СОГЛАСОВАНО Технический директор ООО НПФ «КРУГ»

А. Ю. Угреватов

2020 г.

Контроллеры промышленные DevLink

Методика поверки

ЖАЯК.420000.002 МП

СОДЕРЖАНИЕ

1 ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ	
2 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	
3 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ4	
4 ПРОВЕДЕНИЕ ПОВЕРКИ	
4.1 Внешний осмотр	
4.2 Опробование	
4.3 Проверка метрологических характеристик	
4.3.1 Проверка метрологических характеристик каналов измерений напряжения постоянного	
тока	
4.3.2 Проверка метрологических характеристик каналов измерений силы постоянного тока 9	
4.3.3 Проверка метрологических характеристик каналов измерений температуры с помощью	
внешних термопар, нормируемые статические характеристики преобразования которых	
регламентированы ГОСТ Р 8.585-2001	
4.3.4 Проверка метрологических характеристик каналов измерений электрического	
сопротивления	
4.3.5 Проверка метрологических характеристик каналов измерений температуры с помощью	
внешних термометров сопротивлений, нормируемые статические характеристики которых	
регламентированы ГОСТ 6651-2009	
4.3.6 Проверка метрологических характеристик каналов воспроизведения напряжения	
постоянного тока	
4.3.7 Проверка метрологических характеристик каналов воспроизведения силы постоянного	
тока	
4.3.8 Проверка метрологических характеристик измерительных каналов счета импульсов 19	
4.3.9 Проверка метрологических характеристик каналов измерений интервалов времени 19	
5 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	1

Изм	Лист	N докум.	Подпись	Дата

Настоящая методика поверки распространяется на контроллеры промышленные DevLink (далее – контроллеры), предназначенные для измерений силы и напряжения постоянного тока, электрического сопротивления, количества импульсов и времени, преобразования электрического сопротивления в значения температуры, а также для воспроизведения силы и напряжения постоянного тока, и устанавливает методику первичной и периодической поверки.

Интервал между поверками (межповерочный интервал) – 4 года.

1 ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

Поверка контроллеров на части диапазона измерений (поддиапазонов измерений) невозможна. Допускается проведение поверки отдельных измерительных каналов из состава контроллеров с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.

Операции и основные средства поверки приведены в таблице 1 Таблица 1

Наименование операции	Номер пункта методики	Рекомендуемые средства поверки	Требуемые значения метрологиче- ских характеристик
1 Внешний ос- мотр	4.1		_
2 Опробование	4.2	·—	_
3 Проверка метрологических характеристик	4.3	Калибратор универсальный Fluke 5520A	Диапазон воспроизведения силы постоянного тока от 0 до 20 мА. Пределы допускаемой приведенной погрешности ±0,03 %. Диапазон воспроизведения напряжения постоянного тока от 0 до 10 В. Пределы допускаемой приведенной погрешности ±0,03 %.
		Генератор сигналов произвольной формы 33220A	Диапазон частот импульсного выходного сигнала от 0 до 1000 Γ ц. Пределы допускаемой относительной погрешности $\pm 2 \cdot 10^{-5}$.

					Лист
				ЖАЯК.420000.002 МП	2
Изм	Лист	N докум.	Подпись Дата		3

продолжение тао	лицы т		
Наименование операции	Номер пункта методики	Рекомендуемые средства поверки	Требуемые значения метрологиче- ских характеристик
		Мультиметр цифровой прецизионный Fluke 8508A	Диапазон измерений напряжения постоянного тока от 0 до 10 В. Пределы допускаемой приведенной погрешности $\pm 0,03$ %. Диапазон измерений силы постоянного тока от 0 до 20 мА. Пределы допускаемой приведенной погрешности $\pm 0,03$ %.
		Магазин сопротивления Р4831	Диапазон воспроизведения электрического сопротивления от 0 до 2 кОм. Пределы допускаемой приведенной погрешности $\pm 0,03$ %.
		Радиочасы РЧ- 011/2	Диапазон измерений от 0 до 86400 c , погрешность измерений $\pm 0.6 \text{ c}$

Примечание.

- 1 Допускается применять другие средства измерений, обеспечивающие требуемую точность
- 2 В качестве вспомогательных устройств при проведении поверки используется персональный компьютер с поддержкой или адаптером интерфейса RS-485 (далее персональный компьютер)

2 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны соблюдаться требования безопасности, установленные действующими «Правилами техники безопасности при эксплуатации электроустановок потребителей», требования разделов «Указания мер безопасности», приведённых в эксплуатационной документации применяемых средств измерений (далее – СИ).

К выполнению поверки могут быть допущены специалисты, прошедшие обучение и аттестованные в качестве поверителей по соответствующим видам измерений.

3 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

3.1 При проведении поверки должны соблюдаться следующие условия:

− температура окружающего воздуха, °С	от +15 до +25;
 относительная влажность воздуха, % 	от 30 до 80;
- атмосферное давление, кПа	от 84 до 106;
 напряжение питание постоянного тока, В 	от 22 до 26;
 напряжение питающей сети переменного тока, В 	от 215,6 до 224,4;
 частота питающей сети, Гц 	50.0 ± 0.5 ;

- отсутствие вибрации и электромагнитных полей (кроме магнитного поля Земли).

3.2 Контроллер до начала поверки должен быть выдержан в условиях, указанных в пункте 3.1, не менее 2 часов.

Непосредственно перед проведением поверки необходимо подготовить контроллер и средства поверки к работе в соответствии с их эксплуатационной документацией.

						Лист
					ЖАЯК.420000.002 МП	1
Изм	Лист	N докум.	Подпись	Дата		4

Все средства измерений, используемые при поверке, должны иметь непросроченные свидетельства о поверке.

4 ПРОВЕДЕНИЕ ПОВЕРКИ

4.1 Внешний осмотр

Внешний осмотр поверяемого контроллера производят без включения питания.

При внешнем осмотре проверяют:

- наличие необходимых надписей на наружных панелях;
- отсутствие дефектов панелей, каркаса: сколов, царапин, равномерности нанесения покрытия, отсутствие других механических повреждений, следов коррозии;
 - соответствие комплектности контроллера паспорту;
 - состояние разъемов.

Контроллер не допускается к дальнейшей поверке, если обнаружено несоответствие хотя бы одному из вышеперечисленных критериев.

4.2 Опробование

Подать питающее напряжение на модули контроллера. В соответствии с эксплуатационной документацией на него проверить его функционирование в целом при нулевых значениях входных величин.

