УТВЕРЖДАЮ Заместитель директора по производственной метрологии ФГУП «ВНИИМС» Н.В. Иванникова ell 2020 г. Ween uap TG М.П.

СИСТЕМА АВТОМАТИЗИРОВАННАЯ ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ ДЛЯ ИСПЫТАНИЙ ВГТД СТЕНДА НО1205

Методика поверки

2020 г.

ПРИНЯТЫЕ СОКРАЩЕНИЯ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

АИИС	 система автоматизированная информационно-измерительная
ВП	- верхний предел диапазона измерений или нормированного
	значения измеряемого параметра
ВСУ	- вспомогательная силовая установка
ди	- диапазон измерений ИК, в пределах которого устанавлива-
	ются контрольные точки (меры), для которых определяются значе-
	ния метрологических характеристик, и в которых выполняется их
	оценка на соответствие нормированным пределам допускаемой по-
	грешности измерений
ИК	 измерительный канал (каналы)
ИФП	 индивидуальная функция преобразования (градуировочная
	характеристика)
КТ	- контрольная точка диапазона измерений (ДИ), в которой
	устанавливается (задается) номинальное действительное значение
	измеряемой величины, принимаемое за истинное, при проведении
	экспериментальных исследований поверяемого ИК
МΠ	– методика поверки
MX	 метрологические характеристики
НП	 нижний предел диапазона измерений
НΦП	 номинальная функция преобразования (градуировочная ха-
	рактеристика)
ПК	 персональный компьютер
ПО	 программное обеспечение
Ш	 первичный преобразователь (датчик)
СИ	 средства измерений
СП	 средства поверки (эталон) СИ или средства проверки техни-
	ческих характеристик СИ
СТО	 стендовое технологическое оборудование

ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая методика поверки (МП) разработана в соответствии с требованиями РМГ 51-2002, приказом Минпромторга № 1815 от 02.07.2015 г. и устанавливает порядок, методы и средства проведения первичной и периодических поверок измерительных каналов (ИК) системы автоматизированной информационно-измерительной для испытаний ВГТД стенда HO1205 (далее по тексту – система, АИИС), предназначенной для измерений параметров технологических процессов стендовых испытаний ВСУ на стенде АО «Уфимское моторостроительное объединение», г. Уфа.

АИИС является многоканальной измерительной системой, отнесенной в установленном порядке к средствам измерений, и подлежит государственному регулированию обеспечения единства измерений на всех этапах цикла, включая эксплуатацию.

Система включает в себя 12 типов ИК, предназначенных для измерений в различных диапазонах следующих физических величин:

ИК измерений физических величин, состоящих из первичного преобразователя измеряемой величины в электрические параметры и последующих измерений этих электрических параметров. К этой относятся:

ИК давления абсолютного, избыточного, и перепада давлений;

ИК температуры;

ИК расхода массового;

ИК виброускорения;

ИК частоты переменного тока;

ИК напряжения постоянного тока;

ИК напряжения переменного тока;

ИК силы постоянного тока;

ИК силы переменного тока.

ИК измерений физических величин, состоящих только из канала измерений электрических параметров, соответствующих значениям физического параметра, определяемого по градуировочной характеристике ПП. К этой группе относятся:

ИК напряжения постоянного тока, соответствующего значениям температуры в диапазоне преобразований первичных измерительных преобразователей термоэлектрического типа ХА (К);

ИК сопротивления постоянному току, соответствующего значениям температуры в диапазоне преобразований первичных измерительных преобразователей терморезистивного типа;

ИК частоты переменного тока, соответствующей частоте вращения ротора.

Структура АИИС приведена на схеме МБДА. 2432.0301.000 E1, а характеристики ИК указаны в таблицах приложения В настоящей МП.

Интервал между поверками - 1 год.

1 СПОСОБЫ ПОВЕРКИ И НОРМИРОВАНИЯ МХ

1.1 Способы поверки

Настоящая МП устанавливает комплектный и поэлементный способы поверки ИК.

