

Государственная корпорация по атомной энергии «Росатом» Федеральное государственное унитарное предприятие РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР Всероссийский научно-исследовательский институт экспериментальной физики

ЦЕНТР ИСПЫТАНИЙ СРЕДСТВ ИЗМЕРЕНИЙ ФГУП «РФЯЦ-ВНИИЭФ»

Аттестат аккредитации № RA.RU.311769

607188, Нижегородская обл. г. Саров, пр. Мира, д. 37 Телефон 83130 22224 Факс 83130 22232 E-mail: shvn@olit.vniief.ru

СОГЛАСОВАНО

УТВЕРЖДАЮ

Главный метролог QOO «ГлобалТест»

лобалТ

M.H

А.А. Симчук

2020 г.

Руководитель ЦИ СИ ФГУП«РФЯН-ВНИИЭФ»

В.К. Дарымов

?3» O/ 2020 г.

1alu

М.п.

Преобразователи напряжения измерительные АР6200

Методика поверки

А3009.0327.МП-2020

Содержание

	1	Операции поверки	4
	2	Средства поверки	
	3	Требования к квалификации поверителей	4
		Требования безопасности	
	5	Условия поверки	
	6	Подготовка к проведению поверки	5
	7	Проведение поверки	.5
		Оформление результатов поверки	
	При	пложение А (справочное) Перечень документов, на которые данн	Ы
ссыл	_	тексте МП	
	При	пложение Б (справочное) Перечень принятых сокращений1	0
	При	пложение В (справочное) Обозначения разъемов контактной групп	Ы
преоб	วีซลัสด	рвателя1	0

Настоящая методика поверки распространяется на преобразователи напряжения измерительные AP6200

Преобразователи напряжения измерительные AP6200 (далее по тексту - преобразователи) предназначены для регистрации, анализа, записи и постобработки сигналов, поступающих на его вход.

действия преобразователя Принцип основан параллельной на (одновременной) дискретизации до 4-х входных аналоговых сигналов с помощью 16-и битного АЦП и их последующей непрерывной передаче в ПК специального программного обеспечения. для анализа c помощью Максимальная частота дискретизации 2 МГц. Преобразователь оснащён встроенной памятью для предотвращения потери данных при высокой загрузке ПК.

Конструктивно преобразователь представляет собой блок ввода и преобразования сигналов и выпускается в пластиковом корпусе. Обмен данными с ПК и питание преобразователя (5В/500мА) осуществляются по интерфейсу USB 2.0 через разъём mini-USB. Количество измерительных одного модуля 4. В каналов комплект входит многофункциональная подставка, позволяющая установить преобразователь на стол, DIN-рейку или стену.

Преобразователь позволяет:

- проводить анализ сигналов с помощью программных измерительных приборов в реальном времени и в отложенном режиме;
- обрабатывать сигналы с помощью гибко настраиваемых цифровых фильтров;
- проводить непрерывную запись сигналов в постоянную память ПК для их последующего отложенного анализа;
 - воспроизводить записанные ранее сигналы;
 - проводить суммирование сигналов с разными весами.

Преобразователь поддерживает функции следующих измерительных приборов: «Амплитудно-фазовая частотная характеристика», «Взаимный спектр», «Частотомер», «Модальный анализ», «Октавный анализ», «Осциллограф», «Спектроанализатор», «Спектр огибающей», «Вольтметр переменного тока», «Вольтметр постоянного тока».

Данная методика поверки (далее — МП) устанавливает методику первичной и периодической поверок преобразователей. Первичной поверке преобразователи подвергаются при выпуске из производства и после ремонта. Организация и проведение поверки в соответствии с действующим «Порядок проведения поверки средств измерений...».

Межповерочный интервал – один год.

Перечень документов, на которые даны ссылки в тексте МП, приведен в приложении A.

Перечень принятых сокращений приведен в приложении Б.

1 Операции поверки

- 1.1 При проведении первичной и периодической поверок преобразователей должны быть выполнены операции, указанные в таблице 1.
- 1.2 При получении отрицательного результата какой-либо операции поверки дальнейшая поверка не проводится, и результаты оформляются в соответствии с 8.2.
- 1.3 Протокол поверки ведется в произвольной форме. На основании письменного заявления владельца СИ, оформленного в произвольной форме, допускается сокращать количество поверяемых каналов в соответствии с потребностями потребителя, с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.