Провести проверку идентификационных данных метрологически значимого программного обеспечения (ПО) согласно руководства по эксплуатации на контроллеры. Проверку идентификационных данных метрологически значимого ПО проводят только при наличии в составе контроллера процессорного модуля.

Контроллер признается годным, если он функционирует без сбоев и без появлений сообщений об ошибках, а идентификационные данные метрологически значимого программного обеспечения соответствуют указанным в руководстве по эксплуатации и описании типа.

4.3 Проверка метрологических характеристик

4.3.1 Проверка метрологических характеристик каналов измерений напряжения постоянного тока

Проверку проводят для каналов:

- с резервированием или без резервирования:
- с барьерами искрозащиты (БИЗ) или без барьеров искрозащиты (БИЗ).

Проверку проводят путем измерений значений напряжения постоянного тока, подаваемых с калибратора. Порядок проведения проверки следующий:

- на нижней плате модуля с помощью 8 джамперов перед включением модуля необходимо сделать переключения на режим измерения напряжения для всех 8 каналов в соответствии с руководством по эксплуатации на модули DevLink-A10;
- установить DIP-переключатели, расположенные на верхней плате модуля в режим «INIT»;
- собрать схему соединений при настройке модулей ввода/вывода DevLink-A10 согласно рисунку A.1 приложения A;
- включить компьютер и загрузить программу *DevLink Utility*, выбрать СОМ-порт, к которому подключен модуль;
 - включить питание модуля;
 - установить в окне программы DevLink Utility режим «INIT»;
- нажать кнопку «Поиск модулей» в окне программы DevLink Utility и найти модуль в сети;

						Лист
					ЖАЯК.420000.002 МП	-
Изм	Лист	N докум.	Подпись	Дата)

- открыть окно «Поверка»;
- выбрать соответствующий тип канала и диапазона измерений для всех каналов в соответствии с описанием типа;
 - собрать схему согласно рисунку А.2.1 или рисунку А.2.2 приложения А;
- на вход «1» проверяемого модуля DevLink-A10 подать значение напряжения в соответствии с таблицей 2 для соответствующего диапазона измерений;
- зафиксировать измеренное модулем значение Uизм. по показаниям на экране персонального компьютера.

Далее соответствующий канал модуля проверяется в соответствии с изложенной методикой во всех остальных точках.

Таблица 2

П		Пределы допускае- Значение		Допускаемое значение напряжения при уровне бракования 0,8			
Диапазон измерений	Ед. изм.	ведённой	The state of the s	Без резервирования и/или БИЗ		С резервированием и/или БИЗ	
	погрешно- сти, %	калибратора	Имин.	Имакс.	Имин.	Имакс.	
			-150	-150,24	-149,76	-150,26	-149,74
		-135	-135,24	-134,76	-135,26	-134,74	
om 150 ma			-75	-75,24	-74,76	-75,26	-74,74
от –150 до +150	мВ	$\pm 0,1/\pm 0,11$	0	-0,24	0,24	-0,26	0,26
+130			75	74,76	75,24	74,74	75,26
			135	134,76	135,24	134,74	135,26
			150	149,76	150,24	149,74	150,26
			-250	-250,4	-249,6	-250,4	-249,6
		±0,1/±0,11	-225	-225,4	-224,6	-225,4	-224,6
250	мВ		-125	-125,4	-124,6	-125,4	-124,6
от –250 до +250			0	-0,4	0,4	-0,4	0,4
+230			125	124,6	125,4	124,6	125,4
			225	224,6	225,4	224,6	225,4
			250	249,6	250,4	249,6	250,4
			-500	-500,8	-499,2	-500,9	-499,1
			-450	-450,8	-449,2	-450,9	-449,1
om 500 ma			-250	-250,8	-249,2	-250,9	-249,1
от –500 до +500	мВ	$\pm 0,1/\pm 0,11$	0	-0,8	0,8	-0,9	0,9
±300			250	249,2	250,8	249,1	250,9
			450	449,2	450,8	449,1	450,9
			500	499,2	500,8	499,1	500,9
			-1	-1,0016	-0,9984	-1,0018	-0,9982
			-0,9	-0,9016	-0,8984	-0,9018	-0,8982
от 1 по			-0,5	-0,5016	-0,4984	-0,5018	-0,4982
от –1 до +1	В	$\pm 0,1/\pm 0,11$	0	-0,0016	0,0016	-0,0018	0,0018
1			0,5	0,4984	0,5016	0,4982	0,5018
			0,9	0,8984	0,9016	0,8982	0,9018
			1	0,9984	1,0016	0,9982	1,0018

Изм	Лист	N докум.	Подпись	Дата

Продолжен	ие таблі	ицы 2					
		Пределы			Допускаемо	ое значение	
		допускае-	Значение	напряжения при уровне бракования 0,8			
Диапазон	Ед. изм.	мой при-	напряжения,	Без резерн	вирования	С резерви	рованием
измерений	ъд. пом.	веденнои	подаваемое с	и/или		и/или	
		погрешно-	калибратора	Имин.	Имакс.	Имин.	Имакс.
			-2	-2,0032	-1,9968	-2,0035	-1,9965
			-1,8	-1,8032	-1,7968	-1,8035	-1,7965
			-1	-1,0032	-0,9968	-1,0035	-0,9965
от –2 до	В	$\pm 0,1/\pm 0,11$	0	-0,0032	0,0032	-0,0035	0,0035
+2		= 752 - 273 -	1	0,9968	1,0032	0,9965	1,0035
			1,8	1,7968	1,8032	1,7965	1,8035
			2	1,9968	2,0032	1,9965	2,0035
			-5	-5,008	-4,992	-5,009	-4,991
			-4,5	-4,508	-4,492	-4,509	-4,491
-			-2,5	-2,508	-2,492	-2,509	-2,491
от –5 до	В	$\pm 0,1/\pm 0,11$	0	-0,008	0,008	-0,009	0,009
+5			2,5	2,492	2,508	2,491	2,509
			4,5	4,492	4,508	4,491	4,509
			5	4,992	5,008	4,991	5,009
			-10	-10,016	-9,984	-10,0176	-9,9824
			_9	-9,016	-8,984	-9,0176	-8,9824
10			-5	-5,016	-4,984	-5,0176	-4,9824
от -10 до	В	$\pm 0,1/\pm 0,11$	0	-0,016	0,016	-0,0176	0,0176
+10			5	4,984	5,016	4,9824	5,0176
			9	8,984	9,016	8,9824	9,0176
			10	9,984	10,016	9,9824	10,0176
			0,01	0,0092	0,0108	0,0091	0,0109
			0,05	0,0492	0,0508	0,0491	0,0509
			0,25	0,2492	0,2508	0,2491	0,2509
от 0 до 1	В	$\pm 0,1/\pm 0,11$	0,5	0,4992	0,5008	0,4991	0,5009
			0,75	0,7492	0,7508	0,7491	0,7509
			0,95	0,9492	0,9508	0,9491	0,9509
			1	0,9992	1,0008	0,9991	1,0009
			0,05	0,0484	0,0516	0,0482	0,0518
			0,1	0,0984	0,1016	0,0982	0,1018
			0,5	0,4984	0,5016	0,4982	0,5018
от 0 до 2	В	$\pm 0,1/\pm 0,11$	1	0,9984	1,0016	0,9982	1,0018
			1,5	1,4984	1,5016	1,4982	1,5018
			1,9	1,8984	1,9016	1,8982	1,9018
			2	1,9984	2,0016	1,9982	2,0018