1.2 Нормирование МХ

1.2.1 Номенклатура МХ ИК, определяемых по данной МП, установлена в соответствии с ГОСТ 8.009-84. Оценка и форма представления погрешностей – по МИ 1317-2004.

1.2.2Методы определения МХ ИК при поверке комплектным способом - для ИК по ГОСТ Р8.736-2011 и ОСТ 1 00487-83.

Нормирование поверки:

- количество КТ на ДИ ИК по МИ 2440-97;

- количество циклов измерений для каждого ИК не менее 3.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 Перечень операций поверки 2.1.1 Перечень операций, которые должны проводиться при поверке АИИС, приведен в Таблица 1.

	Номер	Проведение операции при			
Наименование операции	пункта документа по поверке	перви чн ой поверке	период иче- ской поверке		
1	2	3	4		
1 Внешний осмотр	8.1	+	+		
2 Опробование	8.2	+	+		
3 Определение метрологических ха- рактеристик ИК:		+	+		
3.1 Определение абсолютной погреш- ности измерений абсолютного атмо- сферного давления	8.4	+	+		
3.2 Определение приведенной к верх- нему пределу измерений (к ВП) по- грешности измерений избыточного давления жидкостей и газов, перепада давления	8.5	+	+		
3.3 Определение относительной и приведенной (к ВП) погрешности из- мерений температуры ПП терморези- стивного типа	8.6	+	+		
3.4 Определение относительной и приведенной (к ВП) погрешности из- мерений температуры ПП термоэлек- трического типа	8.7	+	+		
3.5 Определение относительной по- грешности измерений расхода массо- вого жидкостей	8.8	+	+		
3.6 Определение приведенной (к ВП) погрешности измерений виброускорения	8.9	+	+		
3.7 Определение приведенной к диа- пазону измерений (к ДИ) погрешно- сти измерений частоты переменного тока	8.10	+	+		
3.8 Определение приведенной (к ВП) погрешности измерений напряжения постоянного тока	8.11	+	+		
3.9 Определение приведенной (к ВП) погрешности измерений напряжения переменного тока	8.12	+	+		
3.10 Определение приведенной (к ВП) погрешности измерений силы посто- янного тока	8.13	+	+		

Таблица 1 – Перечень операций поверки

Продолжение таблицы 1

popolitic raomigu r			
3.11 Определение приведенной (к ВП)	8.14	+	- +
погрешности измерений силы пере-			
менного тока			
3.12 Определение приведенной (к ВП)	8.15	+	+
погрешности измерений напряжения			
постоянного тока, соответствующего			
значениям температуры в диапазоне			
преобразований первичных измери-			
тельных преобразователей термоэлек-			
трического типа ХА(К)			
3.13 Определение приведенной (к ВП)	8.16	+	+
погрешности измерений сопротивле-			
ния постоянному току, соответству-			
ющего значениям температуры в диа-			·
пазоне преобразований первичных			
измерительных преобразователей			
терморезистивного типа			
3.15 Определение приведенной (к ВП)	8.17	+	+
погрешности измерений частоты пе-			
ременного тока, соответствующей ча-			
стоте вращения ротора			
4. Оформление результатов поверки		+	+

Примечания:

1 Допускается сокращенная поверка АИИС, в соответствии с требованиями программ испытаний изделий, для измерительного контроля параметров которых она предназначена;

2 Допускается независимая поверка каждого ИК, в том числе после ремонта (в объеме первичной), с обязательным указанием об этом в свидетельстве о поверке АИИС.

Операции и последовательность выполнения работ для ИК, поверяемых комплектным способом 1

2.1.2 Поверку ИК, поверяемого комплектным способом 1, в целом выполнять в следующей последовательности:

- внешний осмотр ИК;
- подготовка системы и ПО к поверке;
- проверка работоспособности (опробование) ИК;
- экспериментальные исследования (сбор данных) ИК;

– определение МХ ИК. Для ИК с НФП определяется максимальная погрешность и ее составляющие. Для ИК с ИФП определяется новая градуировочная характеристика, максимальная погрешность и ее составляющие.

