

Акционерное Общество «АКТИ-Мастер» АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ и ИНФОРМАТИКА

127106, Москва, Нововладыкинский проезд, д. 8, стр. 4 тел./факс (495)926-71-70 E-mail: <u>post@actimaster.ru</u> <u>http://www.actimaster.ru</u>

УТВЕРЖДАЮ

Генеральный директор АО «АКТИ-Мастер»

В.В. Федулов « 27 ж февраля 2020 г. АКТИ-Мастер TI-Master OCKB!

Государственная система обеспечения единства измерений

Преобразователи напряжения измерительные аналого-цифровые модульные NI 4461, NI 4462, NI 4495, NI 4496, NI 4498

Методика поверки NI4461/МП-2020

Заместитель генерального директора по метрологии АО «АКТИ-Мастер»

han

Д.Р. Васильев

г. Москва 2020 Настоящая методика поверки распространяется на преобразователи напряжения измерительные аналого-цифровые модульные NI 4461, NI 4462, NI 4495, NI 4496, NI 4498 (далее – модули), и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Наименование операции	Номер пункта	Проведение операции при поверке	
	методики	первичной	периодической
Внешний осмотр и подготовка к поверке	6	да	да
Общие указания по выполнению поверки	7.1	да	да
Опробование (тестирование и идентификация)	7.2	да	да
Операции определения метрологических характеристик	7.3		
Определение смещения нуля напряжения АЦП	7.3.1	да	да
Определение погрешности измерения напряжения АЦП на частоте 1 kHz	7.3.2	да	да
Определение неравномерности амплитудно- частотной характеристики АЦП	7.3.3	да	да
Определение смещения нуля напряжения ЦАП	7.3.4	да	да
Определение погрешности воспроизведения напряжения ЦАП на частоте 1 kHz	7.3.5	да	да
Определение неравномерности амплитудно- частотной характеристики ЦАП	7.3.6	да	да
Определение погрешности измерения частоты	7.3.7	да	да

Таблица 1 – Операции поверки

1.2 Операции 7.3.4 - 7.3.6 выполняются только для модуля NI 4461.

1.3 Если у поверяемого модуля используются не все измерительные каналы, то по запросу пользователя периодическая поверка может быть проведена для указанных в запросе каналов, при этом должна быть сделана соответствующая запись в свидетельстве о поверке.

2 СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуется применять средства поверки, указанные в таблице 2.

Наименование средства поверки	Номер пункта методики	Рекомендуемый тип средства поверки, регистрационный номер реестра
1	2	3
	Средства из	мерений
Калибратор переменного напряжения	7.3.2, 7.3.3 7.3.7	Калибратор универсальный 9100 (с опцией 100); регистрационный номер 25985-09
Измеритель переменного напряжения	7.3.3, 7.3.5 7.3.6	Мультиметр цифровой модульный NI PXIe-4081; регистрационный номер 68422-17

Таблица 2 - Средства поверки

стр. 2 из 15

Продолжение таблицы 2		
1	2	3
Вспомогатели	ьное оборудова	ание и принадлежности
Компьютер (для модулей с интерфейсами PCI, PCIe)	Разделы 6, 7	HDD ≥ 40 GB, O3У ≥ 512 MB слот PCI (PCIe)
Шасси РХІ (РХІе) с модулем контроллера	Разделы 6, 7	Шасси National Instruments PXIe-1071 с контроллером PXIe-8105
Монитор, клавиатура, манипулятор «мышь»	Разделы 6, 7	
Кабель соединительный, 2 шт.	7.3.2 - 7.3.7	BNC(m,f)
Кабель соединительный	7.3.1 - 7.3.3	Infiniband - BNC(f); National Instruments
(для NI 4495, NI 4496, NI 4498)	7.3.7	SHB4X-8BNC p/n 197516-01
Короткозамыкатель	7.3.1	BNC(m)
Адаптер, 2 шт.	7.3.2 - 7.3.7	BNC(m)-banana
Тройник	7.3.3	BNC(m,f,f)
Π	рограммное об	беспечение
Операционная система	Разделы 6, 7	Windows (XP, 7, 10)
Драйвер	Разделы 6, 7	National Instruments "DAQmx", версия не ниже 9.2.0
Программа управляющая	Разделы 6, 7	National Instruments "Measurement & Automation Explorer"
Программа управляющая	Разделы 6, 7	National Instruments "LabVIEW Signal Express"

2.2 Средства измерений должны быть исправны, поверены и иметь документы о поверке.

2.3 Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых модулей с требуемой точностью.

