\delta P = (P_x - P_{HOM})/P_{HOM}$$
 (5).

Где:

 $S_{\text{ном}}$ и $P_{\text{ном}}$ - значение мощностей, соответствующих задаваемым токам, напряжениям и углам сдвига фаз между ними (таблица 8);

S_x и P_x - результаты измерений мощностей поверяемой системой.

8.6.7 Результаты расчетов занесите в таблицу 8.

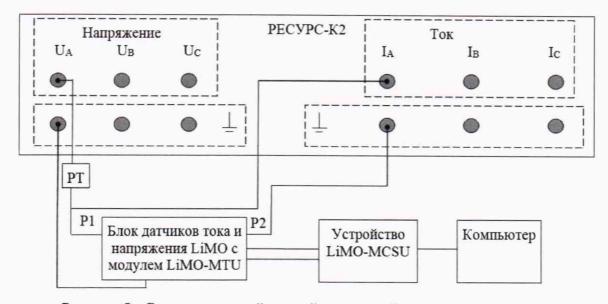


Рисунок 5 - Схема измерений полной и активной составляющей мощности

Где:

РТ – разделительный трансформатор для создания гальванической развязки.

Таблица 7 - Соответствие задаваемого угла фазового сдвига между током и напряжением

φ_{I-U} и коэффициентом мощности соѕф

φ _{I-U} , ^o	0	84,26	87,13	88,85	89,42	89,54
cosφ	1,0	0,1	0,05	0,02	0,01	0,008

Таблица 8 - Результаты измерений мощности

S _{HOM} , B·A	Р _{ном} , Вт	cosφ	$S_x, B \cdot A$	P _x , B _T	δS, %	δP, %	Допускаемый предел δS_{π} и δP_{π} , %
1100	1100	1,0					±0,3
1100	110	0,1					±0,4
1100	55	0,05					±0,5
1100	22	0,02					±0,7
1100	11	0,01					±1,0
1100	8,8	0,008					±1,5

Гле:

 $U_{\text{ном}}$ - номинальное значение напряжения для поверяемой модификации, равное 100 или 200~kB.

8.6.8 Результаты измерений считаются удовлетворительными, если полученные значения погрешностей измерений не превышают пределов, указанных в таблице 8.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

9.1 При положительных результатах поверки выдается свидетельство о поверке.

9.2 При отрицательных результатах поверки делитель бракуется и не допускается к дальнейшему применению, в паспорт вносится запись о непригодности его к эксплуатации, свидетельство о поверке аннулируется и выдается извещение о непригодности.

Начальник отдела 206.1 ФГУП «ВНИИМС» Рогожин С.Ю.

Научный сотрудник отдела 206.1 ФГУП «ВНИИМС» Леонов А.В.