Операции и последовательность выполнения работ для ИК, поверяемых комплектным способом 2

2.1.3 Поверку ИК, поверяемого комплектным способом 2, в целом выполнять в следующей последовательности:

- внешний осмотр ИК;
- демонтаж и определение метрологических характеристик ПП;
- подготовка системы и ПО к определению МХ электрической части ИК;
- проверка работоспособности (опробование) электрической части ИК (без ПП);
- экспериментальные исследования (сбор данных) электрической части ИК;

- определение МХ электрической части ИК. Для ИК с НФП определяется максимальная погрешность и ее составляющие. Для ИК с ИФП определяется новая градуировочная характеристика, максимальная погрешность и ее составляющие;

определение метрологических характеристик всего ИК.

Операции и последовательность выполнения работ для ИК, поверяемых поэлементным способом

2.1.4 Поверку ИК, поверяемого поэлементным способом (включая ИК, с преобразователями, имеющими цифровой выход), выполнять в следующей последовательности:

внешний осмотр ИК;

 демонтаж измерительных компонентов в составе ИК, автономная поверка (определение и оценка МХ) каждого измерительного компонента. Работы по поверке (подготовка, проверка работоспособности, экспериментальные исследования) электрической части поверяемого ИК выполнять как для электрической части ИК при поверке ИК комплектным способом 2;

- оценка максимальной погрешности ИК по МХ измерительных компонентов;

монтаж измерительных компонентов и проверка работоспособности ИК.

З СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки использовать средства измерений и вспомогательное оборудование, приведенные в Таблица 2.

T	аб	лица	2 –	Πej	речень	сред	(CTB	пове	рки
---	----	------	-----	-----	--------	------	------	------	-----

Ссылка на номер раз- дела МП	Наименование и тип (условное обозначение) основных или вспомогательных СП, обозначение нормативного документа, регламентирующего технические требования, основные и (или) метрологические и характеристики СП
8.5; 8.6; 8.7; 8.10; 8.13; 8.14; 8.15; 8.16; 8.17	Калибратор процессов документирующий Fluke 753: — диапазон воспроизведения напряжения постоянного тока от минус 15 до 15 В, пределы допускаемой абсолютной погрешности воспроизведения напря- жения постоянного тока ±(0,0001·U+0,0005) В, где U – значение воспроизводи- мого напряжения, В;
	 диапазон воспроизведения сопротивления постоянному току от 0.001 до 10000 Ом, пределы допускаемой абсолютной погрешности воспроизведения сопротивления постоянному току ±(0,0001·R+0,01) Ом, где R – значение вос- производимого сопротивления, Ом; диапазон воспроизведения силы постоянного тока от минус 0,1 до 22 мА, пределы допускаемой абсолютной погрешности воспроизведения силы постоян- ного тока ±(0,0001·1+0,003) мА, где I – значение воспроизводимой силы тока, мА; диапазон воспроизведения частоты от минус 0,1 до 50000 Гц, пределы до- пускаемой абсолютной погрешности воспроизведения частоты ±(0,01÷5) Гц;
8.11; 8.12	Калибратор универсальный Н4-7: – диапазон воспроизведения напряжения переменного тока от минус 0,1 мкВ до 20 В (0,1 ÷ 1000) Гц, пределы допускаемой относительной погрешности ±(0, 005 ÷ 0,2) %;
8.9	Виброустановка калибровочная портативная модели 9100D: диапазон воспро- изводимых колебаний от 7 до 10000 Гц, диапазон воспроизведения вибро- ускорения от 0 до 196 м/с ² , пределы допускаемой относительной погрешности воспроизведения виброускорения ±3 %.

При проведении поверки допускается применять другие средства измерений, удовлетворяющие по точности и диапазону воспроизведения или измерений требованиям настоящей методики.

При поверке должны использоваться средства измерений утвержденных типов.

Используемые средства поверки должны быть поверены в соответствии с требованиями приказа Минпромторга России № 1815 от 02.07.2015 г. и иметь действующие свидетельства о поверке (знак поверки).

