УТВЕРЖДАЮ Технический директор ООО «ИЦРМ»

Государственная система по обеспечению единства измерений

Теплосчетчики ТСВ Методика поверки ИЦРМ-МП-141-19 Настоящая инструкция распространяется на теплосчетчики ТСВ (далее – теплосчетчики), предназначенные для измерений объема (массы), объемного (массового) расхода, температуры, разности температур, избыточного давления теплоносителя в открытых и закрытых системах холодного и горячего водоснабжения, вычисления количества тепловой энергии.

Поверка теплосчетчиков может проводиться двумя способами:

- комплектная поверка, при которой значения физических величин, измеренные датчиками расхода, датчиками температуры, датчиками давления, считываются с экрана вычислителя;
- поэлементная поверка, при которой сигналы от датчиков расхода, датчиков температуры, датчиков давления, имитируются на вычислитель. Датчики расхода, датчики температуры, датчики давления должны иметь действующие свидетельства о поверке. Необходимо провести поверку всех входов вычислителя.

Интервал между поверками – 4 года.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют следующие операции:

- внешний осмотр (пункт 7.1);
- подтверждение соответствия программного обеспечения (пункт 7.2);
- опробование (пункт 7.3);
- определение метрологических характеристик (пункт 7.4).

Последовательность проведения операций поверки обязательна.

При получении отрицательного результата в процессе выполнения любых пунктов или подпунктов операций поверки, теплосчетчики бракуют и их поверку прекращают.

Допускается объединять пункты и подпункты определения метрологических характеристик (далее – MX).

2 СРЕДСТВА ПОВЕРКИ

- 2.1 Условия окружающей среды контролируются при помощи следующих средств поверки:
 - термогигрометр электронный «CENTER» модель 313, рег. № 22129-09 (диапазон измерений температуры от -20 до +60 °C, пределы допускаемой абсолютной порешности измерений $\pm 0,1$ °C, диапазон измерений влажности от 10 до 100 %, пределы допускаемой абсолютной порешности измерений влажности $\pm 0,1$ %);
 - барометр-анероид метеорологический БАММ-1, рег. № 5738-76 (диапазон измерений абсолютного давления от 80 до 106 кПа, пределы допускаемой основной абсолютной порешности измерений ± 0.1 кПа).
- 2.2 При проведении комплектной поверки теплосчетчиков используются следующие средства поверки:
- установка поверочная ВПУ-Энерго ТС (далее установка), рег. № 74543-19 (диапазон воспроизведений массового (объемного) расхода от 0,001 до 700 т/ч (M^3/Ψ) с пределами допускаемой относительной погрешности воспроизведений δ_0 =±0,1 %);
- термостаты переливные прецизионные ТПП-1 (далее термостаты), рег. № 33744-07 (диапазон воспроизведений температур от -75 до +100 °C, нестабильность поддержания температуры ± 0.01 °C);
- термометры сопротивления платиновые ЭТС-100, исп. ЭТС-100/1, ЭТС-100/2 (далее термометры эталонные), рег. № 19916-10 (диапазон измерений температуры от минус 196 до плюс 660,323 °C, пределы допускаемой абсолютной погрешности измерений ± 0.02 °C);
- измеритель температуры многоканальный прецизионный МИТ 8 (далее измеритель температуры), рег. № 19736-11 (диапазон измерений температуры от минус 200 до плюс 750, пределы допускаемой абсолютной погрешности измерений температуры $\pm (0.004+10^{-5} \cdot t))$;
- комплекс поверочный давления и стандартных сигналов «ЭЛЕМЕР-ПКДС-210» (далее комплекс давления), рег. № 36734-08 (диапазон воспроизведений и измерений избыточного давления от 0 до 60 МПа, пределы допускаемой основной приведенной к диапазону воспроизведений и измерений погрешности воспроизведений и измерений избыточного давления ±0,03 %);
- секундомер электронный «Интеграл C-01» (далее секундомер), рег. № 44154-16 (пределы допускаемой основной абсолютной погрешности измерений интервалов времени $\pm (9.6 \cdot 10^{-6} \cdot T_x + 0.01)$).
- 2.3 При проведении поэлементной поверки теплосчетчиков, применяют следующие средства поверки:
- генератор сигналов прецизионный 1510A (далее генератор сигналов), рег. № 55868-13 (диапазон воспроизведений частоты от 3 до 100000 Гц, пределы допускаемой относительной погрешности воспроизведений частоты ±0,005 %);
- меры электрического сопротивления P-4081 (далее магазины сопротивлений), рег. № 2577-70 (диапазон воспроизведений сопротивления постоянному току от 0,001 до плюс 111111,11 Ом, пределы допускаемой относительной погрешности воспроизведений $\pm (0,02+2\cdot10^{-6}\cdot(R_\kappa/R-1)\ Om)$;
- мультиметр 3458A (далее мультиметр), рег. № 25900-03 (пределы допускаемой погрешности измерений сопротивления постоянному току $\pm (2 \cdot 10^{-6} \cdot D + 0.2 \cdot 10^{-6} \cdot E)$ в диапазоне измерений сопротивления постоянному току от 0 до 10 кОм);
- калибратор универсальный 9100 (далее калибратор), рег. № 25985-09 (диапазон воспроизведений силы постоянного тока от 0 до 320 мкА с пределами допускаемой абсолютной погрешности воспроизведений ±(0,00014×I_{вых}+11 нА), диапазон воспроизведений силы постоянного тока от 0,32001 до 3,2 мА с пределами допускаемой абсолютной погрешности воспроизведений ±(0,00014×I_{вых}+83 нА), диапазон

воспроизведений силы постоянного тока от 3,2001 до 32 мA с пределами допускаемой абсолютной погрешности воспроизведений $\pm (0,00014 \times I_{\text{вых}} + 900 \text{ нA}))$;

- секундомер электронный «Интеграл C-01» (далее секундомер), рег. № 44154-16 (пределы допускаемой основной абсолютной погрешности измерений интервалов времени $\pm (9.6 \cdot 10^{-6} \cdot T_x + 0.01)$).
- 2.4 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых теплосчетчиков, с требуемой точностью.
- 2.5 Эталоны и (или) средства измерений, применяемые в качестве средств поверки, должны быть аттестованы и (или) поверены в установленном порядке.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

3.1 К проведению поверки допускают лица из числа сотрудников организаций, аккредитованных на право проведения поверки в соответствии с действующим законодательством РФ, изучившие настоящую методику поверки, руководства по эксплуатации на поверяемое средство измерений и применяемые средства поверки, имеющие стаж работы по данному виду измерений не менее 1 года.

Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением до 1000 В с квалификационной группой по электробезопасности не ниже III.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки соблюдают требования инструкций по охране труда, правил в области охраны окружающей среды, в области пожарной безопасности, в области промышленной безопасности действующих на объекте.

5 УСЛОВИЯ ПОВЕРКИ

- 5.1 Поверка производится в следующих условиях, если иное не предусмотрено нормативной документацией на поверку компонентов:
 - температура окружающего воздуха от + 15 до + 25 °C;
 - относительная влажность воздуха от 30 до 80 %;
 - атмосферное давление от 84 до 106,7 кПа.
- 5.2 При подготовке к поверке необходимо руководствоваться указаниями, приведенными в эксплуатационной документации (далее ЭД) на средства поверки.

Для контроля температуры окружающей среды и относительной влажности воздуха использовать термогигрометр электронный «CENTER» модели 313.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
 - изучить ЭД на теплосчетчики и на применяемые средства поверки;
- выдержать теплосчетчики в условиях окружающей среды, указанных в п. 6.1 не менее 2 ч, если они находились в климатических условиях, отличающихся от указанных в п. 6.1;
- теплосчетчик необходимо перевести в тестовый режим в соответствии с ЭД на теплосчетчик;
- подготовить к работе средства поверки и выдержать во включенном состоянии в соответствии с указаниями ЭД.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При внешнем осмотре проверяют:

- соответствие комплектности, указанной в ЭД;
- соответствие маркировке, указанной в ЭД;
- соответствие заводских номеров, указанных в ЭД;
- отсутствие механических и иных повреждений, влияющих на работоспособность теплосчетчика;
- отсутствие дефектов, препятствующих правильному считыванию показаний с индикаторного устройства теплосчетчика.

Результаты проверки считать положительными, если выполняются все вышеуказанные требования.

7.2 Подтверждение соответствия программного обеспечения

Подтверждение соответствия встроенного программного обеспечения (далее – ПО) вычислителя производится следующим образом: осуществляется его включение, после чего его встроенное По выполняет ряд самодиагностических проверок, в том числе проверку целостности конфигурационных данных и неизменности исполняемого кода.

При этом на индикаторе вычислителя (или на подключенном к интерфейсному выходу вычислителя компьютере) отображаются следующие данные:

- идентификационное наименование ПО;
- номер версии (идентификационный номер) ПО.

Результаты проверки считать положительными, если полученные идентификационные данные встроенного ПО (идентификационное наименование, номер версии (идентификационный номер)) соответствуют идентификационным данным, указанным в описании типа.

Подтверждение соответствия встроенного ПО расходомеров-счетчиков СВУ и расходомеров-счетчиков СВМ не проводится, т.к. встроенное ПО заносится во внутреннюю память микроконтроллера расходомеров-счетчиков СВУ и расходомеров-счетчиков СВМ предприятием-изготовителем и недоступно для потребителя, конструкция расходомеров-счетчиков СВУ и расходомеров-счетчиков СВМ исключает возможность несанкционированного влияния на ПО и измерительную информацию.

7.3 Опробование

- 7.3.1 При комплектной поверке теплосчетчика опробование проводить в следующей последовательности:
 - 1) подготовить теплосчетчик, термостаты и установку в соответствии с их ЭД;
- 2) поместить термопреобразователи сопротивления из состава теплосчетчика в термостаты:
- 3) установить преобразователь расхода теплосчетчика в измерительную линию установки и произвести его наработку в диапазоне объемного расхода жидкости от $0.2 \cdot G_B$ до $0.5 \cdot G_B$ и пролить через него объем теплоносителя в течение 5 минут;
- 4) при подаче на измерительные каналы воздействий, соответствующих измеряемым параметрам, должны изменяться соответствующие показания теплосчетчика. Необходимо проверить наличие индикации измеряемых параметров, наличие коммуникационной связи с персональным компьютером (при наличии выходного цифрового сигнала).

Результаты проверки считать положительными, если выполняются все вышеуказанные требования.

- 7.3.2 При поэлементной поверке теплосчетчика опробование проводить в следующей последовательности:
 - 1) подготовить теплосчетчик, калибратор в соответствии с их ЭД;

- 2) сымитировать с калибратора, согласно его ЭД, выходные сигналы от датчиков расхода, датчиков температуры, датчиков давления, на вычислитель;
- 3) при подаче на измерительные каналы воздействий, соответствующих измеряемым параметрам, должны изменяться соответствующие показания вычислителя. Необходимо проверить наличие индикации измеряемых параметров, наличие коммуникационной связи с персональным компьютером (при наличии выходного цифрового сигнала).

Результаты проверки считать положительными, если выполняются все вышеуказанные требования.

7.4 Определение метрологических характеристик

Определение метрологических характеристик при комплектной поверке проводить в соответствии с пунктом 7.4.1, определение метрологических характеристик при поэлементной поверке проводить в соответствии с пунктом 7.4.2 настоящей методики.

- 7.4.1 Определение метрологических характеристик при комплектной поверке
- 7.4.1.1 Определение относительной погрешности измерений объемного (массового) расхода (объема, массы) теплоносителя с помощью теплосчетчиков в закрытых системах теплоснабжения, абсолютной погрешности измерений температуры теплоносителя с помощью теплосчетчиков и относительной погрешности измерений разности температур теплоносителя с помощью теплосчетчиков производить на каждом из следующих диапазонов расхода G и разности температур Θ :
 - а) $\Theta_H \le \Theta \le 1, 2 \cdot \Theta_H$ и $0, 9 \cdot G_B \le G \le G_B$;
 - б) $10^{\circ}\text{C} \le \Theta \le 20^{\circ}\text{C} \text{ и } 0,1 \cdot \text{G}_{\text{B}} \le \text{G} \le 0,11 \cdot \text{G}_{\text{B}};$
 - B) $(\Theta_B 5)^{\circ}C \le \Theta \le \Theta_B \text{ M } G_H \le G \le 1, 1 \cdot G_H$

где Θ_{H} – минимальное значение разности температур теплоносителя, °C;

- $\Theta_{\rm B}$ максимальное значение разности температур теплоносителя, °C;
- $G_{\rm H}$ минимальное значение объемного (массового) расхода теплоносителя, м 3 /ч (т/ч);
- $G_{\text{в}}$ максимальное значение объемного (массового) расхода теплоносителя, M^3/Ψ (т/ Ψ).
- 7.4.1.2 Определение относительной погрешности измерений объемного расхода и объема теплоносителя с помощью теплосчетчиков в закрытых системах теплоснабжения