Изм	Лист	N докум.	Подпись	Дата

Продолжен	ис таолі	Пределы			Пописан	20 011011	
		допускае-	Значение		Допускаем		
Диапазон		мой при-	напряжения,		ния при уро		
измерений	Ед. изм.	ведённой погрешно-	подаваемое с	Без резервирования и/или БИЗ		С резервированием и/или БИЗ	
			калибратора	и/или виз			
		сти, %		Имин.		Имин.	Имакс.
			0,1	0,096	0,104	0,096	0,104
			0,25	0,246	0,254	0,246	0,254
			1,25	1,246	1,254	1,246	1,254
от 0 до 5	В	$\pm 0,1/\pm 0,11$	2,5	2,496	2,504	2,496	2,504
	*		3,75	3,746	3,754	3,746	3,754
			4,75	4,746	4,754	4,746	4,754
			5	4,996	5,004	4,996	5,004
			0,1	0,092	0,108	0,091	0,109
		±0,1/±0,11	0,5	0,492	0,508	0,491	0,509
			2,5	2,492	2,508	2,491	2,509
от 0 до 10	В		5	4,992	5,008	4,991	5,009
			7,5	7,492	7,508	7,491	7,509
			9,5	9,492	9,508	9,491	9,509
			10	9,992	10,008	9,991	10,009
			1	0,96	1,04	0,96	1,04
			2,5	2,46	2,54	2,46	2,54
			12,5	12,46	12,54	12,46	12,54
от 0 до 50	мВ	±0,1/±0,11	25	24,96	25,04	24,96	25,04
			37,5	37,46	37,54	37,46	37,54
			47,5	47,46	47,54	47,46	47,54
			50	49,96	50,04	49,96	50,04
			2,5	2,38	2,62	2,37	2,63
			7,5	7,38	7,62	7,37	7,63
0			37,5	37,38	37,62	37,37	37,63
от 0 до	мВ	$\pm 0,1/\pm 0,11$		74,88	75,12	74,87	75,13
150			112,5	112,38	112,62	112,37	112,63
			142,5	142,38	142,62	142,37	142,63
			150	149,88	150,12	149,8	150,13
			5	4,6	5,4	4,6	5,4
			25	24,6	25,4	24,6	25,4
0			125	124,6	125,4	124,6	125,4
от 0 до	мВ	$\pm 0,1/\pm 0,11$	250	249,6	250,4	249,6	250,4
500		, ,	375	374,6	375,4	374,6	375,4
			475	474,6	475,4	474,6	475,4
			500	499,6	500,4	499,6	500,4
			10	9,2	10,8	9,1	10,9
			50	49,2	50,8	49,1	50,9
			250	249,2	250,8	249,1	250,9
от 0 до	мВ	$\pm 0,1/\pm 0,11$	500	499,2	500,8	499,1	500,9
1000	1,112	_0,1,_0,11	750	749,2	750,8	749,1	750,9
			950	949,2	950,8	949,1	950,9
			1000	999,2	1000,8	999,1	1000,9

Изм	Лист	N докум.	Подпись	Дата

Контроллеры признаются годными, если для всех каналов измерений напряжения постоянного тока и во всех проверочных точках выполняется неравенство: Uмин. < Uизм. < Uмакс.

4.3.2 Проверка метрологических характеристик каналов измерений силы постоянного тока

Проверку проводят для каналов:

- с резервированием или без резервирования;
- с барьерами искрозащиты (БИЗ) или без барьеров искрозащиты (БИЗ).

Проверку проводят путем измерений значений силы постоянного тока, подаваемых с калибратора. Порядок проведения проверки следующий:

- на нижней плате модуля с помощью 8 джамперов перед включением модуля необходимо сделать переключения на режим измерения тока для всех 8 каналов в соответствии с руководством по эксплуатации на модули DevLink-A10;
- установить DIP-переключатели, расположенные на верхней плате модуля в режим «INIT»;
- собрать схему соединений при настройке модулей ввода/вывода DevLink-A10 согласно рисунку А.1 приложения А;
- включить компьютер и загрузить программу *DevLink Utility*, выбрать СОМ-порт, к которому подключен модуль;
 - включить питание модуля;
 - установить в окне программы DevLink Utility режим «INIT»;
- нажать кнопку «Поиск модулей» в окне программы DevLink Utility и найти модуль в сети;
 - открыть окно «Поверка»;
- выбрать соответствующий тип канала и диапазона измерений для всех каналов в соответствии с описанием типа;
 - собрать схему согласно рисунку А.2.1 или рисунку А.2.2 приложения А;
- на вход «1» проверяемого модуля DevLink-A10 подать значение силы тока в соответствии с таблицей 3 для соответствующего диапазона измерений;
- зафиксировать измеренное модулем значение Іизм. по показаниям на экране персонального компьютера.

Далее соответствующий канал модуля проверяется в соответствии с изложенной методикой во всех остальных точках.