Средства поверки должны быть внесены в рабочее помещение не менее чем за 12 часов до начала поверки.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке допускаются лица, изучившие руководство по эксплуатации (РЭ) на систему и входящие в её состав аппаратные и программные средства, знающие принцип действия используемых средств измерений и прошедшие инструктаж по технике безопасности (первичный и на рабочем месте) в установленном в организации порядке.

К поверке допускаются лица, освоившие работу с используемыми средствами поверки, изучившие настоящую методику и имеющие достаточную квалификацию.

Лица, участвующие в поверке системы, должны проходить обучение и аттестацию по технике безопасности и производственной санитарии при работе в условиях её размещения.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и «ПОТ Р М-016-2001. РД 153-34.0-03.150-00. Межотраслевыми Правилами по охране труда (Правила безопасности) при эксплуатации электроустановок», ГОСТ 12.2.007.0-75, ГОСТ Р 12.1.019-2009, ГОСТ 12.2.091-2002 и требования безопасности, указанные в технической документации на применяемые эталоны и вспомогательное оборудование. Любые подключения приборов проводить только при отключенном напряжении питания системы.

Кроме того, необходимо соблюдать следующие требования:

 к работе по выполнению поверки (калибровки) допускаются лица не моложе 18 лет, прошедшие аттестацию по технике безопасности и промышленной санитарии, ознакомленные с эксплуатационной документацией на систему, с инструкцией по эксплуатации электрооборудования стенда и с настоящей методикой;

– электрооборудование стенда, а также электроизмерительные приборы, используемые в качестве средств поверки, должны быть заземлены, блоки питания должны иметь предохранители номинальной величины;

 работы по выполнению поверки АИИС должны проводиться по согласованию с лицами, ответственными за эксплуатацию испытательного стенда.

6 УСЛОВИЯ ПОВЕРКИ

6.1 Условия окружающей среды:	
- температура воздуха, °С	от 10 до 30;
- относительная влажность воздуха, %	
- атмосферное давление, кПа	от 96 до 106.
6.2 Питание АИИС:	
- напряжение питающей сети переменного тока, В	
- частота питающей сети. Ги	

Примечание – При выполнении поверок ИК АИИС условия окружающей среды для СП должны соответствовать требованиям, указанным в руководствах на их эксплуатацию.

7 ПОДГОТОВКА К ПОВЕРКЕ

При проведении поверки должны быть соблюдены следующие условия:

– подготовить АИИС к работе. Порядок подготовки ИК описан в Руководстве по эксплуатации МБДА. 2432.0301.000 РЭ.

– поверка производится с применением функции «Проверка» программы «Recorder». Интерфейс программы не требует специальных навыков поверителя (требуется лишь задать количество контрольных точек и значения сигналов в этих точках, а затем следовать указаниям программы). По окончании поверки формируется файл отчета в виде протокола поверки в формате документа .rtf. Форма протокола поверки приведена в Приложении Б.

7.1.1 Запустить программу управления комплексами MIC «Recorder». Появится основное окно программы, показанное на рисунке 1.

Рисунок 1 - Основное окно программы

Затем нажать на кнопку «Цифровой формуляр», выделенную на рисунке 1 красным цветом. Откроется окно цифровых формуляров, показанное на рисунке 2.

C . 12+00000	eli dopolycala	Базовая странная	Amaranitiesand	and the second second
	Adpet	Ci Distant	A Onecases	ОСТАНОВЛЕ
				Mit (1+(1-3-1) 100.0
	1			
	-			

Рисунок 2 - Окно программы «Цифровой формуляр»

7.1.2 Настроить программу управления комплексами MIC «Recorder», для чего выполнить следующие операции:

 в соответствии с пунктом 7.1.1 выделить в окне «Цифровой формуляр» ИК, подлежащий поверке;

открыть диалоговое окно «Свойства»;

– в открывшемся диалоговом окне «Настройка канала...», представленном на Рисунок 3, в разделе «Канальная ГХ» нажать кнопку 📧 «Калибровка канала»;

– в открывшемся диалоговом окне «Выбор типа градуировки...», представленном на Рисунок 4, выбрать в разделе «Произвести..», «поверку», «стандартная», нажать кнопку «Далее»;