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области электрических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

4.2 Во избежание несчастного случая и для предупреждения повреждения модуля необходимо обеспечить выполнение следующих требований:

 подсоединение оборудования к сети должно производиться с помощью сетевого кабеля, предназначенного для данного шасси;

 заземление оборудования должно производиться посредством заземляющего контакта сетевого кабеля;

 запрещается производить установку и изъятие модуля из слота при включенном шасси (компьютере);

- запрещается производить подсоединение кабелей к контактам модуля или отсоединение от них, когда имеется напряжение на выходе или входе модуля;

- запрещается работать с модулем при обнаружении его явного повреждения.

NI 4461, NI 4462, NI 4495, NI 4496, NI 4498. Методика поверки

стр. 3 из 15

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

температура воздуха (23 ±5) °С;

относительная влажность воздуха от 30 до 70 %;

- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра проверяются:

- чистота и исправность разъемов модуля;

- отсутствие механических повреждений модуля;
- правильность маркировки и комплектность модуля.

6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого модуля, его следует направить в сервисный центр для проведения ремонта.

6.2 Подготовка к поверке

6.2.1 Перед началом работы следует изучить руководство по эксплуатации модуля, а также руководства по эксплуатации применяемых средств поверки.

6.2.2 Выполнить установку поверяемого модуля и подсоединение компьютера (контроллера) в соответствии с указаниями руководства по эксплуатации.

6.2.4 До начала операций поверки выдержать модуль и оборудование во включенном состоянии в соответствии с указаниями руководств по эксплуатации.

Минимальное время прогрева модуля 30 min.

6.2.5 Перед выполнением операций выполнить автоподстройку мультиметра (Self-Calibrate).

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Общие указания по проведению поверки

7.1.1 Присоединения к сигнальным разъемам необходимо выполнять согласно указаниям руководства по эксплуатации модуля.

7.1.2 В процессе выполнения операций результаты измерений заносятся в протокол поверки. Полученные результаты должны укладываться в указанные в таблицах раздела 7 пределы допускаемых значений.

7.1.4 При получении отрицательных результатов по какой-либо операции необходимо повторить данную операцию.

При повторном отрицательном результате модуль следует направить в сервисный центр для проведения регулировки и/или ремонта.

7.2 Опробование (тестирование и идентификация)

7.2.1 Запустить программу "Measurement & Automation Explorer".

7.2.2 В меню "Software" найти "NI-DAQmx Device Driver". Проверить идентификацию версии программного продукта. Она должна быть не ниже 9.2.0.

7.2.3 В меню "Devices & Interfaces" найти поверяемый модуль, кликнуть на наименовании модуля в списке устройств, и запустить процедуру тестирования "Self-Test". После завершения процедуры тестирования должно появиться сообщение "The self-test completed successfully".

7.2.4 В меню "Devices & Interfaces" запустить процедуру автоподстройки "Self-Calibrate". После завершения процедуры автоподстройки должно появиться сообщение "The device was calibrated successfully".

7.2.5 Запустить программу "LabVIEW Signal Express". Убедиться в том, что появилось главное окно программы.

7.3 Операции определения метрологических характеристик

7.3.1 Определение смещения нуля напряжения АЦП

7.3.1.1. Установить короткозамыкатель BNC(m) на вход канала AI0 поверяемого модуля. Для модулей NI 4495, NI 4496, NI 4498 использовать кабель Infiniband – BNC(f).

7.3.1.2 В меню программы "LabVIEW Signal Express" нажать клавишу "Add Step" и выбрать "Acquire Signals" – "DAQmx Acquire" – "Analog Input" – "Voltage".

В появившемся окне "Add Channels to Task" выбрать наименование модуля, номер канала ai0, и подтвердить выбор нажатием "OK".

7.3.1.3 В поле "Step Setup" сделать установки:

1) Voltage Input Setup – Signal Input Range: ввести первое значение диапазона измерений, указанное в столбце 2 таблицы 7.3.1 (Max Value – положительное значение, Min Value – отрицательное значение)

2) Timing Settings 200000 (200k) Samples to Read: 200000 (200k)

7.3.1.4 Нажать клавишу "Add Step" и далее выбрать "Analysis" – "Time-Domain Measurements" – "Amplitude and Levels".

7.3.1.5 Нажать клавишу "Run" (вторая слева вверху, которая после этого меняет свое наименование на "Stop").

Выждать несколько секунд до установления показаний и зафиксировать отображаемое в окне "DC Value" значение. Оно должно находиться в пределах, указанных в столбце 3 таблицы 7.3.1.