Определение относительной погрешности измерений объемного расхода и объема теплоносителя с помощью теплосчетчиков в закрытых системах теплоснабжения проводить с помощью установки в следующей последовательности:

- 1) подготовить теплосчетчик и установку согласно их ЭД;
- 2) установить датчики расхода в измерительную линию установки;
- 3) задать на установке значение объемного расхода в соответствии с п. 7.4.1.1. Пролить через теплосчетчик объем воды в каждой точке измеряемого диапазона расходов и разности температур не менее 10 л с продолжительностью не менее 2 минут и снять показания теплосчетчика в каждой поверяемой точке;
- 4) значение относительной погрешности измерений объемного расхода δG , %, определить по формуле (1):

 $\delta G = \frac{G_{\text{N}} - G_{\text{B}}}{G_{\text{B}}} \cdot 100\%,\tag{1}$

где $G_{\it H}$ – объемный расход жидкости, измеренный теплосчетчиком, м³/ч;

 $G_{\mathfrak{I}}$ – объемный расход жидкости, воспроизведенный установкой, м³/ч.

5) значение относительной погрешности измерений объема δV , %, определить по формуле (2):

 $\delta V = \frac{V_{\text{N}} - V_{\text{B}}}{V_{\text{B}}} \cdot 100\%,\tag{2}$

где $V_{\it H}$ – объем жидкости, измеренный теплосчетчиком, м³;

 $V_{\rm 3}$ – объем жидкости, измеренный установкой, м³.

Результаты проверки считать положительными, если погрешности измерений

объемного расхода и объема теплоносителя с помощью теплосчетчиков в закрытых системах теплоснабжения в каждой проверяемой точке не выходят за пределы $\pm 1,1 \cdot \sqrt{0,02^2 + \delta G_{\text{пред}}^2}$ %.

- 7.4.1.3 Определение абсолютной погрешности измерений температуры теплоносителя с помощью теплосчетчиков и относительной погрешности измерений разности температур теплоносителя с помощью теплосчетчиков проводить в следующей последовательности:
- 1) подготовить теплосчетчик, термостаты, термометры эталонные, измеритель температуры согласно их ЭД;
- 2) поместить в термостаты датчики температуры теплосчётчиков и термометры эталонные, подключенные к измерителю температуры;
- 3) установить на термостатах значения температуры жидкости, чтобы разность температур соответствовала точкам, указанным в п. 7.4.1.1;
- 4) произвести в каждой точке измерение температуры и разности температур при помощи теплосчетчика и термометров эталонных, подключенных к измерителю температуры;
- 5) определить значение абсолютной погрешности измерений температуры в каждой точке Δt , °C, по формуле (3):

$$\Delta t = t_{\rm M} - t_{\rm B},\tag{3}$$

где t_H – значение температуры в термостатах, измеренное теплосчетчиком, °C;

- t_Э − значение температуры в термостатах, измеренное эталонными термометрами, подключенными к измерителю температуры, °С;
- 6) определить значение относительной погрешности измерений разности температур $\delta \Delta t$, %, по формуле (4):

$$\delta\Theta = \frac{\theta_{\rm N} - \theta_{\rm B}}{\theta_{\rm B}} \cdot 100\%,\tag{4}$$

 $\delta\Theta = \frac{\theta_{\rm M}-\theta_{\rm B}}{\theta_{\rm B}}\cdot 100\%, \tag{4}$ где $\Theta_{\rm M}$ — значение разности температур в термостатах, измеренное теплосчетчиком, °С;

 $\Theta_{\mathfrak{I}}$ – значение разности температур в термостатах, измеренное эталонными термометрами, подключенными к измерителю температуры, °С;

Результаты проверки считать положительными, если абсолютная погрешность измерений температуры теплоносителя с помощью теплосчетчиков в каждой проверяемой точке не выходит за пределы $\pm (0.1 + \Delta t_{\text{пред}}) \, {}^{\circ} \mathcal{C}$ и относительная погрешность измерений разности температур теплоносителя с помощью теплосчетчиков в каждой проверяемой точке не выходит за пределы $\pm 1.1 \cdot \sqrt{(0.03 \cdot 100/\theta_{_{\text{ИЗМ}}})^2 + (\Delta\theta_{\text{пред}} \cdot 100/\theta_{_{\text{ИЗМ}}})^2}$ %.

7.4.1.4 Определение относительной погрешности измерений количества тепловой энергии теплоносителя с помощью теплосчетчиков в закрытых системах теплоснабжения

Относительную погрешность измерений количества тепловой теплоносителя с помощью теплосчетчиков в закрытых системах теплоснабжения определяют в последовательности, изложенной ниже.

устанавливается Преобразователь расхода теплосчетчика термопреобразователи сопротивления - в термостаты, преобразователи давления (при наличии в составе теплосчетчика) - на комплекс давления. Значение объемного расхода и разности температур выбирается в соответствии с п. 7.4.1.1.

Избыточное давление во всех режимах устанавливается фиксированным из диапазона от 0,1 до 1,6 МПа.

Минимальное время одного измерения должно быть таким, чтобы при снятии показаний с дисплея или цифрового выхода (здесь и далее - только при наличии цифрового выхода в составе теплосчетчика) значение тепловой энергии было не менее 0,5 кВт-ч (Гкал), а при снятии показаний с импульсного выхода – не менее 500 импульсов.

Действительные значения количества тепловой энергии, переданной в систему, определяются в соответствии с формулами, установленными в рекомендации МИ 2412-97.

Измеренные значения количества тепловой энергии снимаются с дисплея и информационных выходов теплосчетчика. В каждой поверочной точке снимается по три значения тепловой энергии и определяется среднее арифметическое значение.

Относительная погрешность измерений количества тепловой энергии теплоносителя с помощью теплосчетчиков в закрытых системах теплоснабжения δ_{TCWi} , %, в каждой проверяемой точке рассчитывается по формуле (5):

$$\delta_{TCWi} = \frac{W_{ui} - W_{oi}}{W_{oi}} \times 100 \% ;$$
 (5)

где W_{oi} – действительное значение количества тепловой энергии в i-том поверочном режиме, кВт·ч (Гкал);

 W_{ui} – среднее значение измеренного количества тепловой энергии в i-том поверочном режиме, кВт·ч (Гкал);

Результаты проверки считать положительными, если погрешность измерений количества тепловой энергии теплосчетчика не выходит за пределы $\pm 1.1 \cdot \sqrt{0.02^2 + \delta G_{\rm пред}^2 + (0.03 \cdot 100/\theta_{_{\rm ИЗМ}})^2 + \left(\Delta \theta_{\rm пред} \cdot 100/\theta_{_{\rm ИЗМ}}\right)^2 + 0.05^2} \,\%.$

7.4.1.5 При подтверждении метрологических характеристик теплосчетчиков, предназначенных для открытых систем теплоснабжения (в соответствии с паспортом) определяют погрешности в соответствии с пунктами 7.4.1.4 настоящей методики.