Таблица 3

Диапазон	Пределы допускае-	Значение силы тока, подавае-	Допускаемое значение тока при уровне бракования 0,8, мА				
измере- ний, мА		мое с калибра-	Без резервиро БИ		С резервированием и/или БИЗ		
		мА	Імин.	Імакс.	Імин.	Імакс.	
		-20	-20,032	-19,968	-20,035	-19,965	
		-10	-10,032	-9,968	-10,035	-9,965	
20 ==		-5	-5,032	-4,968	-5,035	-4,965	
от –20 до +20	$\pm 0,1/\pm 0,11$	0	-0,032	0,032	-0,035	0,035	
+20		5	4,968	5,032	4,965	5,035	
		10	9,968	10,032	9,965	10,035	
		20	19,968	20,032	19,965	20,035	

						Лисп
Изм	Лист	N докум.	Подпись	Дата	ЖАЯК.420000.002 МП	9

Диапазон	Пределы допускае-	Значение силы тока, подавае-	Допускаемое значение тока при уровне бракования 0,8, мА				
измере- ний, мА	мой при-	мое с калибра-		ования и/или ИЗ		С резервированием и/или БИЗ	
	погрешно- сти, %	мА	Імин.	Імакс.	Імин.	Імакс.	
	±0,1/±0,11	0,5	0,484	0,516	0,482	0,518	
		3	2,984	3,016	2,982	3,018	
		6	5,984	6,016	5,982	6,018	
от 0 до 20		9	8,984	9,016	8,982	9,018	
		12	11,984	12,016	11,982	12,018	
		15	14,984	15,016	14,982	15,018	
		20	19,984	20,016	19,982	20,018	
		4	3,9872	4,0128	3,9859	4,0352	
		6,5	6,4872	6,5128	6,4648	6,5352	
		9	8,9872	9,0128	8,9648	9,0352	
от 4 до 20	$\pm 0,1/\pm 0,11$	11,5	11,4872	11,5128	11,4648	11,5352	
		14	13,9872	14,0128	13,9648	14,0352	
		17	16,9872	17,0128	16,9648	17,0352	
		20	19,9872	20,0128	19,9648	20,0352	

Контроллеры признаются годными, если для всех каналов измерений силы постоянного тока и во всех проверочных точках выполняется неравенство: Імин. < Іизм. < Імакс

4.3.3 Проверка метрологических характеристик каналов измерений температуры с помощью внешних термопар, нормируемые статические характеристики преобразования которых регламентированы ГОСТ Р 8.585-2001

Проверку проводят для каналов:

- с резервированием или без резервирования;
- с барьерами искрозащиты (БИЗ) или без барьеров искрозащиты (БИЗ).

Проверку проводят путем измерений значений напряжения постоянного тока, подаваемых от калибратора. Порядок проведения проверки следующий:

- на нижней плате модуля с помощью 8 джамперов перед включением модуля необходимо сделать переключения на режим измерения напряжения для всех 8 каналов в соответствии с руководством по эксплуатации на модули DevLink-A10;
- установить DIP-переключатели, расположенные на верхней плате модуля в режим «INIT»:
- собрать схему соединений при настройке модулей ввода/вывода DevLink-A10 согласно рисунку А.1 приложения А;
- включить компьютер и загрузить программу *DevLink Utility*, выбрать СОМ-порт, к которому подключен модуль;
 - включить питание модуля;
 - установить в окне программы DevLink Utility режим «INIT».
- нажать кнопку «Поиск модулей» в окне программы DevLink Utility и найти модуль в сети;
 - открыть окно «Поверка»;
- выбрать соответствующий тип канала и диапазона измерений для всех каналов в соответствии с описанием типа;

				ЖАЯК.420000.002 МП Дата	Лист	
					ЖАЯК.420000.002 МП	10
Изм	Лист	N докум.	Подпись	Дата		10

- собрать схему измерений согласно рисунку А.2.1 или рисунку А.2.2 приложения А;
- провести настройку компенсации температуры холодного спая в соответствии с руководством по эксплуатации модуля ввода/вывода DevLink-A10. В процессе проведения проверки необходимо контролировать температуру холодного спая. Её значение должно измениться (рекомендуемо) не более, чем на ±0,2°C;
- на вход «1» проверяемого модуля DevLink-A10 подать значение напряжения в соответствии с таблицей 4 для соответствующего диапазона измерений температуры и типа термопары;
- зафиксировать измеренное модулем значение Тизм. по показаниям на экране персонального компьютера.

Далее соответствующий канал модуля проверяется в соответствии с изложенной методикой во всех остальных точках.

Таблица 4

Тип	Диапазон	Пределы допускае- мой абсо-	Значение напряжения,	Допускаемое значение температуры при уровне бракования 0,8. °C			
термопа- ры	измере- ний, °С	лютной погрешно-	подаваемое с калибратора, мВ		вирования и БИЗ	С резервированием и/или БИЗ	
		сти, °С	MD	Тмин.	Тмакс.	Тмин.	Тмакс.
			-6,690	-200,8	-199,2	-200,9	-199,1
			-5,142	-128,3	-126,7	-128,4	-126,6
	от -200 до		5,842	161,7	163,3	161,8	163,4
К	+1300	±1/±1,1	20,912	524,2	525,8	524,3	525,9
	+1300		36,027	886,7	888,3	886,8	888,4
			47,215	1176,7	1178,3	1176,8	1178,4
			49,846	1249,2	1250,8	1249,3	1250,9
	от –200 до +800	±1/±1,1	-10,777	-200,8	-199,2	-200,9	-199,1
			-9,119	-150,8	-149,2	-150,9	-149,1
			2,016	49,2	50,8	49,3	50,9
L			21,550	299,2	300,8	299,3	300,9
			43,411	549,2	550,8	549,3	550,9
			60,911	749,2	750,8	749,3	750,9
			65,180	799,2	800,8	799,3	800,9
			-0,348	-51,6	-48,4	-51,7	-48,3
			0,106	35,9	39,1	36,0	39,2
	om 50 ma		3,027	385,9	389,1	386,0	389,2
S	от -50 до +1700	±2/±2,2	7,505	823,4	826,6	823,5	826,7
	+1700		12,598	1261,4	1264,6	1261,5	1264,7
			16,818	1611,4	1614,6	1611,5	1614,7
			17,834	1698,4	1701,6	1698,5	1701,7
			-0,338	-51,6	-48,4	-51,7	-48,3
			0,106	35,9	39,1	36,0	39,2
	om 50 m		3,167	385,9	389,1	386,0	389,2
R	от -50 до +1700	±2/±2,2	8,148	823,4	826,6	823,5	826,7
	+1700		13,997	1261,4	1264,6	1261,5	1264,7
			18,918	1611,4	1614,6	1611,5	1614,7
			20,111	1698,4	1701,6	1698,5	1701,7