7.3.1.6 Задавать на модуле последовательно остальные диапазоны, указанные в столбце 1 таблицы 7.3.1.

Для установки нового диапазона необходимо каждый раз переходить в окно "DAQmx Acquire" и в поле "Step Setup" вводить требуемые значения Signal Input Range.

Переходя затем в окно "Amplitude and Levels", после установления показаний фиксировать отсчеты "DC Value". Они должны находиться в пределах, указанных в столбце 3 таблицы 7.3.1.

NI 4461, NI 4462, NI 4495, NI 4496, NI 4498. Методика поверки

стр. 5 из 15

Диапазон, V	Измеренное напряжение смещения нуля, mV	Пределы допускаемых значений, mV
1	2	_3
	NI 4461, NI 4462	
±0.316		±0.10
±1		±0.20
±3.16		±0.50
±10		±0.70
±31.6		±5.0
±42.4		±7.0
	NI 4495	and all and a second second
±1	The second state of the second state of	±0.50
±10		±0.50
	NI 4496	
±1		±2.0
±10		±2.0
	NI 4498	
±0.316		±2.0
±1		±2.0
±3.16		±2.0
±10		±2.0

7.3.1.7 Остановить процесс сбора данных нажатием клавиши "Stop".

7.3.1.8 Переместить короткозамыкатель BNC(m) на вход канала AI1.

7.3.1.9 Перейти в окно "DAQmx Acquire" и кликнуть правой кнопкой мыши на строке с номером канала в поле "Channel Settings" / "Voltage". Выбрать опцию "Change Physical Channel", в появившемся списке выбрать канал ail, и подтвердить выбор нажатием "ОК".

7.3.1.10 В окне "DAQmx Acquire" сделать установку диапазона напряжения:

Voltage Input Setup - Signal Input Range: ввести первое значение диапазона измерений, указанное в столбце 2 таблицы 7.3.1 (Max Value - положительное значение, Min Value отрицательное значение);

7.3.1.11 Перейти в окно "Amplitude and Levels", нажать клавишу "Run", и после установления показаний зафиксировать отображаемое в окне "DC Value" значение. Оно должно находиться в пределах, указанных в столбце 3 таблицы 7.3.1.

7.3.1.12 Выполнить действия по пункту 7.3.1.6 для остальных диапазонов.

7.3.1.13 Остановить процесс сбора данных нажатием клавиши "Stop".

7.3.1.14 Выполнить действия по пунктам 7.3.1.8 – 7.3.1.13 для остальных каналов модуля.

7.3.1.15 Закрыть окна "DAQmx Acquire", "Amplitude and Levels" с помощью правой клавиши мыши выбором опции "Delete".

7.3.1.16 Отсоединить короткозамыкатель от поверяемого модуля.

NI 4461, NI 4462, NI 4495, NI 4496, NI 4498. Методика поверки

стр. 6 из 15

7.3.2 Определение погрешности измерения напряжения АЦП на частоте 1 kHz

7.3.2.1 Установить калибратор в режим воспроизведения синусоидального напряжения, выход в положение "OFF", частоту 1 kHz.

7.3.2.2 Используя адаптер BNC(m)-banana, соединить вход канала AI0 поверяемого модуля с выходом калибратора.

Для модулей NI 4461, NI 4462 использовать кабель BNC(m,f).

Для модулей NI 4495, NI 4496, NI 4498 использовать кабель Infiniband - BNC(f).

Центральный проводник кабеля должен быть соединен с гнездом "HI" калибратора, экран кабеля – с гнездом "LO" калибратора.

7.3.2.3 В меню программы "LabVIEW Signal Express" нажать клавишу "Add Step" и выбрать "Acquire Signals" – "DAQmx Acquire" – "Analog Input" – " Voltage".

В появившемся окне "Add Channels to Task" выбрать наименование модуля, номер канала ai0, и подтвердить выбор нажатием "OK".

7.3.2.4 В поле "Step Setup" сделать установки:

1) Voltage Input Setup – Signal Input Range: ввести первое значение диапазона измерений, указанное в столбце 1 таблицы 7.3.1 (Max Value – положительное значение, Min Value – отрицательное значение)

2) Timing Settings Rate (Hz): 200000 (200k) Samples to Read: 200000 (200k)

7.3.2.5 Установить на калибраторе первое значение напряжения, указанное в столбце 2 таблицы 7.3.2, и перевести калибратор в положение "ON".

7.3.2.6 Нажать клавишу "Add Step" и далее выбрать "Analysis" – "Time-Domain Measurements" – "Amplitude and Levels".

7.3.2.7 Нажать клавишу "Run".