Результаты проверки считать положительными, если он удовлетворяет требованиям, указанным в пункте 7.4.1.4 настоящей методики.

- 7.4.1.6 Определение приведенной к диапазону измерений избыточного давления погрешности измерений избыточного давления теплоносителя с помощью теплосчетчиков проводить в следующей последовательности:
 - 1) подготовить теплосчетчик, комплекс давления согласно их ЭД;
 - 2) установить датчики давления теплосчетчика на комплекс давления;
- 3) задать комплексом давления 5 точек избыточного давления, равномерно распределенных внутри диапазона измерений давления, включая области около крайних точек: 0-10 % и 90-100% от верхнего значения диапазона измерений избыточного давления;
 - 4) зафиксировать в каждой точке показания теплосчетчика и комплекса давления;
- 5) определить значение приведенной к диапазону измерений избыточного давления погрешности измерений избыточного давления γP , %, по формуле (6):

$$\gamma P = \frac{P_{\mathrm{T}} - P_{\mathrm{3T}}}{P_{\mathrm{AH}}} \cdot 100\% \tag{6}$$

где $P_{\rm T}$ – значение давления, измеренное теплосчетчиком, МПа;

 $P_{\rm эт}$ - значение давления, измеренное комплексом давления, МПа;

 $P_{\text{ди}}$ - диапазон измерений избыточного давления.

Результаты поверки считать положительными, если погрешность измерений избыточного давления теплоносителя с помощью теплосчетчиков в каждой проверяемой точке не выходит за пределы \pm 1,1 \cdot $\sqrt{0,5^2 + \gamma P_{\rm nped}^{-2}}$ %.

- 7.4.1.7 Определение относительной погрешности измерений текущего времени проводить в следующей последовательности:
- 1) включить теплосчетчик и вызвать на табло индикации значения текущего времени согласно ЭД;
- в момент смены наименьшего разряда показаний текущего времени теплосчетчика включить секундомер;
 - 3) выждать не менее 40 мин;
- 4) в момент смены наименьшего разряда показаний текущего времени теплосчетчика выключить секундомер и зафиксировать показания теплосчетчика и секундомера;
- 5) рассчитать относительную погрешность измерений интервалов времени теплосчетчика δ_{ϵ} , %, по формуле (7):

$$\delta_{s} = \frac{T_{m} - T_{c}}{T_{c}} \cdot 100\% \tag{7}$$

где T_m – интервал времени, измеренный встроенными часами теплосчетчика, с;

 T_c — интервал времени, измеренный секундомером, с.

Результаты проверки считать положительными, если погрешность измерений времени не выходит за пределы ± 0.05 %.

Допускается определение относительной погрешности измерений текущего времени одновременно с определением других МХ теплосчетчика.

- 7.4.2 Определение метрологических характеристик при поэлементной поверке
- 7.4.2.1 Определение относительной погрешности преобразований вычислителем импульсных сигналов от датчиков расхода в значение объема теплоносителя проводить в следующей последовательности:
- 1) производить подключение генератор сигналов к вычислителю теплосчетчика в соответствии с ЭД;
 - 2) подготовить вычислитель к измерениям согласно ЭД;
- 3) установить значение константы преобразования импульсного входа равной 1 имп/л в соответствии с ЭД теплосчетчика;
- 4) задать генератором сигналов импульсную последовательность, состоящую из не менее чем 2000 импульсов с частотой генерации $0.1 \cdot F_{\text{наиб}}$, $0.3 \cdot F_{\text{наиб}}$, $0.9 \cdot F_{\text{наиб}}$, где $F_{\text{наиб}}$ максимально допустимое значение частоты подаваемой на импульсные входы вычислителя в соответствии с ЭД теплосчетчика. Значения частоты генерации импульсной последовательности устанавливают с допуском не более \pm 10 %. При каждом значении частоты генерации импульсной последовательности выполняют не менее двух измерений.
- 5) значение действительного объема теплоносителя V_{3ij} , м³/ч, вычисляют по формуле (8):

$$V_{\ni ij} = \frac{N_{ij}}{K_{nn}},\tag{8}$$

где N_{ij} — количество импульсов, воспроизведенное генератором сигналов, имп;

 K_{np} – константа преобразования импульсного входа вычислителя, имп/л;

ij - номер измерения и точки соответственно.

Относительную погрешность преобразований вычислителем импульсных сигналов от датчиков расхода, δ_{Vij} , %, вычисляют по формуле (9):

$$\delta_{ij} = \frac{V_{menij} - V_{3ij}}{V_{3ij}} \cdot 100\% \tag{9}$$

где V_{menij} — значение объема теплоносителя по показаниям вычислителя, л.

Результаты проверки считать положительными, если относительная погрешность преобразований вычислителем импульсных сигналов от датчиков расхода в значение объема теплоносителя, определенная при каждом измерении, не выходит за пределы $\pm 0,02$ %.

- 7.4.2.2 Определение абсолютной погрешности преобразований вычислителем сопротивления постоянному току от датчиков температуры Pt 100, Pt 500, Pt 1000, 100П, 500П по ГОСТ 6651-2009 для вычислений температуры проводить в следующей последовательности:
- 1) производить подключение магазина сопротивлений к вычислителю теплосчетчика в соответствии с ЭД. Значение сопротивления постоянному току с магазина сопротивлений контролировать при помощи мультиметра;
 - 2) подготовить вычислитель к измерениям согласно ЭД;
- 3) с помощью магазина сопротивлений подать на каждый канал измерений температуры значения сопротивления постоянному току, соответствующие температурам,

 $t_{\text{Д}ij}$, °C: плюс (3±2), плюс (30±3), плюс (70±5), плюс (140±05)°С. Проверочные точки, соответствующие вышеуказанным температурам, допускается выбирать в произвольном порядке. При каждом значении температуры проводят не менее трех измерений и регистрируют показания вычислителя теплосчетчика.