астройка	санала MS-451-(mic23-	1- 1)		×
Параметр	ы Дополнительно Уст параметры	гавки		
Имя	MS-451-(mic23-1-1)		ед. Ги	- IV Asto
Адрес	тіс23-1-1 📄 Описан	ме		
Частота	onpoca 10.0	• Гц		
Нижний	0.0 Е	288000		<section-header> Авто</section-header>
Annapa IZ a 1	тная КХ b 0			
- Каналы 🔽 Муль	ная ГХ ли ГХ			
-0-	Балансировка нуля			Kan
Jonger St.	Настройка аппаратной	части		*
		ОК	Отмена	Применить

Рисунок 3 - Вид диалогового окна «Настройка канала...»

<u> </u>	Произвести
4	С градуировку/калибровку чувствительности
-Veba	С продолжение последней
	Стандартная
-	С корректирующая
	Опции Эта калибровка/проверка по умолчанию

Рисунок 4 – Вид диалогового окна «Выбор типа градуировки/калибровки/поверки (канальная)»

– в диалоговом окне «Параметры поверки (канальная)», представленном на Рисунок 5, установить следующие значения:

Свойства сигнала				Сонтр	ольные точки	1000
Минимум: 72	Максимум: 360	Ед. ИЗМ.: Л/ч	-	Nº	Значение	
Параметры испытания	и расчетов	Kaana anawé Ing	-	1	72 144	
Кол-во контрольных точ	ек: 5 📑	Колео порции: 10	-	3	216	
Длина порции:	1 🕂 🚮	Кол-во циклов: 1	±	5	360	
Обратный ход:	нет					
Тип оценки порции: Маг	гематическое ожидание	• (MO) 🔹				
Тип ГХ: Ли	нейная ((x) = a(x-b)	×				
Эталон						
задатчик сигнала:	Ручноя	<u>•</u>				
Измеритель сигнала:	Ручной	×				
N= Имя	Опис Ад	рес Модуль Серийнь	IĂ HOME			
1 MS-451-{mic23-1-	1) mi	c23 MS-451 0001				
			1			1000
•) L	орти	ровать нет	-
Шаблон		Sarry Trans	um [Опции управ	ления
		Sarpysure Coxpa			Пауза перед из	мерениен
	1 1.	- L -	1		-	Les Barr

Рисунок 5 – Вид диалогового окна «Параметры поверки (канальная)»

– в разделе «Свойства сигнала» в поле «Минимум» – значение нижнего предела диапазона измерений, в поле «Максимум» – значение верхнего предела диапазона измерений, в поле «Ед. изм» – единицы измерений поверяемого ИК; в разделе «Параметры поверки (канальная)» в поле «Количество контрольных точек» – выбранное количество точек: 5 или 6, в поле «Длина порции» – число, соответствующее «Количеству точек усреднения» (диалоговое окно «Настройка канала...» во вкладке «Дополнительно»), в поле «Количество порций» – заданное количество порций – 5, в поле «Количество циклов» – 1, в поле «Обратный ход» – нет, в поле «Тип оценки порции» – математическое ожидание;

– в разделе «Эталон» в поле «Задатчик сигнала» – ручной, в поле «Измеритель сигнала» – ручной;

 поле «Контрольные точки» заполняется автоматически с равномерным распределением контрольных точек по диапазону измерений, включая начало и конец диапазона, но в случае необходимости значения контрольных точек следует отредактировать. Для запуска процесса поверки необходимо нажать кнопку «Поверка»;

Из диалогового окна «Настройка завершена», вид которого представлен на Рисунок 5, нажав кнопку «Поверка», выйти в диалоговое окно «Измерение», вид которого представлен на Рисунок 5;

Настройка за	вершена
	Настройка параметров завершена. Далее будет произведено измерение (сбор данных).
Шаблон на	Строек
<< Ha	вад Проверка >>

Рисунок 6 - Вид диалогового окна «Настройка завершена»