Выждать несколько секунд до установления показаний и зафиксировать отображаемое в окне "DC Value" значение. Оно должно находиться в пределах, указанных в столбце 4 таблицы 7.3.2.

7.3.2.8 Задавать на модуле последовательно остальные диапазоны, указанные в столбце 1 таблицы 7.3.2, и соответствующие значения напряжения на калибраторе.

Для установки нового диапазона необходимо каждый раз переходить в окно "DAQmx Acquire" и в поле "Step Setup" вводить требуемые значения Signal Input Range.

Переходя затем в окно "Amplitude and Levels", фиксировать отсчеты "DC Value". Они должны находиться в пределах, указанных в столбце 4 таблицы 7.3.2.

7.3.2.9 Остановить процесс сбора данных нажатием клавиши "Stop".

7.3.2.10 Перевести выход калибратора в положение "OFF".

7.3.2.11 Соединить с выходом калибратора вход канала AI1 поверяемого модуля, как указано в пункте 7.3.2.2.

7.3.2.12 Перейти в окно "DAQmx Acquire" и кликнуть правой кнопкой мыши на строке с номером канала в поле "Channel Settings" / "Voltage". Выбрать опцию "Change Physical Channel", в появившемся списке выбрать канал ai1, и подтвердить выбор нажатием "OK".

7.3.2.13 Установить на калибраторе первое значение напряжения, указанное в столбце 2 таблицы 7.3.2, и перевести калибратор в положение "ON".

стр. 7 из 15

7.3.2.14 Перейти в окно "Amplitude and Levels", нажать клавишу "Run".

После установления показаний зафиксировать значение "RMS Value" для канала AI1. Оно должно находиться в пределах, указанных в столбце 4 таблицы 7.3.2.

7.3.2.15 Выполнить действия по пунктам 7.3.2.8, 7.3.2.9 для остальных диапазонов.

7.3.2.16 Перевести выход калибратора в положение "OFF".

7.3.2.17 Выполнить действия по пунктам 7.3.2.11 – 7.3.2.16 для остальных каналов модуля.

7.3.2.18 Закрыть окна "DAQmx Acquire" и "Amplitude and Levels" с помощью правой клавиши мыши выбором опции "Delete".

7.3.2.19 Отсоединить кабель от поверяемого модуля.

Таблица 7.3.2 – Погрешность измерения переменного напряжения А	.ЦП на частоте 1 kHz
--	----------------------

Диапазон, V	Установленное на калибраторе напряжение, rms	Измеренное значение напряжения	Пределы допускаемых значений	
1	2	3	4	
	NI 44	61, NI 4462		
±0.316	200 mV		(199.20 200.80) mV	
±1	0.7 V		(697.35 702.65) mV	
±3.16	2 V		(1.9925 2.0075) V	
±10	7 V		(6.9748 7.0252) V	
±31.6	20 V		(19.925 20.075) V	
±42.4	25 V		(24.905 25.095) V	
	N	NI 4495		
±1	0.7 V		(696.00 704.00) mV	
±10	7 V		(6.9645 7.0355) V	
	N	NI 4496		
±l	0.7 V		(689.60 710.40) mV	
±10	7 V		(6.914 7.086) V	
NI 4498				
±0.316	200.00 mV		(195.60 204.40) mV	
±1	0.7 V		(689.60 710.40) mV	
±3.16	2 V		(1.974 2.026) V	
±10	7 V		(6.914 7.086) V	

7.3.3 Определение неравномерности амплитудно-частотной характеристики АЦП

7.3.3.1 Установить калибратор в режим воспроизведения синусоидального напряжения, выход в положение "OFF", уровень 3 V rms, частоту 1 kHz.

7.3.3.2 Установить на вход канала AI0 поверяемого модуля тройник BNC(m,f,f).

Для модулей NI 4495, NI 4496, NI 4498 использовать кабель Infiniband - BNC(f).

Используя адаптер BNC(m)-banana и кабель BNC(m,f), соединить одно из выходных плеч тройника с выходом калибратора. Центральный проводник кабеля должен быть соединен с гнездом "HI" калибратора, экран кабеля – с гнездом "LO" калибратора.

Используя адаптер BNC(m)-banana и кабель BNC(m,f), соединить другое выходное плечо тройника с входом мультиметра. Центральный проводник кабеля должен быть соединен с гнездом "HI" мультиметра, экран кабеля – с гнездом "LO" мультиметра.

7.3.3.3 Выбрать на мультиметре режим "ACV", предел измерения 5 V.