4) значение сопротивления постоянному току R_{tij} , Ом, вычисляют по формуле (10):

$$R_{tij} = R_0 \cdot (1 + A \cdot t_{Ilij} + B \cdot t_{Ilij}^{2}), \tag{10}$$

где R_{tij} — значение электрического сопротивления соответствующее заданной температуре $t_{\mathcal{I}ij}$, Ом;

 R_{θ} — номинальное электрическое сопротивление термопреобразователя сопротивления при температуре 0 °C, Ом (определяют в соответствии с паспортом вычислителя теплосчетчика);

 $t_{\mathcal{I}\!\!\!/ ij}$ — действительные значение температуры теплоносителя, поданное с магазина сопротивлений, °C;

- A, B значение постоянных коэффициентов (определяют в соответствии с пунктом 5.2 ГОСТ 6651-2009).
- 5) абсолютную погрешность преобразований вычислителем сопротивления постоянному току от датчиков температуры Pt 100, Pt 500, Pt 1000, 100П, 500П по ГОСТ 6651-2009 для вычислений температуры Δt_{ij} , °C, вычисляют по формуле (11):

$$\Delta t_{ij} = t_{uij} - t_{\Lambda ij},\tag{11}$$

где t_{uij} — значение температуры теплоносителя по показаниям вычислителя, °С.

Результаты проверки считать положительными, если абсолютная погрешность преобразований вычислителем сопротивления постоянному току от датчиков температуры Pt 100, Pt 500, Pt 1000, 100Π , 500Π по Γ OCT 6651-2009 для вычислений температуры в каждой проверяемой точке не превышает пределов $\pm 0,1$ °C.

- 7.4.2.3 Определение абсолютной погрешности преобразований вычислителем сопротивления постоянному току от датчиков температуры Pt 100, Pt 500, Pt 1000, 100П, 500П по ГОСТ 6651-2009 для вычислений разности температур проводить в следующей последовательности:
- 1) производить подключение магазинов сопротивлений в соответствии с ЭД. Значение сопротивления постоянному току с магазина сопротивлений контролировать при помощи мультиметра;
 - 2) подготовить вычислитель к измерениям согласно ЭД;
- 3) с помощью магазинов сопротивлений подать на каждый канал измерений температуры значения сопротивления постоянному току, соответствующие значениям, указанным в таблице 1. Проверочные точки, соответствующие вышеуказанным температурам, допускается выбирать в произвольном порядке. Значения необходимого сопротивления постоянному току вычисляют в соответствии с формулой (10) настоящей методики. При каждом значении температуры проводят не менее трех измерений, регистрируют показания вычислителя теплосчетчика и вычисляют абсолютную погрешность преобразований вычислителем сопротивления постоянному току от датчиков температуры Рt 100, Pt 500, Pt 1000, 100П, 500П по ГОСТ 6651-2009 для вычислений разности температур $\Delta\Theta$, °C, по формуле (12):

$$\Delta\Theta_{ij} = (t_{\mathcal{A}(X)ij} - t_{\mathcal{A}(Y)ij}) - (t_{u(X)ij} - t_{u(Y)ij}). \tag{12}$$

где $t_{\mathcal{I}(X)}$ — значение температуры теплоносителя в нечетном канале измерений температуры, поданное с магазина сопротивлений, °C;

 $t_{\mathcal{J}(Y)}$ — значение температуры теплоносителя в четном канале измерений температуры, поданное с магазина сопротивлений, °C;

 $t_{u(X)}$ — значение температуры теплоносителя в нечетном канале измерений температуры, считанное с вычислителя теплосчетчика, °C;

 $t_u(Y)$ — измеренное значение температуры теплоносителя в четном канале измерения температуры, считанное с вычислителя теплосчетчика, °C.

Примечание: количество каналов измерений температуры теплоносителя определяют в соответствии с паспортом теплосчетчика.

Таблица 1

Номер точки	t _{Д(X),} °С	t _{Д(Y),} °С	t _{Д(X)} - t _{Д(Y)} ,°С
1	от 145 до 150	от 3 до 8	от 142 до 147
2	70±5	60±5	от 10 до 20
3	30±3	27±3	от 3 до 3,6

Результаты проверки считать положительными, если абсолютная погрешность преобразований вычислителем сопротивления постоянному току от датчиков температуры Pt 100, Pt 500, Pt 1000, 100П, 500П по ГОСТ 6651-2009 для вычислений разности температур в каждой проверяемой точке не превышает пределов ± 0.03 °C.

- 7.4.2.4 Определение приведенной к диапазону измерений избыточного давления погрешности преобразований вычислителем силы постоянного тока от датчиков давления проводить в следующей последовательности:
- 1) производить подключение калибратора к вычислителю теплосчетчика в режиме воспроизведений силы постоянного тока в соответствии с ЭД;
 - 2) подготовить вычислитель к измерениям согласно ЭД;
- 3) с помощью калибратора задать пять значений силы постоянного тока, равномерно распределенных внутри диапазона измерений, включая значения около крайних точек диапазона преобразований силы постоянного тока (± 5 % от границ диапазона преобразований силы постоянного тока). Проверочные точки, соответствующие вышеуказанным значениям силы постоянного тока, допускается выбирать в произвольном порядке. При каждом значении силы постоянного тока проводят не менее трех измерений, регистрируют показания вычислителя теплосчетчика и вычисляют эталонное значение давления P_{3ij} , МПа, по формуле (13):

$$P_{2ij} = P_{nn} + (P_{6n} - P_{nn}) \cdot \frac{\left(I_{P_{2ij}} - I_{P_{nanm}}\right)}{\left(I_{P_{nanm}} - I_{P_{nanm}}\right)},\tag{13}$$

где I_{P_3} — значение силы постоянного тока воспроизведенное калибратором, мА;

 $I_{P_{Hau6}}$ — верхнее значение диапазона преобразований вычислителем силы постоянного тока (определяют в соответствии с паспортом теплосчетчика);

 $I_{P_{Hall M}}$ — нижнее значение диапазона преобразований вычислителем силы постоянного тока (определяют в соответствии с паспортом теплосчетчика);

 $P_{\it gn}$ — наибольшее значение избыточного давления теплоносителя, МПа (определяют в соответствии с паспортом теплосчетчика);

 $P_{\rm HR}$ — наименьшее значение избыточного давления теплоносителя, МПа (определяют в соответствии с паспортом теплосчетчика).

Приведенную к диапазону измерений давления погрешность преобразований вычислителем силы постоянного тока при снятии сигналов от датчиков давления γP_{ij} , %, вычисляют по формуле (14):

 $\gamma P_{ij} = \frac{P_{uij} - P_{\exists ij}}{P_{B\Pi} - P_{H\Pi}} \cdot 100\%$ (14)

где P_{uij} — значение давления теплоносителя, считанное с вычислителя теплосчетчика, МПа.