Изм	Лист	N докум.	Подпись	Дата

Продолже	ение таблиі	цы 4					
Тип	Диапазон	Пределы допускае- мой абсо-	Значение напряжения,	Допускаемое значение температуры при уровне бракования 0,8, °C			
термопа- ры	измере- ний, °С	лютной погрешно-	подаваемое с калибратора, мВ		вирования БИЗ	С резервированием и/или БИЗ	
		сти, °С	MD	Тмин.	Тмакс.	Тмин.	Тмакс.
			0,433	298,4	301,6	298,5	301,7
			0,672	368,4	371,6	368,5	371,7
	om 1200 ma		2,103	648,4	651,6	648,5	651,7
В	от +300 до +1700	±2/±2,2	4,837	998,4	1001,6	998,5	1001,7
	+1700		8,400	1348,4	1351,6	1348,5	1351,7
			11,617	1628,4	1631,6	1628,5	1631,7
			12,435	1698,4	1701,6	1698,5	1701,7
			-0,246	-2,4	2,4	-2,5	2,5
	от 0 до +2300	±3/±3,3	1,274	110,1	114,9	110,2	115,0
			8,725	560,1	564,9	560,2	565,0
A-1			17,790	1122,6	1127,4	1122,7	1127,5
			25,426	1685,6	1690,4	1685,7	1690,5
			30,311	2135,6	2140,4	2135,7	2140,5
			31,343	2247,6	2252,4	2247,7	2252,5
			-8,910	-200,8	-199,2	-200,9	-199,3
			-6,820	-130,8	-129,2	-130,9	-129,3
	200		6,991	149,2	150,8	149,3	150,9
J	от -200 до +1200	±1/±1,1	26,373	499,2	500,8	499,3	500,9
	+1200		47,696	849,2	850,8	849,3	850,9
			64,506	1129,2	1130,8	1129,3	1130,9
			68,534	1199,2	1200,8	1199,3	1200,9
			-4,516	-200,8	-199,2	-200,9	-199,3
			-3,427	-125,8	-124,2	-125,9	-124,3
	or 200 ro		4,573	174,2	175,8	174,3	175,9
N	от –200 до +1300	±1/±1,1	18,147	549,2	550,8	549,3	550,9
	+1300		32,821	924,2	925,8	924,3	925,9
			44,248	1224,2	1225,8	1224,3	1225,9
			46,988	1299,2	1300,8	1299,3	1300,9

Контроллеры признаются годными, если для всех каналов измерений температуры с помощью внешних термопар, нормируемые статические характеристики преобразования которых регламентированы ГОСТ Р 8.585-2001, и во всех проверочных точках выполняется неравенство: Тмин. < Тизм. < Тмакс.

4.3.4 Проверка метрологических характеристик каналов измерений электрического сопротивления

Проверку проводят для каналов:

- с резервированием или без резервирования;
- с барьерами искрозащиты (БИЗ) или без барьеров искрозащиты (БИЗ).

Проверку проводят путем измерений значений электрического сопротивления, подаваемых с магазина сопротивления. Порядок проведения проверки следующий:

– установить DIP-переключатели, расположенные на верхней плате модуля в режим «INIT»;

						Ли	Пист
					ЖАЯК.420000.002 МП	10	2
Изм	Лист	N докум.	Подпись	Дата		12	2

- собрать схему соединений при настройке модулей ввода/вывода DevLink-A10 согласно рисунку A.1 приложения A;
- включить компьютер и загрузить программу DevLink Utility, выбрать СОМ-порт, к которому подключен модуль;
 - включить питание модуля;
 - установить в окне программы DevLink Utility режим «INIT»;
- нажать кнопку «Поиск модулей» в окне программы DevLink Utility и найти модуль в сети;
 - открыть окно «Поверка»;
- выбрать соответствующий тип канала и диапазона измерений для всех каналов в соответствии с описанием типа;
 - собрать схему измерений согласно рисунку А.2.1 или рисунку А.2.2 приложения А;
- на вход «1» проверяемого модуля DevLink-A10 подать значение сопротивления согласно таблице 5 для соответствующего диапазона измерений;
- зафиксировать измеренное модулем значение Rизм. по показаниям на экране персонального компьютера;

Далее соответствующий канал модуля проверяется в соответствии с изложенной методикой во всех остальных точках.

Таблица 5

Пианарам	Пределы допускае-	Значение сопро-	сопротивл	Допускаем ения при уро			
Диапазон измере- ний, Ом	мой при- веденной	тивления, подава- емое с магазина сопротивления,	Без резер	вирования и БИЗ	С резерв	С резервированием и/или БИЗ	
,	погрешно-	Ом	Р МИН.	Rмакс.	К мин.	Rмакс.	
		1	0,92	1,08	0,91	1,09	
		5	4,92	5,08	4,91	5,09	
От 0 до		25	24,92	25,08	24,91	25,09	
100	±0,1/±0,11	50	49,92	50,08	49,91	50,09	
		75	74,92	75,08	74,91	75,09	
		95	94,92	95,08	94,91	95,09	
		100	99,92	100,08	99,91	100,09	
	±0,1/±0,11	1	0,8	1,2	0,8	1,2	
		12,5	12,2	12,8	12,3	12,7	
0 70		62,5	62,2	62,8	62,3	62,7	
От 0 до 250		125	124,8	125,8	124,8	125,2	
230		187,5	187,2	187,8	187,3	187,7	
		237,5	237,2	237,8	237,3	237,7	
		250	249,8	250,2	249,8	250,2	
		1	0,6	1,4	0,6	1,4	
		25	24,6	25,4	24,6	25,4	
Om 0 ma		125	124,6	125,4	124,6	125,4	
От 0 до 500	$\pm 0,1/\pm 0,11$	250	249,6	250,4	249,6	250,4	
300		375	374,6	375,4	374,6	375,4	
		475	474,6	475,4	474,6	475,4	
		500	499,6	500,4	499,6	500,4	