7.3.3.4 В меню программы "LabVIEW Signal Express" нажать клавишу "Add Step" и выбрать "Acquire Signals" – "DAQmx Acquire" – "Analog Input" – " Voltage".

В появившемся окне "Add Channels to Task" выбрать наименование модуля, номер канала ai0, и подтвердить выбор нажатием "OK".

7.3.3.5 В поле "Step Setup" сделать установки:

1) Voltage Input Setup – Signal Input Range: ввести ±10 V (Max Value – положительное значение, Min Value – отрицательное значение)

2) Timing Settings Rate (Hz): 200000 (200k) Samples to Read: 200000 (200k)

7.3.3.6 Перевести калибратор в положение "ON".

Подстроить уровень напряжения на калибраторе таким образом, чтобы отсчет мультиметра был равен (3.0000 ±0.0001) V.

7.3.3.7 Нажать клавишу "Add Step" и далее выбрать "Analysis" – "Time-Domain Measurements" – "Amplitude and Levels".

7.3.3.8 Нажать клавишу "Run" и зафиксировать отображаемый в окне "RMS Value" отсчет напряжения как U₁.

7.3.3.9 Устанавливать на калибраторе последовательно остальные значения частоты, указанные в столбце 1 таблицы 7.3.3, каждый раз подстраивая уровень на калибраторе таким образом, чтобы отсчет мультиметра был равен (3.0000 ±0.0001) V.

Фиксировать отсчеты "RMS Value".

7.3.3.10 Остановить процесс сбора данных нажатием клавиши "Stop".

7.3.3.11 Перевести выход калибратора в положение "OFF".

7.3.3.12 Рассчитать значения б_F неравномерности АЧХ для каждой частоты по формуле

$$S_F = [(U_F - U_1) / U_1] \cdot 100 \%$$
, где

U₁ – отсчет напряжения на частоте 1 kHz, зафиксированный в пункте 7.3.3.8;

U_F – отсчет напряжения, зафиксированный в пункте 7.3.3.9 для соответствующей частоты.

Значения неравномерности δ_F АЧХ не должны превышать предельных значений, указанных в столбце 3 таблицы 7.3.3.

7.3.3.13 Выполнить соединения входа канала AI1 модуля с калибратором и мультиметром, как указано в пункте 7.3.3.2.

7.3.3.14 Перейти в окно "DAQmx Acquire" и кликнуть правой кнопкой мыши на строке с номером канала в поле "Channel Settings" / "Voltage". Выбрать опцию "Change Physical Channel", в появившемся списке выбрать канал ail, и подтвердить выбор нажатием "OK".

7.3.3.14. Установить на калибраторе частоту 1 kHz, и перевести его в положение "ON". Подстроить уровень на калибраторе таким образом, чтобы отсчет мультиметра был равен (7.0000 ± 0.0001) V.

7.3.3.15 Перейти в окно "Amplitude and Levels".

7.3.3.16 Выполнить действия по пунктам 7.3.3.8 - 7.3.3.12 для канала AI1.

NI 4461, NI 4462, NI 4495, NI 4496, NI 4498. Методика поверки

7.3.3.17 Выполнить действия по пунктам 7.3.3.13 – 7.3.3.16 для остальных каналов модуля.

7.3.3.18 Отсоединить кабели от калибратора, мультиметра и поверяемого модуля.

Частота, kHz	Измеренное значение неравномерности АЧХ, %	Пределы допускаемых значений, % (dB)
1	2	3
	NI 4461, NI 4462	
20		±0.07 % (±0.006 dB)
45		±0.35 % (±0.03 dB)
92	a line of the second second	±1.2 % (±0.1 dB)
	NI 4495, NI 4496, NI 4498	
20		±0.035 % (±0.003 dB)
45		±0.12 % (±0.01 dB)
92		±0.6 % (±0.05 dB)

Таблица 7.3.3 – Неравномерность амплитудно-частотной характеристики АЦП

7.3.4 Определение смещения нуля напряжения ЦАП (NI 4461)

7.3.4.1 Выбрать на мультиметре режим "DCV", предел измерения 100 mV.

7.3.4.2 Используя адаптер BNC(m)-banana и кабель BNC(m,f), соединить выход канала AOO поверяемого модуля с входом мультиметра. Центральный проводник кабеля должен быть соединен с гнездом "HI" мультиметра, экран кабеля – с гнездом "LO" мультиметра.

7.3.4.3 В меню программы "LabVIEW Signal Express" нажать клавишу "Add Step" и выбрать "Create Signals" – "Create Analog Signal".

