Государственная система обеспечения единства измерений

Акционерное общество «Приборы, Сервис, Торговля» (АО «ПриСТ»)

УТВЕРЖДАЮ Главный метролог АО «ПриСТ»

А.Н. Новиков

«12» ноября 2019 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Промышленные программируемые логические контроллеры на базе микропроцессора 1891BM11Я. ПЛК-1

МЕТОДИКА ПОВЕРКИ ПР-29-2019МП

ВВЕДЕНИЕ

Настоящая методика устанавливает методы и средства первичной и периодических поверок промышленных программируемых логических контроллеров на базе микропроцессора 1891ВМ11Я. ПЛК-1, изготовленных ПАО "ИНЭУМ им. И.С. Брука".

Промышленные программируемые логические контроллеры на базе микропроцессора 1891ВМ11Я. ПЛК-1 (далее по тексту – контроллеры) предназначены для измерений и измерительных преобразований аналоговых выходных сигналов датчиков в виде напряжения и силы постоянного тока, а также выработки управляющих аналоговых и дискретных сигналов в соответствии с заданной программой.

Интервал между поверками 4 года.

Периодическая поверка контроллеров в случае их использования для измерений (воспроизведения) меньшего числа величин или на меньшем числе поддиапазонов и каналов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» описания типа, допускается на основании письменного заявления владельца контроллеров, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке приборов.

1 ОПЕРАЦИИ ПОВЕРКИ

Таблица 1 - Операции поверки

	Номер пункта	Проведение операции при			
Наименование операции	методики	первичной	периодической		
	поверки	поверке	поверке		
1 Внешний осмотр	7.1	Да	Да		
2 Опробование	7.2	Да	Да		
3 Проверка идентификационных данных программного обеспечения	7.3	Да	Да		
4 Определение основной приведённой (к верхнему пределу диапазона) погрешности преобразования цифрового кода в напряжение и силу постоянного тока	7.4	Да	Да		
5 Определение основной приведённой (к верхнему пределу диапазона) погрешности преобразования в цифровой код и измерения входного напряжения и силы постоянного тока	7.5	Да	Да		

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки должны применяться средства поверки, перечисленные в таблицах 2 и 3.
- 2.2 Допускается применять другие средства поверки, обеспечивающие измерение значений соответствующих величин с требуемой точностью.
- 2.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке. Эталоны единиц величин, используемые при поверке СИ, должны быть аттестованы.

Таблица 2 - Средства поверки

Номер пункта МП	Тип средства поверки
7.4	Мультиметр 3458А. Пределы допускаемой основной абсолютной погрешности измерений силы постоянного тока в диапазоне от 0,0001 до 100 мА $\pm (0,00001 \cdot I_{\text{изм}} + 0,000004 \cdot I_{\text{пр}})$. Пределы допускаемой основной абсолютной погрешности измерения напряжения постоянного тока $\pm (2,5 \cdot 10^{-6} \cdot \text{U} + 3,5 \cdot 10^{-8})$ В
7.5	Калибратор многофункциональный Fluke 5522A. Диапазон воспроизведения напряжения постоянного тока от 0 до 32,99999 В, пределы основной абсолютной погрешности $\pm (1,2\cdot 10^{-5}\cdot \text{U}+2\cdot 10^{-5})$ В. Диапазон воспроизведения силы постоянного тока от 0 до 329,999 мА, пределы основной абсолютной погрешности $\pm (1\cdot 10^{-4}\cdot \text{I}+2,5\cdot 10^{-3})$ мА
7.4 - 7.5	Вспомогательное средство поверки – персональный компьютер

Таблица 3 – Вспомогательные средства поверки

Измеряемая величина	Диапазон измерений	Класс точности, погрешность	Тип средства поверки			
Температура	от 0 до +50 °C.	±0,25 °C	Цифровой термометр-гигрометр Fluke 1620A			
Давление	от 30 до 120 кПа	±300 Па	Манометр абсолютного давления Testo 511			
Влажность	от 10 до 100 %	±2 %	Цифровой термометр-гигрометр Fluke 1620A			