Изм	Лист	N докум.	Подпись	Дата

Диапазон	Пределы допускае-	Значение сопротивления, подава-	Допускаемое значение сопротивления при уровне бракования 0,8, °С					
измере-	мой при- веденной погрешно- сти, Ом	емое с магазина		вирования и БИЗ	С резервированием и/или БИЗ			
ний, Ом		Ом	Р МИН.	Кмакс.	Р МИН.	Rмакс.		
	±0,1/±0,11	1	0,2	1,8	0,1	1,9		
		50	49,2	50,8	49,1	50,9		
00		250	249,2	250,8	249,1	250,9		
		450	449,2	450,8	449,1	450,9		
1000		650	649,2	650,8	649,1	650,9		
		850	849,2	850,8	849,1	850,9		
		1000	999,2	1000,8	999,1	1000,9		
		5	3,4	6,6	3,2	6,8		
		100	98,4	101,6	98,2	101,8		
0=0==		500	498,4	501,6	498,2	501,8		
От 0 до 2000	$\pm 0,1/\pm 0,11$	1000	998,4	1001,6	998,2	1001,8		
2000		1500	1498,4	1501,6	1498,2	1501,8		
		1900	1898,4	1901,6	1898,2	1901,8		
		2000	1998,4	2001,6	1998,2	2001,8		

Контроллеры признаются годными, если для всех каналов измерений электрического сопротивления и во всех проверочных точках выполняется неравенство: Rмин. < Rизм. < Rмакс

4.3.5 Проверка метрологических характеристик каналов измерений температуры с помощью внешних термометров сопротивлений, нормируемые статические характеристики которых регламентированы ГОСТ 6651-2009

Проверку проводят для каналов:

- с резервированием или без резервирования;
- с барьерами искрозащиты (БИЗ) или без барьеров искрозащиты (БИЗ).

Проверку проводят путем измерений значений электрического сопротивления, подаваемых с магазина сопротивления. Порядок проведения проверки следующий:

- установить DIP-переключатели, расположенные на верхней плате модуля в режим «INIT»:
- собрать схему соединений при настройке модулей ввода/вывода DevLink-A10 согласно рисунку А.1 приложения А;
- включить компьютер и загрузить программу *DevLink Utility*, выбрать СОМ-порт, к которому подключен модуль;
 - включить питание модуля;
 - установить в окне программы DevLink Utility режим «INIT»;
- нажать кнопку «Поиск модулей» в окне программы DevLink Utility и найти модуль в сети:
 - открыть окно «Поверка»;
- выбрать соответствующий тип канала и диапазона измерений для всех каналов в соответствии с описанием типа;
 - собрать схему измерений согласно рисунку А.2.1 или рисунку А.2.2 приложения А;
- на вход «1» проверяемого модуля DevLink-A10 подать значение сопротивления согласно таблице 6 для соответствующего диапазона измерений;

						Лист
					ЖАЯК.420000.002 МП	1.4
Изм	Лист	N докум.	Подпись	Дата		14

 зафиксировать измеренное модулем значение температуры Тизм. по показаниям на экране персонального компьютера.

Далее соответствующий канал модуля поверяется в соответствии с изложенной методикой во всех остальных проверочных точках.

Таблица 6

таолица С								
		Пределы	Значение со-		Допускаем	ое значени	e	
Тип тер-	Диапазон	допускае-	противления,	температ	уры при ур	овне брако	вания 0,8	
мометра	измере-	мой абсо-	подаваемое с °С			C		
сопро-	ний, °С	лютной по-	магазина со-	1 1	вирования	С резервированием		
гивления	iiiii, C		противления,			и/или БИЗ		
		°C	Ом	Тмин.	Тмакс.	Тмин.	Тмакс.	
			10,495	-179,20	-178,80	-179,28	-178,72	
			23,825	-120,20	-119,80	-120,28	-119,72	
	от -180		37,050	-60,20	-59,80	-60,28	-59,72	
50M	до +200	$\pm 0,25/\pm 0,28$	50,000	-0,20	0,20	-0,28	0,28	
	до +200		62,840	59,80	60,20	59,72	60,28	
			75,680	119,80	120,20	119,72	120,28	
			92,585	198,80	199,20	198,72	199,28	
		1	20,99	-179,20	-178,80	-179,28	-178,72	
			47,65	-120,20	-119,80	-120,28	-119,72	
1 () () ()	100	±0,25/±0,28	74,10	-60,20	-59,80	-60,28	-59,72	
	от –180 до +200		100,00	-0,20	0,20	-0,28	0,28	
			125,68	59,80	60,20	59,72	60,28	
			151,36	119,80	120,20	119,72	120,28	
			185,17	198,80	199,20	198,72	199,28	
		±1/±1,1	9,475	-199,8	-198,2	-199,9	-198,1	
			19,860	-150,8	-149,2	-150,9	-149,1	
	от -200		61,620	59,2	60,8	59,1	60,9	
Pt 50			109,575	319,2	320,8	319,1	320,9	
	до +850		153,625	579,2	580,8	579,1	580,9	
			187,850	799,2	800,8	799,1	800,9	
			195,095	848,2	849,8	848,1	849,9	
			18,95	-199,8	-198,2	-199,9	-198,1	
			39,72	-150,8	-149,2	-150,9	-149,1	
			123,24	59,2	60,8	59,1	60,9	
Pt 100	от -200	±1/±1,1	219,15	319,2	320,8	319,1	320,9	
	до +850		307,25	579,2	580,8	579,1	580,9	
			375,7	799,2	800,8	799,1	800,9	
			390,19	848,2	849,8	848,1	849,9	
			94,75	-199,8	-198,2	-199,9	-198,1	
			198,60	-150,8	-149,2	-150,9	-149,1	
			616,20	59,2	60,8	59,1	60,9	
Pt 500	от -200	±1/±1,1	1095,75	319,2	320,8	319,1	320,9	
	до +850		1536,25	579,2	580,8	579,1	580,9	
			1878,50	799,2	800,8	799,1	800,9	
			1950,95	848,2	849,8	848,1	849,9	