В поле "Step Setup", "Configuration" сделать установки:

1) Signal type: DC Signal; Repeated Signal

2) Offset: 0 V
3) Sampling Conditions
Sample rate (S/s): 200000 (200k)
Block size (samples): 200000 (200k)

7.3.4.4 В меню программы "LabVIEW Signal Express" нажать клавишу "Add Step" и выбрать "Generate signals", "DAQmx Generate", "Analog Output", "Voltage".

В окне "Add Channels to Task" выбрать наименование модуля, номер канала ao0, и подтвердить выбор нажатием "ОК".

В поле "Step Setup" сделать установки:

1) Generation Mode: Continuous Samples

2) Voltage Output Setup – Signal Output Range: ввести первое значение диапазона измерений, указанное в столбце 1 таблицы 7.3.4 (Max Value – положительное значение, Min Value – отрицательное значение)

7.3.4.5 Запустить генерацию сигнала нажатием клавиши "Run".

После установления показаний зафиксировать отсчет мультиметра. Он должен находиться в пределах допускаемых значений, указанных в столбце 3 таблицы 7.3.4.

7.3.4.6 Задавать в окне DAQmx Generate" последовательно остальные диапазоны Signal Output Range (Max Value – положительное значение, Min Value – отрицательное значение), указанные в столбце 1 таблицы 7.3.4.

После установления показаний фиксировать отсчеты мультиметра. Они должны находиться в пределах допускаемых значений, указанных в столбце 3 таблицы 7.3.4.

7.3.4.7 Остановить генерацию сигнала нажатием клавиши "Stop".

7.3.4.8 Пересоединить кабель на выход канала AO1.

7.3.4.9 В окне "DAQmx Generate" кликнуть правой кнопкой мыши на строке с номером канала в поле "Channel Settings". Выбрать опцию "Change Physical Channel", в появившемся списке выбрать канал ao1, и подтвердить выбор нажатием "OK".

7.3.4.10 В поле Voltage Output Setup – Signal Output Range ввести первое значение диапазона измерений, указанное в столбце 1 таблицы 7.3.4 (Max Value – положительное значение, Min Value – отрицательное значение).

7.3.4.11 Выполнить действия по пунктам 7.3.4.5, 7.3.4.7 для канала АО1.

7.3.4.12 Закрыть окна "Create Analog Signal", "DAQmx Generate" с помощью правой клавиши мыши выбором опции "Delete".

7.3.4.13 Отсоединить кабель и мультиметр от поверяемого модуля.

Диапазон, V	Измеренное напряжение смещения нуля, mV	Пределы допускаемых значений, mV
1	2	3
±0.1		±1
±1		±1
±10		±1

Таблица 7.3.4 – Смещение нуля напряжения ЦАП (NI 4461)

7.3.5 Определение погрешности воспроизведения напряжения ЦАП на частоте 1 kHz (NI 4461)

7.3.5.1 Выбрать на мультиметре режим "ACV", предел измерения 500 mV.

7.3.5.2 Используя адаптер BNC(m)-banana и кабель BNC(m,f), соединить выход канала AOO поверяемого модуля с входом мультиметра. Центральный проводник кабеля должен быть соединен с гнездом "HI" мультиметра, экран кабеля – с гнездом "LO" мультиметра.

7.3.5.3 В меню программы "LabVIEW Signal Express" нажать клавишу "Add Step" и выбрать "Create Signals" – "Create Analog Signal".

В поле "Step Setup", "Configuration" сделать установки:

1) Signal type: Sine wave; Repeated Signal

2) Offset: 0 V

3) Sampling Conditions

Sample rate (S/s): 200000 (200k)

Block size (samples): 200000 (200k)

4) Frequency: 1 kHz

5) Amplitude: ввести значение, указанное в столбце 2 таблицы 7.3.5.

7.3.5.4 В меню программы "LabVIEW Signal Express" нажать клавишу "Add Step" и выбрать "Generate signals", "DAQmx Generate", "Analog Output", "Voltage".

В окне "Add Channels to Task" выбрать наименование модуля, номер канала ao0, и подтвердить выбор нажатием "ОК".

7.3.5.5 В поле "Step Setup" окна "Create Analog Signal" сделать установки:

1) Generation Mode: Continuous Samples

2) Voltage Output Setup – Signal Output Range: ввести значение диапазона измерений, указанное в столбце 1 таблицы 7.3.5 (Max Value – положительное значение, Min Value – отрицательное значение).

7.3.5.6 Запустить генерацию сигнала нажатием клавиши "Run".

После установления показаний зафиксировать отсчет мультиметра. Он должен находиться в пределах допускаемых значений, указанных в столбце 5 таблицы 7.3.5.