Таблица 1 – Перечень операций при поверке

Наименование операции	Номер пункта	Обязательность проведения при поверке		
	методики	первич- ной	перио- дической	
1 Внешний осмотр	7.1	+	+	
2 Проверка ПО	7.2	+	+	
3 Опробование	7.3	+	+	
4 Проверка амплитудного диапазона и основной абсолютной погрешности измерений входного напряжения	7.4	+	+	
5 Проверка рабочего диапазона частот и неравномерности частотной характеристики	7.5	+	+	

2 Средства поверки

2.1 При проведении поверки применяют СИ и оборудование, приведенные в таблице 2.

Допускается использовать другие СИ и оборудование, обеспечивающие требуемые диапазоны и точности измерений.

2.2 Все применяемые СИ должны быть поверены и иметь действующие свидетельства о поверке. Оборудование, необходимое для проведения испытаний, должно быть аттестовано согласно ГОСТ Р 8.568.

3 Требования к квалификации поверителей

К проведению поверки допускается персонал, изучивший ЭД на преобразователь, данную методику поверки и имеющий опыт работы с оборудованием, перечисленным в таблице 2.

Таблица 2 – Перечень СИ и оборудования, применяемых при поверке

	Требуемые хара	Рекомен-	Кол	Пункт	
Наименование СИ	Ananason	Погрешность	дуемый	BO	МП
	измерений	измерений	ТИП		
Калибратор	от 0 до 450000 Гц, от 0 до 10000 мВ	±0,1 %	Fluke 5522A	1	
Персональный компьютер	В соответствии с АБКЖ.00029-01 34 «Программное обеспечение «GTLab». Руководство оператора»			1	все

4 Требования безопасности

- 4.1 При проведении поверки необходимо руководствоваться «Правилами устройства электроустановок» И «Правилами технической эксплуатации электроустановок потребителей». Меры безопасности при подготовке и проведении измерений должны соответствовать требованиям 12.2.007.0 «Правилам по охране ГОСТ И труда при эксплуатации электроустановок (ПОТЭУ)».
- 4.2 При проведении поверки должны быть выполнены все требования безопасности, указанные в ЭД на преобразователь, средства поверки и испытательное оборудование.

Все используемое оборудование должно иметь защитное заземление.

5 Условия поверки

При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха от 18 до 25 °C;
- относительная влажность окружающего воздуха до 80 %;
- атмосферное давление от 84 до 106 кПа (от 630 до 795 мм рт.ст.);
- напряжение питающей сети от 207 до 253 В;
- частота питающей сети от 49,5 до 50,5 Гц.

6 Подготовка к проведению поверки

- 6.1 Перед проведением поверки подготавливают СИ и оборудование к работе в соответствии с ЭД на них.
- 6.2 Проверяют наличие действующих свидетельств о поверке на СИ, а также соответствие условий поверки разделу 5.

7 Проведение поверки

7.1 Внешний осмотр

При внешнем осмотре необходимо проверить:

- целостность корпуса преобразователя;
- отсутствие повреждений соединительных жгутов и разъёмов.

При наличии вышеуказанных дефектов испытания не проводят до их устранения. Если дефекты устранить невозможно, преобразователь бракуют.

7.2 Проверка ПО

7.2.1 Проверку ПО проводят в соответствии с 5.1 АБКЖ.00029-01 34 «Программное обеспечение «GTLab». Руководство оператора». Цифровой идентификатор ПО рассчитывается автоматически при каждом запуске ПО «GTLab». Для вызова окна с информацией о версии ПО и результатов расчета цифрового идентификатора необходимо в меню выбрать пункт «О программе». Пример всплывающего окна приведен на рисунке 1.

Рисунок 1 – Пример окна с информацией о ПО

7.2.2 Преобразователь считают выдержавшим испытания, если цифровой идентификатор ПО (контрольная сумма исполняемого кода) соответствует указанной в паспорте.

7.3 Опробование

7.3.1 Собирают схему измерений в соответствии с рисунком 1. Обозначения разъемов контактной группы преобразователя приведены в приложении В. Включают и прогревают измерительные приборы в соответствии с ЭД на них.

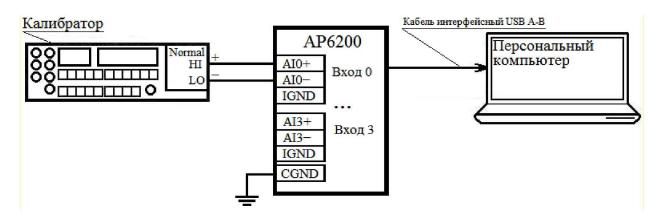


Рисунок 1 – Схема измерений

- 7.3.2 В соответствии с АБКЖ.00029-01 34 устанавливают параметры регистрации:
 - частота дискретизации 2 МГц;
 - «Вольтметр переменного тока» (режим отображения «СКЗ»).