Изм	Лист	N докум.	Подпись	Дата

продолже	ение таблиг	цы 4						
Тип		Пределы	Значение со-		Допускаем	ое значени	e	
термо-	Диапазон		противления,	температ		овне брако	вания 0,8,	
метра	измере-	мой абсо-	подаваемое с	°C		C		
сопро-	ний, °С	лютной	магазина со- Без резервирования		вирования	С резервированием		
тивления		погрешно-	противлений,	и/или БИЗ		и/или БИЗ		
тивления	ibrienna.		Ом	Тмин.	Тмакс.	Тмин.	Тмакс.	
			8,840	-199,8	-198,2	-199,9	-198,1	
			19,395	-150,8	-149,2	-150,9	-149,1	
	200		61,800	59,2	60,8	59,1	60,9	
50П	от -200 до +850	±1/±1,1	110,515	319,2	320,8	319,1	320,9	
	до +830		155,275	579,2	580,8	579,1	580,9	
			190,070	799,2	800,8	799,1	800,9	
			197,435	848,2	849,8	848,1	849,9	
		±1/±1,1	17,68	-199,8	-198,2	-199,9	-198,1	
			38,79	-150,8	-149,2	-150,9	-149,1	
	200		123,6	59,2	60,8	59,1	60,9	
100Π	от -200		221,03	319,2	320,8	319,1	320,9	
	до +850		310,55	579,2	580,8	579,1	580,9	
			380,14	799,2	800,8	799,1	800,9	
			394,87	848,2	849,8	848,1	849,9	
			69,92	-59,24	-58,76	-59,27	-58,73	
			75,17	-48,24	-47,76	-48,27	-47,73	
			100	-0,24	0,24	-0,27	0,27	
100H	от -60	$\pm 0,3/\pm 0,33$	135,41	59,76	60,24	59,73	60,27	
	до +180		175,95	119,76	120,24	119,73	120,27	
			214,82	69,76	70,24	69,73	70,27	
			222,36	178,76	179,24	178,73	179,27	
			349,6	-59,24	-58,76	-59,27	-58,73	
			375,85	-48,24	-47,76	-48,27	-47,73	
	(0		500	-0,24	0,24	-0,27	0,27	
500H	от -60	$\pm 0,3/\pm 0,33$	677,05	59,76	60,24	59,73	60,27	
	до +180		879,75	119,76	120,24	119,73	120,27	
			1074,1	69,76	70,24	69,73	70,27	
			1111,8	178,76	179,24	178,73	179,27	

Контроллеры признаются годными, если для всех каналов измерений температуры с помощью внешних термометров сопротивлений, нормируемые статические характеристики которых регламентированы ГОСТ 6651-2009, и во всех проверочных точках выполняется неравенство: Тмин. < Тизм. < Тмакс.

4.3.6 Проверка метрологических характеристик каналов воспроизведения напряжения постоянного тока

Проверку проводят для каналов:

- с резервированием или без резервирования;
- с барьерами искрозащиты (БИЗ) или без барьеров искрозащиты (БИЗ).

Проверку проводят путем измерений значений напряжения постоянного тока на выходе модуля, задаваемого по командам, подаваемым с персонального компьютера. Порядок проведения проверки следующий:

						Лист
					ЖАЯК.420000.002 МП	16
Изм	Лист	N докум.	Подпись	Дата		10

- установить DIP-переключатели, расположенные на верхней плате модуля в режим «INIT»:
- собрать схему соединений при настройке модулей ввода/вывода DevLink-A10 согласно рисунку A.1 приложения A;
- включить компьютер и загрузить программу *DevLink Utility*, выбрать СОМ-порт, к которому подключен модуль;
 - включить питание;
 - установить в окне программы DevLink Utility режим «INIT»;
- нажать кнопку «Поиск модулей» в окне программы DevLink Utility и найти модуль в сети;
 - открыть окно «Поверка»;
- выбрать соответствующий тип канала и диапазона измерений для всех каналов в соответствии с описанием типа;
 - собрать схему измерений согласно рисунку А.3.1 или рисунку А.3.2 приложения А;
- на персональном компьютере установить значение напряжения постоянного тока для первой точки согласно таблице 7 и подтвердить подачу напряжения нажатием кнопки «Enter».
 На выходных клеммах 1-го канала модуля с помощью мультиметра измерить значение напряжения Uизм.

Далее соответствующий канал модуля проверяется в соответствии с изложенной методикой во всех остальных точках.

Таблица 7

Диапазон	Пределы допускае-	Значение воспроизводимо-	напражения при уповне бракования () X R					
воспроиз-	мои при-	го напряже-	Без резервире БИ	ования и/или 13	С резервированием и/или БИЗ			
		В	Имин.	Имакс.	Шмин.	Имакс.		
	±0,1/±0,11	0,15	0,146	0,154	0,146	0,154		
		0,25	0,246	0,254	0,246	0,254		
		1,25	1,246	1,254	1,246	1,254		
от 0 до 5		2,5	2,496	2,504	2,496	2,504		
		3,75	3,746	3,754	3,746	3,754		
		4,75	4,746	4,754	4,746	4,754		
		5	4,996	5,004	4,996	5,004		
		0,1	0,092	0,108	0,091	0,109		
		0,5	0,492	0,508	0,491	0,509		
		2,5	2,492	2,508	2,491	2,509		
от 0 до 10	$\pm 0,1/\pm 0,11$	5	4,992	5,008	4,991	5,009		
		7,5	7,492	7,508	7,491	7,509		
		9,5	9,492	9,508	9,491	9,509		
		10	9,992	10,008	9,991	10,009		

Контроллеры признаются годными, если для всех каналов воспроизведения напряжения постоянного тока и во всех проверочных точках выполняется неравенство: Uмин. < Uизм. < Uмакс.

4.3.7 Проверка метрологических характеристик каналов воспроизведения силы постоянного тока

Проверку проводят для каналов:

- с резервированием или без резервирования;

						Лист
					ЖАЯК.420000.002 МП	17
Изм	Лист	N докум.	Подпись	Дата		17

- с барьерами искрозащиты (БИЗ) или без барьеров искрозащиты (БИЗ).

Проверку проводят путем измерений значений силы постоянного тока на выходе модуля, задаваемого по командам, подаваемым с персонального компьютера. Порядок проведения проверки следующий:

- установить DIP-переключатели, расположенные на верхней плате модуля в режим «INIT»;
- собрать схему соединений при настройке модулей ввода/вывода DevLink-A10 согласно рисунку A.1 приложения A;
- включить компьютер и загрузить программу *DevLink Utility*, выбрать СОМ-порт, к которому подключен модуль;
 - включить питание;
 - установить в окне программы DevLink Utility режим «INIT»;
- нажать кнопку «Поиск модулей» в окне программы *DevLink Utility* и найти модуль в сети;
 - открыть окно «Поверка»;
- выбрать соответствующий тип канала и диапазона измерений для всех каналов в соответствии с описанием типа;
 - собрать схему измерений согласно рисунку А.3.1 или рисунку А.3.2 приложения А;
- на персональном компьютере установить значение силы постоянного тока для первой точки согласно таблице 7 и подтвердить подачу напряжения нажатием кнопки «Enter». На выходных клеммах 1-го канала модуля с помощью мультиметра измерить значение силы тока Іизм.