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке допускаются лица, изучившие эксплуатационную документацию на поверяемые средства измерений, эксплуатационную документацию на средства поверки и соответствующие требованиям к поверителям средств измерений согласно ГОСТ Р 56069-2014.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования ГОСТ 12.27.0-75, ГОСТ 12.3.019-80, ГОСТ 12.27.7-75, требованиями правил по охране труда при эксплуатации электроустановок, утвержденных приказом Министерства труда и социальной защиты Российской Федерации от 24 июля 2013 г № 328H.
- 4.2 Средства поверки, вспомогательные средства поверки и оборудование должны соответствовать требованиям безопасности, изложенным в руководствах по их эксплуатации.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха (25 ± 5) °C;
- относительная влажность до 80 %;
- атмосферное давление от 84 до 106 кПа или от 630 до 795 мм рт. ст.;

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.27.0-75;

- проверить наличие действующих свидетельств поверки на основные и вспомогательные средства поверки.
- 6.2 Средства поверки и поверяемый прибор должны быть подготовлены к работе согласно их руководствам по эксплуатации.
- 6.3 Проверено наличие удостоверения у поверителя на право работы на электроустановках с напряжением до 1000 В с группой допуска не ниже III.
- 6.4 Контроль условий проведения поверки по пункту 5 должен быть проведен перед началом поверки.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие поверяемого прибора следующим требованиям:

- не должно быть механических повреждений корпуса. Все надписи должны быть четкими и ясными;
- все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемый прибор бракуется и подлежит ремонту.

7.2 Опробование

- 7.2.1 Подключить поверяемый контроллер к ПК с помощью интерфейса Ethernet, на ПК должна быть установлена программа терминальный клиент для подключения по протоколу SSH, позволяющая производить удалённое управление поверяемым контроллером.
- 7.2.2 Запустить программу клиент и произвести удаленное подключение к контроллеру. Для подключения использовать конфигурационные параметры (IP адрес, логин пользователя с правами суперпользователя и пароль) указанные в паспорте на изделия. Или, если сетевые настройки и параметры доступа были изменены пользователем, то измененные данные должны быть указаны в формуляре на изделие. После загрузки на запрос login ввести логин и пароль для доступа с правами суперпользователя, по умолчанию login: root, password f2line.
- 7.2.3 В окне программы клиента ввести команду **cd /opt/ineum/elplc**. Далее в выбранной директории запустить процедуру mp17test в режиме клиента с помощью команды:

./mp17test cli

После запуска программы на экран будет выведена таблица, отображающая наличие модулей в слотах монтажного каркаса.

Результат опробования считать положительным, если все модули ввода-вывода фактически присутствующие в составе устройства, присутствуют таблице и имеют значение status=0x01 (OK) и контроллер функционирует согласно руководству по эксплуатации.

При отрицательном результате опробования прибор бракуется и направляется в ремонт.

7.3 Проверка идентификационных данных программного обеспечения

Проверка идентификационных данных программного обеспечения осуществляется путем исполнения соответствующих команд процедуры mp17test.

Для получения версии ПО ЛЯЮИ.00669-01 необходимо:

Запустить процедуру mp17test в режиме клиента:

./mp17test cli

Выбрать слот с проверяемым модулем MAB17 (MAI-17), для этого выполнить команду **mod**, указать номер слота (0-10), затем выполнить команду **p**.

На экран будет выведена информация о ПО модуля (рисунок 1).

```
[ 5] > p

Module configuration:
Used channels : 16

Firmware version : (1-8)=1.23 (9-16)=1.23

Mode 1 - 4 : VOLTAGE 0-10

Mode 5 - 8 : VOLTAGE 0-10

Mode 9 - 12 : VOLTAGE 0-10

Mode 13 - 16 : VOLTAGE 0-10

ADC rate 1- 8 : 10

ADC rate 9-16 : 10
```

Рисунок 1 – Пример вывода версии ПО модуля МАВ17

Версии ПО микроконтроллеров АЦП отображаются в строке «Firmware version» для каналов 1-8 и 9-16 соответственно.