- 7.3.3 На частоте 1000 Гц задают СКЗ входного напряжения $(1000\pm100)\,\mathrm{mB}.$
 - 7.3.5 Считывают показания преобразователя $U_{u_{3M}}$, мВ.
- 7.3.6 Преобразователь считают выдержавшим испытания, если регистрация входного напряжения прошла успешно.
- 7.4 Проверка амплитудного диапазона и абсолютной погрешности измерений амплитуды переменного и постоянного напряжения
- 7.4.1 Собирают схему измерений в соответствии с рисунком 1. Включают и прогревают измерительные приборы в соответствии с ЭД на них.
- 7.4.2 В соответствии с АБКЖ.00029-01 34 устанавливают параметры регистрации:
 - частота дискретизации 2 МГц;
 - «Вольтметр постоянного тока»;
 - «Вольтметр переменного тока» (режим отображения «СКЗ»).
- 7.4.3 Замыкают вход первого канала (контакты «AI0+» и «AI0-»). Считывают показания в режиме «Вольтметр постоянного тока» $U_{uзм.кз}$, мВ, и заносят их в таблицу 3.
- 7.4.4 Подают на вход первого канала рекомендуемые значения напряжения постоянного тока $U_{pe\kappa.i}$, мВ, из таблицы 3. Считывают показания в режиме «Вольтметр постоянного тока» $U_{\mu_{3M}}$, мВ, и заносят их в таблицу 3.
- 7.4.5 Подают на вход первого канала на частоте 1000 Гц рекомендуемые СКЗ напряжения $U_{per.i}$, мВ, из таблицы 3.
- 7.4.6 Считывают СКЗ входного напряжения в режиме «Вольтметр переменного тока» $U_{usm,i}$, мВ, и заносят их в таблицу 3.
- 7.4.7 Повторяют операции по 7.4.4 7.4.6 для всех значений напряжения, указанных в таблице 3.

Таблица 3 – Определение абсолютной погрешности измерений

	Напряжение постоянного тока								Переменное напряжение, 1 кГц			
$U_{\mathit{peк.i}}$, мВ	КЗ	1	10	100	1000	5000	10000	1	10	100	1000	7071
$U_{\tiny \it 3a\partial.i}$, м $ m B$												
$U_{uзм.i}$, мВ												
ΔU_i , мВ												

7.4.8 Абсолютную погрешность измерений амплитуды напряжения Δ_{Ui} , мВ, рассчитывают по формуле

$$\Delta_{Ui} = U_{u_{3M.i}} - U_{3a\partial.i}, \tag{1}$$

где $U_{u_{3M.i}}-i$ -е измеренное значение напряжения, мВ; $U_{3a\partial.i}-i$ -е заданное значение напряжения, мВ.

- 7.4.9 Повторяют операции по 7.4.4 7.4.8 для всех измерительных каналов.
 - 7.4.10 Преобразователь считают выдержавшим испытания, если

абсолютная погрешность измерений входного напряжения U_{ex} , мB, в диапазоне частот от 0 до 1 кГц включительно находится в пределах $\pm (0,003 \cdot U_{Bx} + 1)$ мВ.

- 7.5 Проверка рабочего диапазона частот и неравномерности частотной характеристики
- 7.5.1 Собирают схему измерений в соответствии с рисунком 1. Включают и прогревают измерительные приборы в соответствии с ЭД на них.
- 7.5.2 В соответствии с АБКЖ.00029-01 34 устанавливают параметры регистрации:
 - частота дискретизации 2 МГц;
 - «Вольтметр переменного тока» (режим отображения «СКЗ»).
- 7.5.3 Задают на частоте 1 кГц СКЗ напряжения $U_{\it per.}$ =1000 мВ на вход первого канала.
- 7.5.4 Считывают СКЗ входного напряжения в режиме «Вольтметр переменного тока» $U_{usm,i}$, мВ, и заносят их в таблицу 4.
- 7.5.5 Повторяют операции по 7.5.3, 7.5.4 для всех значений частот, указанных в таблице 4.