Далее соответствующий канал модуля проверяется в соответствии с изложенной методикой во всех остальных точках.

Таблица 8

Диапазон	Пределы допускае-	Значение вос-	Допускаемое значение силы тока при уровне бракования 0,8, мА					
воспроиз- ведения, мА	мой при-	производимой силы тока,	Без резервиро БИ	ования и/или 13	С резервированием и/или БИЗ			
MA	погрешно- сти, %	мА	Імин.	Імакс.	Імин.	Імакс.		
		0,1	0,084	0,116	0,082	0,118		
		1	0,984	1,016	0,982	1,018		
		5	4,984	5,016	4,982	5,018		
От 0 до 20	$\pm 0,1/\pm 0,11$	10	9,984	10,016	9,982	10,018		
		15	14,984	15,016	14,982	15,018		
		19	18,984	19,016	18,982	19,018		
		20	19,984	20,016	19,982	20,018		
		4,1	4,087	4,113	4,086	4,114		
		4,8	4,787	4,813	4,786	4,814		
		8	7,987	8,013	7,986	8,014		
От 4 до 20	$\pm 0,1/\pm 0,11$	12	11,987	12,013	11,986	12,014		
		16	15,987	16,013	15,986	16,014		
		19,2	19,187	19,213	19,186	19,214		
		20	19,987	20,013	19,986	20,014		

Контроллеры признаются годными, если для всех каналов воспроизведения силы постоянного тока и во всех проверочных точках выполняется неравенство: Імин. < Іизм. < Імакс.

					ЖАЯК.420000.002 МП	Лист
					ЖАЯК.420000.002 МП	1.0
Изм	Лист	N докум.	Подпись	Дата	The Committee of the Co	18

4.3.8 Проверка метрологических характеристик измерительных каналов счета импульсов

Проверку проводят путем измерений количества импульсов, подаваемых с калибратора. Порядок проведения проверки следующий:

- собрать схему соединений при настройке модулей ввода/вывода DevLink-A10 согласно рисунку А.4.1 или рисунку А.4.2 приложения А;
- включить компьютер и загрузить программу *DevLink Utility*, выбрать СОМ-порт, к которому подключен модуль;
 - включить питание модуля;
 - установить в окне программы DevLink Utility режим «INIT»;
- нажать кнопку «Поиск модулей» в окне программы DevLink Utility и найти модуль в сети;
 - открыть вкладку «Счетчики»;
 - включить счетчик и обнулить значения для всех проверяемых каналов;
 - подать с генератора 65535 импульсов с частотой 1000 Гц и амплитудой сигнала 24 В;
- по окончанию выдачи импульсов на экране персонального компьютера в окне программы DevLink Utility на вкладке «Счетчики» зафиксировать число подсчитанных импульсов.

Выполнить вышеуказанные операции по для всех проверяемых каналов.

Контроллеры признаются годными, если для всех каналов абсолютная погрешность измерений не превышает ± 1 импульс.

4.3.9 Проверка метрологических характеристик каналов измерений интервалов времени

В соответствии с руководством по эксплуатации на процессорный модуль DevLink подключить контроллер к компьютеру по сети Ethernet и войти во вкладку «Удаленная консоль», которая отображает дату и время.

Выполнить сличение показаний часов контроллера с показаниями радиочасов. Зафиксировать значения. Через 24 часа повторить сличение.

Контроллеры признаются годными, если значение абсолютной среднесуточной погрешности хода часов (текущего времени) без внешней синхронизации (в автономном режиме) не превышает ± 2 с.

5 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

На основании положительных результатов поверки оформляется свидетельство о поверке по форме приложения 1 к Порядку проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке, утвержденному Приказом Минпромторга от 2 июля 2015 г. № 1815.

Примечание – В случае если проведена поверка отдельных измерительных каналов из состава контроллера с положительными результатами, в свидетельстве о поверке контроллера обязательно должен быть приведен перечень этих измерительных каналов.

Знак поверки наносится на свидетельство о поверке.

По требованию потребителя может быть оформлен протокол поверки по форме, принятой в организации, проводившей поверку.

На основании отрицательных результатов поверки оформляется извещение о непригодности к применению по форме приложения 2 к Порядку проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке, утвержденному Приказом Минпромторга от 2 июля 2015 г. № 1815.

						Лист
					ЖАЯК.420000.002 МП	10
Изм	Лист	N докум.	Подпись	Дата		19

Приложение А (обязательное)

Схемы соединений для настройки и поверке контроллера DevLink

Рисунок А.1 – Схема соединений при настройке модулей ввода (вывода) DevLink-A10

Рисунок А.2.1 – Схема соединений при проверке каналов измерений напряжения, тока, сопротивления и температуры (процессорный модуль DevLink в составе с модулями ввода (вывода) DevLink-A10)

Рисунок A.2.2 – Схема соединений при проверке каналов измерений напряжения, тока, сопротивления и температуры

						Лист
					ЖАЯК.420000.002 МП	20
Изм	Лист	N докум.	Подпись	Дата		20

(при наличии только модулей ввода (вывода) DevLink-A10)

Рисунок A.3.1 – Схема соединений при проверке каналов выдачи тока и напряжения (процессорный модуль DevLink в составе с модулями ввода (вывода) DevLink-A10)

Рисунок А.3.2 – Схема соединений при проверке каналов выдачи тока и напряжения (при наличии только модулей ввода (вывода) DevLink-A10)

Рисунок A.4.1 – Схема соединений при проверке счёта импульсов (процессорный модуль DevLink в составе с модулями ввода (вывода) DevLink-A10)

						Лист
					ЖАЯК.420000.002 МП	21
Изм	Лист	N докум.	Подпись	Дата		21

Рисунок A.4.2 – Схема соединений при проверке счёта импульсов (при наличии только модулей ввода (вывода) DevLink-A10)

Примечания для рисунков Приложения А:

- 1) Для каналов измерений (воспроизведения) электрического напряжения и силы электрического постоянного тока с резервированием схему соединений выполнить в соответствии с руководством по эксплуатации на контроллер DevLink.
- Для каналов измерений (воспроизведения) электрического напряжения и силы электрического постоянного тока с барьерами искрозащиты подключение барьеров к контроллеру выполнить в соответствии с их эксплуатационной документацией.

							Лист 22
					ЖАЯК.420000.002 МП	-	
Изм	Лист	N докум.	Подпись	Дата			