Для получения версий ПО ЛЯЮИ.00630-01 и ЛЯЮИ.00631-01 необходимо выполнить команду \mathbf{mod} , указать номер слота (0-10), затем выполнить команду \mathbf{info} . На экран будет выведена информация, в которой присутствуют версии ПО (ЛЯЮИ.00630-01 для модуля МАВ17 и ЛЯЮИ.00631-01 для модуля МАВыв17), как показано на рисунке 2.

```
[ 6] > info
Firmware version : 1.4
Class code : 0x3
Valuable data words: 18
Status: 0x000000001
Reads count: 184434
Faults count: 0
Slot: 5
Vendor ID: 0
Device ID: 4
Module class: 50398210
Protocol version: 0
Baud rate: 12
Max baud rate: 12
```

Рисунок 2 – Пример вывода версии ПО ЛЯЮИ.00630-01 и ЛЯЮИ.00631-01

Информация о версии ПО отображается в строке: «Firmware version».

Результат поверки считать положительным, если версия программного обеспечения соответствует данным, приведенным в таблице 4.

Таблица 4 – Характеристики программного обеспечения

Идентификационные данные (признаки)	Значение						
Идентификационное наименование ПО	ЛЯЮИ.00669-01	ЛЯЮИ.00630-01	ЛЯЮИ.00631-01				
Номер версии (идентификационный номер ПО)	не ниже 1.23	не ниже 1.8	не ниже 1.4				

7.4 Определение основной приведённой (к верхнему пределу диапазона) погрешности преобразования цифрового кода в напряжение и силу постоянного тока

Определение основной приведённой (к верхнему пределу диапазона) погрешности преобразования цифрового кода в напряжение и силу постоянного тока проводить при помощи мультиметра 3458A (далее — мультиметр). проводят при помощи процедуры **mp17test**, запущенной в окне управляющей программы.

- 7.4.1 Собрать схему поверки, приведенную на рисунке 3. При поверке в режиме преобразования кода в силу тока, подключение эталонного мультиметра в режиме измерения силы тока производить через резистор номиналом 900 Ом, мощностью 0,5 Вт.
 - 7.4.2 Запустить процедуру mp17test в режиме клиента с помощью команды ./mp17test cli.
- 7.4.3 Выбрать модуль аналогового вывода, выполнить команду mod, указать номер слота (0-10), в который установлен поверяемый модуль.

Рисунок 3 – Схема подключения приборов при поверке контроллеров

7.4.4 Выполнить команду I. Задать тип и диапазоны выходных сигналов каналов:

- 1 для напряжения от 0 до 5 В;
- 2 для напряжения от 0 до 10 B;
- 3 для силы тока от 0 до 20 мА.

7.4.5 Выбрать команду для групповой установки значения вывода: **Q**. На запрос программы **Output value to all channels (0-4096):** установить значения кода на входе модуля, соответствующие значениям равным 0,1; 0,25; 0,5; 0,75; 0,9 от номинального значения текущего поверяемого диапазона выходных напряжений или выходной силы тока. Значения кода рассчитать по формулам:

для модуля вывода в режиме 0 – 10 В

$$Q=(U\cdot 4095/10,0)+0,5 \tag{1}$$

для модуля вывода в режиме 0 – 5 В

$$Q=(U\cdot4095/5,0)+0,5$$
 (2)

для модуля вывода в режиме 0 - 20 мА:

$$Q=(U\cdot 4095/20,0)+0,5 \tag{3}$$

где U — требуемое значение выходного напряжения или тока соответствующее значению кода на входе модуля

7.4.6 Измерить значения выходных сигналов с помощью мультиметра, и записать полученные данные измерений по каждому каналу с точностью до 3-го знака.

7.4.7 Произвести расчет погрешности по формуле (4):

$$\delta = \frac{V_{\text{H3M}} - V_{\text{pac4}}}{V_{\text{HOM}}} \cdot 100 \% , \qquad (4)$$

где $V_{\text{изм}}$ – измеренное мультиметром значение величины;

V_{расч} – значение величины рассчитанное по значению кода;

 $V_{\text{ном}}$ – номинальное значение шкалы задаваемого сигнала.

Результаты поверки считать положительными, если погрешность преобразования цифрового кода в напряжение и силу тока не превышает ± 0.1 %.