Таблица 4 – Определение частотного диапазона

$F_{peк.i}$, к Γ ц	1	10			100	200	250	350	450
$U_{peк.}$, м ${f B}$	1000	1000	1000	1000	1000	1000	1000	1000	1000
$U_{3a\partial.i}$, м ${f B}$									
$U_{uзм.i}$, мВ,									
$\delta_{V\!\!X\!i},\%$									
$U_{uзм.i}$, мВ									
δ_{VXi} , %									

7.5.6 Неравномерность частотной характеристики $\delta_{^{4\!X\!i}}$, %, рассчитывают по формуле

$$\delta_{\mathbf{V}Xi} = \left(\frac{U_{u_{3M,i}}}{U_{sa\dot{o}i}} \cdot \frac{U_{sa\dot{o}1000Tu}}{U_{u_{3M,1000Tu}}} - 1\right) \cdot 100, \tag{2}$$

где $U_{u_{3M.i}}$ – измеренное СКЗ напряжения на *i*-ой частоте, мВ;

 $U_{uзм.i..1000\Gamma_{ij}}$ – измеренное СКЗ напряжения на частоте 1000 Гц, мВ;

 $U_{3a\partial.i}$ – заданное СКЗ входного напряжения на *i*-ой частоте, мВ;

 $U_{3a\partial.1000\Gamma_{ij}}$ — заданное СКЗ входного напряжения на частоте 1000 Гц, мВ.

- 7.5.7 Повторяют операции по 7.5.3 7.5.6 для всех измерительных каналов.
- 7.5.8 Преобразователь считают выдержавшим испытания, если неравномерность частотной характеристики относительно уровня на частоте 1 кГц находится в пределах:
 - до $100 \ \text{к} \Gamma$ ц включительно $\pm 1 \%$;
 - св. 100 до 200 к Γ ц включительно ± 2 %;
 - св. 200 к Γ ц до 250 к Γ ц включительно ± 3 %;
 - св. 250 к Γ ц до 350 к Γ ц включительно ± 7 %.
 - св. 350 к Γ ц до 450 к Γ ц включительно ± 15 %.

8 Оформление результатов поверки

- 8.1 При положительных результатах поверки оформляют свидетельство о поверке преобразователя по форме, установленной в действующих нормативных документах. Знак поверки наносится на свидетельство о поверке и (или) паспорт.
- 8.2 Преобразователь, не прошедший поверку, к применению не допускают. На него выдают извещение о непригодности по форме, установленной в действующих нормативных документах.

Приложение А (справочное) Перечень документов, на которые даны ссылки в тексте МП

Обозначение								
документа, на	Наименование документа, на который дана ссылка							
который дана ссылка								
ГОСТ 12.2.007.0-75	ССБТ. Изделия электротехнические. Общие требования							
1001 12.2.007.0-73	безопасности							
ГОСТ Р 8.568-2017	ГСИ. Аттестация испытательного оборудования.							
10011 6.306-2017	Основные положения							
	Порядок проведения поверки средств измерений, требования к							
	знаку поверки и содержанию свидетельства о поверке. Введен							
	приказом Минпромторга России от 02 июля 2015г. № 1815							
	Правилам по охране труда при эксплуатации							
	электроустановок (ПОТЭУ)							

Приложение Б (справочное) Перечень принятых сокращений

- АЦП аналогово-цифровой преобразователь;
- МП методика поверки;
- ПК персональный компьютер;
- ПО программное обеспеченье;
- СИ средство(а) измерений;
- ЭД эксплуатационная документация.

Приложение В (справочное) Обозначения разъемов контактной группы преобразователя

IGND	20	40	IGND
GPI0	19	39	GPO0
GPI1	18	38	GPO1
GPI2	17	37	GPO2
GPI3	16	36	GPO3
GPI4	15	35	IGND
GPI5	14	34	CONV
GPI6	13	33	IGND
GPI7	12	32	AITG
IGND	11	31	NC
IGND	10	30	IGND
AIO-	9	29	Al2-
AI0+	8	28	Al2+
IGND	7	27	IGND
AI1-	6	26	Al3-
Al1+	5	25	Al3+
IGND	4	24	IGND
NC	3	23	NC
NC	2	22	NC
CGND	1	21	IGND

AI0-, AI0+ - входные разъемы первого измерительного канала;

AI1-, AI1+ - входные разъемы второго измерительного канала;

AI2-, AI2+ - входные разъемы третьего измерительного канала;

AI3-, AI3+ - входные разъемы четвертого измерительного канала