Результаты проверки считать положительными, если приведенная к диапазону измерений давления погрешность преобразований вычислителем силы постоянного тока при снятии сигналов от датчиков давления в каждой проверяемой точке не превышает пределов ± 0.5 %.

7.4.2.5 Определение относительной погрешности вычислений количества тепловой энергии вычислителем в закрытых системах теплоснабжения, состоящих из двух труб

Определение относительной погрешности вычислений количества тепловой энергии вычислителем в закрытых системах теплоснабжения, состоящих из двух труб.

При определении относительной погрешности вычислений тепловой энергии вычислителем в системах теплоснабжения, состоящих из двух труб, производят подключение генератора сигналов, магазинов сопротивлений (значение сопротивления постоянному току с магазина сопротивлений контролировать при помощи мультиметра), калибратора к вычислителю к вычислителю в соответствии с их эксплуатационными документами. Вычислитель устанавливают в режим индикации тепловой энергии, константу преобразования импульсного входа вычислителя устанавливают равной 1 имп/л. В соответствии с руководством по эксплуатации в вычислителе устанавливают алгоритм расчета количества тепловой энергии в n-ой системе теплоснабжения W_{TC} , Γ Дж, в соответствии с формулой (15):

$$W_{\text{TC}} = M_{(X)} \cdot (h_{\Lambda(X)} - h_{\Lambda(Y)}),$$
 (15)

где $M_{(X)}$ – масса теплоносителя измеренная в системе теплоснабжения, кг.

 $h_{\mathcal{I}(X)}$ — значение энтальпии теплоносителя в нечетном канале измерения температуры, ГДж/кг (определяют в соответствии с ГСССД MP 147-2008);

 $h_{\mathcal{I}(Y)}$ — значение энтальпии теплоносителя в четном (n+1) канале измерения температуры, ГДж/кг (определяют в соответствии с ГСССД MP 147-2008).

С помощью магазинов сопротивлений и калибратора задают значения сопротивления постоянному току и силы постоянного тока, соответствующие температурам, указанным в таблице 1 и избыточного давлению равному 1,6 МПа.

Значение силы постоянного тока, соответствующее заданной величине давления I, мA, вычисляют по формуле (16):

$$I = \frac{I_{Phalum} \cdot (P_{ycm} - P_{en}) - I_{Phalu6} \cdot (P_{ycm} - P_{hn})}{P_{\mu\nu} - P_{en}}$$
(16)

 P_{ycm} — значение давления предполагаемого теплоносителя определенное в соответствии с приложением A, МПа.

настоящей методики. Значение сопротивления постоянному току вычисляют в соответствии с формулой (9) настоящей методики. С помощью генератора сигналов задают импульсную последовательность, состоящую из не менее чем 2000 импульсов с частотой генерации $100~\Gamma$ ц. Значения частоты генерации импульсной последовательности устанавливают с допуском не более $\pm~10~\%$. При каждом значении температуры выполняют не менее трех измерений.

Значение избыточного давления 1,6 МПа допускается устанавливать посредством программного ввода непосредственно в вычислитель.

На основании заданных согласно таблице 1 значений температуры и установленного значения избыточного давления определяют плотность и энтальпию в соответствии с документом ГСССД МР 147-2008 «Расчет плотности, энтальпии, показателя адиабаты и коэффициента динамической вязкости воды и водяного пара при температурах 0...1000 С и давлениях 0,0005...100 МПа на основании таблиц стандартных справочных данных ГСССД 187-99 и ГСССД 6-89».

Регистрацию показаний вычислителя проводят по истечению 90 секунд после завершения каждого измерения.

Перед каждым новым измерением в проверочной точке производят регистрацию начального значения количества тепловой энергии W_{nij} , $\Gamma Дж$, по показаниям вычислителя.

После окончания каждого измерения регистрируют конечное значение количества тепловой энергии $W_{\kappa ij}$, ГДж, по показаниям вычислителя.

Измеренное значение количества тепловой энергии W_{Tuij} , ГДж, вычислить по формуле (17):

$$W_{Tuij} = W_{\kappa ij} - W_{nij} , \qquad (17)$$

Действительное значение количества тепловой энергии $W_{\mathcal{A}}$, ГДж, для тех же значений параметров теплоносителя вычисляют по формуле (18):

$$W_{\mathcal{A}} = \frac{\rho_{(X)} \times N_{(X)} \times (h_{\mathcal{A}(X)} - h_{\mathcal{A}(Y)})}{K_{p}},$$
 (18)

где $h_{\mathcal{J}(X)}$ — значение энтальпии предполагаемого теплоносителя в нечетном канале измерения температуры, ГДж/кг (определяют в соответствии с ГСССД МР 147-2008);

 $h_{\mathcal{I}(Y)}$ — значение энтальпии предполагаемого теплоносителя в четном канале измерения температуры, ГДж/кг (определяют в соответствии с ГСССД МР 147-2008);

 $N_{(X)}$ — количество импульсов, воспроизведенное эталоном частоты и поступившее на импульсный вход нечетного канала измерения, имп;

 K_p – константа преобразования импульсного входа вычислителя, имп/л;

 $\rho_{(X)}$ — плотность предполагаемого теплоносителя в нечетном трубопроводе, кг/дм3 (определяют в соответствии с ГСССД MP 147-2008).

Относительную погрешность вычислителя при измерении количества тепловой энергии в закрытых системах теплоснабжения, состоящих из двух и более труб, вычисляют по формуле (18) настоящей методики.

Результаты проверки считать положительными, если относительная погрешность вычислителя при измерении количества тепловой энергии в закрытых системах теплоснабжения $\pm 1,1 \cdot \sqrt{0,02^2 + (0,03 \cdot 100/\Theta_{_{изм}})^2 + 0,05^2}$ %.

7.4.2.6 При подтверждении метрологических характеристик вычислителей, предназначенных для открытых систем теплоснабжения (в соответствии с паспортом) определяют погрешности в соответствии с пунктом 7.4.2.5 настоящей методики.

Результаты проверки считать положительными, если он удовлетворяет требованиям, указанным в пунктах 7.4.2.5 настоящей методики.

- 7.4.2.7 Определение относительной погрешности измерений текущего времени проводить в следующей последовательности:
 - 1) подготовить вычислитель к измерениям согласно ЭД;
- в момент смены наименьшего разряда показаний текущего времени вычислителя включить секундомер;
 - 3) выждать не менее 40 мин;
- 4) в момент смены наименьшего разряда показаний текущего времени вычислителя выключить секундомер и зафиксировать показания теплосчетчика и секундомера;
- 5) рассчитать относительную погрешность измерений интервалов времени теплосчетчика бв, %, по формуле (9);

Результаты проверки считать положительными, если погрешность измерений времени не выходит за пределы ± 0.05 %.