7.5 Определение основной приведённой (к верхнему пределу диапазона) погрешности преобразования в цифровой код и измерения входного напряжения и силы постоянного тока

Определение основной приведённой (к верхнему пределу диапазона) погрешности преобразования в цифровой код и измерения входного напряжения и силы постоянного тока проводить при помощи калибратора многофункционального Fluke 5522A (далее по тексту – калибратор) проводят при помощи процедуры mp17test, запущенной в окне управляющей программы.

- 7.5.1 Собрать схему поверки, приведенную на рисунке 3.
- 7.5.2 Запустить процедуру mp17test в режиме клиента с помощью команды ./mp17test cli.
- 7.5.3 Выбрать модуль аналогового ввода, выполнить команду \mathbf{mod} , указать номер слота (0-10), в который установлен поверяемый модуль.
- 7.5.4 Выполнением команды **3** для каналов 1-8 (0 АЦП) или **4** для каналов 9-16 (1 АЦП) задать тип и диапазоны выходных сигналов выбранного модуля:
 - 1 сила тока от 0 до 20 мА;
 - **2** напряжение от 0 до 5 В;
 - **3** напряжение от 0 до 10 В.

При поверке выбирать одинаковые режимы для всех каналов!

- 7.5.5 Для начала поверки выбрать команду Е.
- 7.5.6 На запрос программы Value (in current PGA dim): указать значение сигнала, подаваемое с калибратора в текущем режиме работы модуля. На калибраторе последовательно установить значения сигнала равные: 0,1; 0,25; 0,5; 0,75; 0,9 от номинального значения текущего диапазона сигналов.
- 7.5.7 На запрос программы **Loops count (default 50):** указать количество циклов равным 50.
- 7.5.8 На запрос программы **Choose channel:** для проведения поверки указать маску каналов в шестнадцатеричном виде **FFFF**.

7.5.9 На экран будет выведены результаты 50 измерений по 16 каналам. Вид представленной информации приведен на рисунке 4.

Output N	[50] 01	cycles 02	read 03	values 04	: 05	06	07	08	09	10	11	12	13	14	15	16
oop																
1]	2.500	2.499	2.500	2.500	2.499	2.500	2.499	2.500	2.500	2.502	2.499	2.500	2.500	2.500	2.502	2.502
2]	2.500	2.499	2.500	2.502	2.499	2.500	2.499	2.502	2.502	2.502	2.500	2.500	2.498	2.503	2.500	2.502
3]	2.499	2.502	2.497	2.504	2.499	2.499	2.500	2.499	2.502	2.502	2.499	2.502	2.499	2.502	2.502	2.502
4]	2.495	2.502	2.500	2.498	2.503	2.497	2.500	2.502	2.503	2.502	2.499	2.502	2.498	2.502	2.502	2.502
5]	2.500	2.499	2.503	2.498	2.500	2.502	2.497	2.502	2.499	2.503	2.497	2.503	2.499	2.502	2.502	2.499
6]	2.498	2.502	2.500	2.500	2.502	2.500	2.497	2.502	2.502	2.499	2.500	2.502	2.497	2.502	2.500	2.500

Рисунок 4 — Вид выводимой информации при определении основной приведённой погрешности ввода и преобразования входного напряжения и силы тока в цифровой код

7.5.10 Произвести расчет погрешности измерений по формуле (5):

$$\delta = \frac{V_{\text{MaKC}} - V_{\text{3aA}}}{V_{\text{HOM}}} \cdot 100 \% , \qquad (5)$$

где V_{макс} -значение аналогового сигнала в серии из 50 измерений, имеющего максимальное отклонение от истинного значения;

V_{зал} – значение величины, задаваемое калибратором;

V_{ном} – номинальное значение шкалы задаваемого сигнала.

Результаты поверки считать положительными, если погрешность ввода и преобразования входного напряжения и силы тока в цифровой код не превышает ±0,1 %.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 При положительных результатах поверки контроллеров оформляется свидетельство соответствии с приказом Минпромторга России от 02.07.2015 № 1815 "Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке". Знак поверки наносится на корпус контроллеров и (или) свидетельство о поверке.

8.2 При отрицательных результатах поверки приборы не допускаются к дальнейшему применению, свидетельство о поверке аннулируется и выдается извещение о непригодности.

Начальник отдела испытаний и сертификации

Специалист по сертификации

С.А. Корнеев