7.3.5.7 Задавать в окне "DAQmx Generate" последовательно диапазоны, указанные в столбце 1 таблицы 7.3.5, и устанавливать пределы измерения на мультиметре, указанные в столбце 3 таблицы 7.3.5.

После установки нового диапазона переходить в окно "Create Analog Signal", вводить в поле "Step Setup", "Configuration" соответствующее установленному диапазону значение, указанное в столбце 2 таблицы 7.3.5, и переходить обратно в окно "DAQmx Generate".

После установления показаний фиксировать отсчеты мультиметра. Они должны находиться в пределах допускаемых значений, указанных в столбце 5 таблицы 7.3.5.

7.3.5.8 Остановить генерацию сигнала нажатием клавиши "Stop".

7.3.5.9 Пересоединить кабель на выход канала AO1.

7.3.5.10 В окне "DAQmx Generate" кликнуть правой кнопкой мыши на строке с номером канала в поле "Channel Settings". Выбрать опцию "Change Physical Channel", в появившемся списке выбрать канал ao1, и подтвердить выбор нажатием "OK".

7.3.5.11 Выполнить действия по пунктам 7.3.5.5 - 7.3.5.8 для канала АО1.

7.3.5.12 Закрыть окна "Create Analog Signal", "DAQmx Generate" с помощью правой клавиши мыши выбором опции "Delete".

7.3.5.13 Отсоединить кабель от поверяемого модуля.

Таблица 7.3.4 – Погрешность воспроизведения напряжения ЦАП на частоте 1 kHz (NI 4461)

Диапазон, V	Установленное значение амплитуды напряжения, peak / rms	Предел измерения мультиметра	Измеренное мультиметром значение напряжения, rms	Пределы допускаемых значений, rms
1	2	3	4	5
±0.1	100 mV / 70.711 mV	500 mV		(70.392 71.029) mV
±1	1 V / 0.70711 V	5 V		(703.92 710.29) mV
±10	10 V / 7.0711 V	50 V		(7.0392 7.1029) V

7.3.6 Определение неравномерности амплитудно-частотной характеристики ЦАП (NI 4461)

7.3.6.1 Выбрать на мультиметре режим "ACV", предел измерения 5 V.

7.3.6.2 Используя адаптер BNC(m)-banana и кабель BNC(m,f), соединить выход канала AOO поверяемого модуля с входом мультиметра. Центральный проводник кабеля должен быть соединен с гнездом "HI" мультиметра, экран кабеля – с гнездом "LO" мультиметра.

7.3.6.3 В меню программы "LabVIEW Signal Express" нажать клавишу "Add Step" и выбрать "Create Signals" – "Create Analog Signal".

В поле "Step Setup", "Configuration" сделать установки:

1) Signal type: Sine wave; Repeated Signal

2) Offset: 0 V
3) Sampling Conditions
Sample rate (S/s): 200000 (200k)
Block size (samples): 200000 (200k)
4) Frequency: 1 kHz
5) Amplitude: 5 V

7.3.6.4 В меню программы "LabVIEW Signal Express" нажать клавишу "Add Step" и выбрать "Generate signals", "DAQmx Generate", "Analog Output", "Voltage".

В окне "Add Channels to Task" выбрать наименование модуля, номер канала ao0, и подтвердить выбор нажатием "ОК".

В поле "Step Setup" сделать установки:

1) Generation Mode: Continuous Samples

2) Voltage Output Setup – Signal Output Range: ввести диапазон ±10 V (Max Value – положительное значение, Min Value – отрицательное значение).

7.3.6.5 Запустить генерацию сигнала нажатием клавиши "Run".

После установления показаний зафиксировать отсчет мультиметра как U₁.

7.3.6.6 Перейти в окно "Create Analog Signal" и в поле "Step Setup" установить частоту 20 kHz, после чего перейти обратно в окно "DAQmx Generate".

После установления показаний зафиксировать отсчет мультиметра как U₂₀.

7.3.6.7 Перейти в окно "Create Analog Signal" и в поле "Step Setup" и установить частоту 92 kHz, после чего перейти обратно в окно "DAQmx Generate".

После установления показаний зафиксировать отсчет мультиметра как U92.

7.3.6.8 Остановить генерацию сигнала нажатием клавиши "Stop".

7.3.6.9 Рассчитать и записать в столбец 3 таблицы 7.3.6 значения δ_F неравномерности АЧХ для каждой частоты по формуле

$$\delta_{\rm F} = \left[\left({{\rm U}_{\rm F}} - {{\rm U}_{\rm I}} \right) / {{\rm U}_{\rm I}} \right] \cdot 100 \ \%,$$

где U₁ - измеренное значение на частоте 1 kHz, U_F - измеренное значение на частоте F.