Допускается определение относительной погрешности измерений текущего времени одновременно с определением других МХ вычислителя.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Результаты поверки оформляют протоколом поверки произвольной формы. В протоколе поверки указывают заводские номера, номера свидетельств о поверке и срок их действия и (или) сроки действия отметок о поверке в паспорте СИ, входящих в состав теплосчетчика.
- 8.2 При положительных результатах поверки делают соответствующую запись в паспорте теплосчетчика и (или) оформляют свидетельство о поверке теплосчетчика с указанием способа поверки в соответствии с приказом Минпромторга России от 2 июля 2015 г. № 1815 «Об утверждении порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» и (или) делают отметку в паспорте теплосчетчика о дате очередной поверки. Знак поверки наносят на пломбы теплосчетчиков, а также в паспорт и (или) свидетельство о поверке.
- 8.3 При отрицательных результатах поверки теплосчетчик к эксплуатации не допускают, свидетельство о поверке аннулируют и выдают «Извещение о непригодности к применению» с указанием причин в соответствии с приказом Минпромторга России от 2 июля 2015 г. №1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Ведущий инженер ООО «ИЦРМ»

Д. В. Бурцева

Инженер II категории ООО «ИЦРМ»

Я. О. Мельников

ПРИЛОЖЕНИЕ А (ОБЯЗАТЕЛЬНОЕ)

Средства измерений, входящие в состав теплосчетчиков, представлены в таблице А.1. Метрологические характеристики теплосчетчиков представлены в таблице А.2. Исполнения расходомеров-счетчиков СВУ представлены в таблице А.3. Исполнения расходомеров-счетчиков СВМ представлены в таблице А.4.

Таблица А.1 – Средства измерений, входящие в состав теплосчетчиков

Вычислитель

Вычислители ТСВ-1х, ТСВ-2х, ТСВ-3х (из состава теплосчетчиков)

Датчики расхода

CBM Расходомеры-счетчики (электромагнитный принцип действия, теплосчетчиков); расходомеры-счетчики СВУ (ультразвуковой принцип действия, из состава теплосчетчика); преобразователи расхода электромагнитные ПРЭМ (номер в Федеральном информационном фонде по обеспечению единства измерений (далее - г.р. №) 17858-11); расходомеры-счетчики электромагнитные ВЗЛЕТ ЭР модификация «Лайт М» (г.р. № 52856электромагнитные Питерфлоу РС (г.р. № 46814-11): счетчики 13): расходомеры электромагнитные ВИРС-М (г.р. № 66610-17); счетчики ультразвуковые ВИРС-У (r.p. № 66611-17)

Датчики температуры

КОМПЛЕКТЫ ТЕРМОМЕТРОВ СОПРОТИВЛЕНИЯ ИЗ ПЛАТИНЫ ТЕХНИЧЕСКИХ РАЗНОСТНЫХ КТПТР-01, КТПТР-03, КТПТР-06, КТПТР-07, КТПТР-08 (г.р. № 46156-10); комплекты термометров сопротивления из платины технические разностные КТПТР-04, КТПТР-05, КТПТР-05/1 (г.р. № 39145-08); комплекты термопреобразователей сопротивления КТСП-Н (г.р. № 38878-17); комплекты термопреобразователей сопротивления платиновых КТС-Б (г.р. № 43096-15); термопреобразователи сопротивления платиновые ТСП и ТСП-К (г.р. № 65539-16); термопреобразователи сопротивления платиновые ТСП-Н с диапазоном измерений температур от 0 до +160 °C (г.р. № 38959-17), термопреобразователи сопротивления «ВЗЛЕТ ТПС» (г.р. № 21278-11); термопреобразователи сопротивления ТС-Б (г.р. № 61801-15)

Датчики давления

Датчики давления малогабаритные КОРУНД с пределами допускаемой основной приведенной к диапазону измерений погрешности измерений ± 0.5 , ± 1.0 % (г.р. № 47336-16); преобразователи давления измерительные СДВ (г.р. № 28313-11); датчики избыточного давления с электрическим выходным сигналом ДДМ-03Т-ДИ (г.р. № 55928-13); преобразователи давления измерительные НТ (г.р. № 26817-17); преобразователи избыточного давления ПД-Р (г.р. № 40260-11); преобразователи давления измерительные 401001, 401002, 401011, 401015, 401050, 404366, 404450 (г.р. № 57663-14); преобразователи давления измерительные 40 мод. 401005, 401006, 401009, 401010, 402005, 402051, 404304, 404392 (г.р. № 20730-12), датчики давления ИД (г.р. № 26818-15)

Таблица А.2 – Метрологические характеристики теплосчетчиков

Наименование характеристики	Значение	
Диапазон измерений объемного (массового) расхода теплоносителя с помощью теплосчетчиков, м ³ /ч (т/ч)	от 0,01 до 600 ¹⁾	
Пределы допускаемой относительной погрешности измерений объемного (массового) расхода (объема, массы) теплоносителя с помощью теплосчетчиков в закрытых системах теплоснабжения	$\pm 1,1 \cdot \sqrt{0,02^2 + \delta G_{\mathrm{пред}}^2}$ 1), 3) от 0 до +150 1)	
2), %		
Диапазон измерений температуры теплоносителя с помощью теплосчетчиков, °С		
Пределы допускаемой абсолютной погрешности измерений температуры теплоносителя с помощью теплосчетчиков, °С	$\pm (0.1 + \Delta t_{\text{пред}})^{1,4}$	
Диапазон измерений разности температур теплоносителя с помощью теплосчетчиков, °С	от +3 до +150 ¹⁾	
Пределы допускаемой относительной погрешности измерений разности температур теплоносителя с помощью теплосчетчиков, %	$\pm 1,1 \cdot \sqrt{(0,03 \cdot 100/\Theta_{изм})^2 + \left(\Delta\Theta_{пред} \cdot 100/\Theta_{изм}\right)^2}$ от 0 до 2,5 $^{1)}$	
Диапазон измерений избыточного давления теплосчетчиков, МПа	от 0 до 2,5 1)	
Пределы допускаемой приведенной к диапазону измерений избыточного давления погрешности измерений избыточного давления теплоносителя с помощью теплосчетчиков, %	$\pm 1.1 \cdot \sqrt{0.5^2 + \gamma P_{\text{пред}}^2}^{1).6}$	
Диапазон измерений тепловой энергии теплоносителя с помощью теплосчетчиков, ГДж	от 0,0001 до 9999999	
Пределы допускаемой относительной погрешности измерений количества тепловой энергии теплоносителя с помощью теплосчетчиков в закрытых системах теплоснабжения ²⁾ , %	$\pm 1.1 \cdot \sqrt{0.02^2 + \delta G_{\text{пред}}^2 + (0.03 \cdot 100/\Theta_{\text{изм}})^2 + \left(\Delta \Theta_{\text{пред}} \cdot 100/\Theta_{\text{изм}}\right)^2 + \left(\Delta \Theta_{\text{пред}} \cdot 100/\Theta_{\text{изм}}\right)^2} + 0.05^2$	
Пределы допускаемой относительной погрешности измерений текущего времени, %	±0,05	

Продолжение таблицы А.2

продолжение таолицы А.2				
Наименование характеристики	Значение			
Диапазон преобразований вычислителем импульсных сигналов от	от 0,5 до 1000			
датчиков расхода, Гц				
Пределы допускаемой относительной погрешности преобразований	± 0.02			
вычислителем импульсных сигналов от датчиков расхода, %				
Диапазон преобразований вычислителем сопротивления	от 0 до +150 ¹⁾			
постоянному току от датчиков температуры Рt 100, Pt 500, Pt 1000,				
100П, 500П по ГОСТ 6651-2009 для вычислений температуры, °С				
Пределы допускаемой абсолютной погрешности преобразований				
вычислителем сопротивления постоянному току от датчиков	±0,1			
температуры Pt 100, Pt 500, Pt 1000, 100П, 500П по ГОСТ 6651-2009				
для вычислений температуры, °С				
Диапазон преобразований вычислителем сопротивления				
постоянному току от датчиков температуры Pt 100, Pt 500, Pt 1000,	от +3 до +150 ¹⁾			
100П, 500П по ГОСТ 6651-2009 для вычислений разности				
температур, °С				
Пределы допускаемой абсолютной погрешности преобразований				
вычислителем сопротивления постоянному току от датчиков	±0,03			
температуры Pt 100, Pt 500, Pt 1000, 100П, 500П по ГОСТ 6651-2009				
для вычислений разности температур, °С	0 7			
Диапазоны преобразований вычислителем силы постоянного тока от	от 0 до 5			
датчиков давления, мА	от 4 до 20			
	от 0 до 20			
Пределы допускаемой приведенной к диапазону измерений	±0,5			
избыточного давления погрешности преобразований вычислителем				
силы постоянного тока от датчиков давления, %				
Пределы допускаемой относительной погрешности вычислений				
количества тепловой энергии вычислителем в закрытых системах	$\pm 1.1 \cdot \sqrt{0.02^2 + (0.03 \cdot 100/\Theta_{{\scriptscriptstyle H3M}})^2 + 0.05^2}$			
теплоснабжения 2, %				

Продолжение таблицы А.2

¹⁾ В зависимости от исполнения (при комплектовании датчиками расхода ПРЭМ, ВЗЛЕТ ЭР, Питерфлоу РС ВИРС-М, ВИРС-У – в зависимости от исполнения, указанного в описании типа соответствующего датчика, при комплектовании датчиками расхода СВМ, СВУ – значения расходов приведены в таблицах 5, 6).

²⁾ Пределы допускаемой относительной погрешности измерений объемного (массового) расхода (объема, массы), тепловой энергии теплоносителя с помощью теплосчетчиков в открытых системах теплоснабжения определяются методиками измерений, аттестованными в

установленном порядке.

 $^{3)}$ Где $\delta G_{\text{пред}}$ — пределы допускаемой относительной погрешности измерений объемного (массового) расхода (объема, массы) датчиков расхода в зависимости от описания типа на датчики расхода, указанные в таблице 1, %. Для расходомеров-счетчиков СВМ, расходомеров-счетчиков СВУ из состава теплосчетчиков $G_{\text{пред}}$ =± (0,5 + 0,0025 · $G_{\text{в}}$ /G) %, где:

 G_B – значение наибольшего расхода теплоносителя, $M^3/4$;

G – значение измеренного расхода теплоносителя, $M^3/4$.

 $^{4)}$ Где $\Delta t_{\text{пред}}$ – пределы допускаемой абсолютной погрешности измерений температуры теплоносителя в зависимости от описания типа на датчики температуры, указанные в таблице 1, $^{\circ}$ C.

 $^{5)}$ Где $\Delta\Theta_{\text{пред}}$ - пределы допускаемой абсолютной погрешности измерений разности температур теплоносителя в зависимости от описания типа на датчики температуры, указанные в таблице 1, °C;

 $\Theta_{\text{изм}}$ – измеренное значение разности температур теплоносителя с помощью теплосчетчиков, ${}^{\rm o}{\rm C}$.

⁶⁾ Где γР_{пред} – пределы допускаемой приведенной к диапазону измерений избыточного давления погрешности измерений избыточного давления теплоносителя в зависимости от описания типа на датчики давления, указанные в таблице 1, %.

Таблица А.3 – Исполнения расходомеров-счетчиков СВУ

Присоединение		Минимальный	Максимальный
Фланец DN	Резьба	расход, м³\ч	расход, м³\ч
15	G3/4	0,03	3,0
20	G1	0,05	5,0
25	G1¼	0,08	8,0
32	G1½	0,13	12,5
40	G2	0,20	20,0
50	=	0,32	32,0
65	-	0,5	50,0
80	•	0,8	80,0
100	•	1,25	125,0
125	-	4,5	450,0
150		6,3	600,0
200		12,0	600,0
250		18,0	600,0
300	-	25,0	600,0
350	•	35,0	600,0
400	-	45,0	600,0
450	-	60,0	600,0
500	-	70,0	600,0
600		100,0	600,0
700	-	140,0	600,0
800	-	180,0	600,0
900	_	250,0	600,0
1000	-	280,0	600,0

Таблица А.4 – Исполнения расходомеров-счетчиков СВМ

Присоединение	Married with account 163/11	Максимальный расход, м ³ \ч	
Фланец DN	— Минимальный расход, м ³ \ч		
-15	0,013	6,3	
20	0,02	10,0	
25	0,03	16,0	
32	0,05	25,0	
40	0,08	40,0	
50	0,13	63,0	
65	0,2	100,0	
80	0,32	160,0	
100	0,5	250,0	
150	0,8	400,0	
200	1,3	600,0	