7.3.6.10 Пересоединить кабель на выход канала AO1.

7.3.6.11 В окне "DAQmx Generate" кликнуть правой кнопкой мыши на строке с номером канала в поле "Channel Settings". Выбрать опцию "Change Physical Channel", в появившемся списке выбрать канал ao1, и подтвердить выбор нажатием "OK".

7.3.6.12 В поле Voltage Output Setup - Signal Output Range ввести диапазон ±10 V.

7.3.6.13 В окне "Create Analog Signal", Amplitude сделать установки:
Frequency: 1 kHz
Amplitude: Amplitude: 5 V
Перейти в окно "DAQmx Generate".

7.3.6.14 Выполнить действия по пунктам 7.3.6.5 - 7.3.6.9 для канала АО1.

7.3.6.15 Закрыть окна "Create Analog Signal", "DAQmx Generate" с помощью правой клавиши мыши выбором опции "Delete".

7.3.6.16 Отсоединить кабель от поверяемого модуля.

Таблица 7.3.6 – Неравномерность амплитудно-частотной характеристики ЦАП

Частота, kHz	Измеренное значение неравномерности АЧХ, %	Пределы допускаемых значений, % (dB)
1	2	3
20		±0.1 % (±0.008 dB)
92		±1.2 % (±0.1 dB)

7.3.7 Определение погрешности измерения частоты

7.3.7.1 Установить калибратор в режим воспроизведения синусоидального напряжения, выход в положение "OFF", частоту 10 kHz и уровень 7 V rms.

7.3.7.2 Используя адаптер BNC(m)-banana, соединить вход канала AI0 поверяемого модуля с выходом калибратора.

Для модулей NI 4461, NI 4462 использовать кабель BNC(m,f).

Для модулей NI 4495, NI 4496, NI 4498 использовать кабель Infiniband - BNC(f).

Центральный проводник кабеля должен быть соединен с гнездом "HI" калибратора, экран кабеля – с гнездом "LO" калибратора.

7.3.7.3 В меню программы "LabVIEW Signal Express" нажать клавишу "Add Step" и выбрать "Acquire Signals" – "DAQmx Acquire" – "Analog Input" – " Voltage".

В окне "Add Channels to Task" выбрать наименование модуля, номер канала ai0, и подтвердить выбор нажатием "ОК".

7.3.7.4 В поле "Step Setup" сделать установки:

1) Voltage Input Setup – Signal Input Range: ввести ±10 V (Max Value – положительное значение, Min Value – отрицательное значение)

2) Timing Settings Rate (Hz): 200000 (200k) Samples to Read: 200000 (200k)

7.3.7.5 Нажать клавишу "Add Step" и далее выбрать "Analysis" – "Frequency-Domain Measurements" – "Tone Measurements".

7.3.7.6 Открыть окно "fundamental frequency" в левой части экрана, для чего выбрать номер канала ai0, и затем двойным щелчком открыть новое окно, в котором будут отображаться текущее, минимальное и максимальное значения измеряемой величины.

7.3.7.7 Перевести калибратор в положение "ON".

7.3.7.8 Нажать клавишу "Run" и зафиксировать отображаемое значение частоты "current value". Оно должно находиться в пределах допускаемых значений, указанных в столбце 3 таблицы 7.3.7.

Таблица 7.3.7 – Погрешн	юсть измерения частоты	
Установленное значение частоты, kHz	Измеренное значение частоты, kHz	Пределы допускаемых значений, kHz
1	2	3
первичная поверка N	I 4461, NI 4462	
10		(9.99967 10.00033)
первичная поверка NI 4	1495, NI 4496, NI 4498	
10		(9.99935 10.00065)
периодическая поверка		
10		$10 \pm \Delta F$

Данные расчета для периодической поверки:

 $\Delta F = F \cdot (\delta F + N \cdot \delta N)$, где

δF = 28·10⁻⁶ для NI 4461, NI 4462

δF = 60·10⁻⁶ для NI 4495, NI 4496, NI 4498

 $\delta N = 5 \cdot 10^{-6}$

N – округленное в большую сторону до целого числа количество лет после выпуска модуля из производства или заводской подстройки.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

По завершении поверки оформляется протокол поверки в произвольной форме. В протоколе разрешается привести качественные результаты измерений о соответствии допускаемым значениям без указания измеренных числовых значений величин.

Допускается привести результаты поверки на обратной стороне свидетельства о поверке.

8.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

стр. 15 из 15