змерение			×
Измерение			
Производится измере	ение: диапазон:-1 цикл№1, ко	0; 10, нтрольна	я точка №1.
Ручное измерение / у	становка сигнала		
Установите з	начение сигнала:	10	mB
НЕ МЕНЯЙТЕ 3 СЛ	ЭТАЛОННЫЙ УРО ЕДУЮЩЕГО ПРИГ	ВЕНЬ ДО ЛАШЕНИ	ПОЯВЛЕНИЯ Я!
Заданное зна	ачение сигнала:	10	mB
Измерение будет прои:	зведено через 4с.		
Отмена	<< Пред	ылишее	Следчющее >>
	1 1 1 1 1		

Рисунок 7 - Вид диалогового окна «Измерение»

Измерение заданного сигнала выполняется при нажатии кнопки «Следующее».

После измерений последней контрольной точки в диалоговом окне «Измерение завершено» нажать кнопку «Расчет», выйти в диалоговое окно «Обработка и просмотр измеренных данных» и, работая в диалоговом режиме, сформировать протокол поверки, внося данные в окно «Настройка параметров протокола», показанное на рисунке 8.

Для расчета приведенной к верхнему пределу диапазона измерений погрешности, поставить отметку напротив пункта «Приведенная погрешность» и на вкладке «Диапазон» выбрать пункт «Диапазон измерений».

После сохранения и просмотра протокола поверки завершить поверку и с помощью кнопки «ОК» выйти из диалогового окна «Настройка канала».

Иапка отчета ✓ Дата, время ✓ Информация о диапазоне Паименование эталона Наименование эталона:	 ✓ Информация о модуле ✓ Информация о канале ✓ Список контрольных точек
Шапка страницы Г Дата, время	Подвал страницы Г Номер страницы Г ФИО оператора: Иванов И.И.
Параметры формирования таблиц Сиденка нелинейности каналов Таблицы ГХ/КХ Отдельная таблица по каждому каналу Аатоматический формат чисел Количество знаков: 6	Приведенная погрешность Диапазон
Попусковый контроль Погрешность: произе онная	1 втечки по канали эталона Допустимое значение: 0.001 %
Шаблон настроек отчета	Загрузить Сохранить

Рисунок 8 – Окно «Настройка параметров протокола».

Протокол обработки результатов измерений формируется в виде файла и (или) выводится на печать принтером. Форма протокола приведена в Приложении Б.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

8.1.1 При выполнении внешнего осмотра должно быть установлено соответствие поверяемого ИК АИИС следующим требованиям:

комплектность ИК АИИС должна соответствовать формуляру;

– маркировка ИК АИИС должна соответствовать требованиям проектной и эксплуатационной документации;

– измерительные, вспомогательные и соединительные компоненты (кабельные разъемы, клеммные колодки и т. д.) ИК системы не должны иметь визуально определяемых внешних повреждений и должны быть надежно соединены и закреплены;

 соединительные линии (кабели, провода) не должны иметь повреждений изоляции и экранирования и должны быть надежно соединены с разъемами и клеммами;

 экранирование кабелей и проводов должно быть соединено между собой и с заземляющим контуром в соответствии с электрическими схемами.

8.1.2 Результаты внешнего осмотра считать удовлетворительными, если выполняются условия, изложенные в пункте 8.1.1. В противном случае поверка не проводится до устранения выявленных недостатков.

8.2 Опробование

8.2.1 Идентификация ПО

Для проверки наименования и версии метрологически значимого ПО выполнить следующие операции:

- запустить программу управления комплексами MIC «Recorder»;

 в открывшемся главном окне программы щелчком правой кнопки «мыши» по пиктограмме в левом верхнем углу открыть контекстное меню «О программе»;

- щелчком левой кнопки «мыши» открыть информационное окно программы.

Убедиться в соответствии характеристик в информационном окне программы Recorder, представленном на Рисунок, характеристикам программного обеспечения, приведенным ниже:

- наименование «MERA Recorder»;
- идентификационное наименование scales.dll;
- номер версии 1.0.0.8;
- цифровой идентификатор 24CBC163.

программе Мера Научно-производственное предприятие «МЕРА»	×
Rc Recorder	
Версия 3.0.7.1а WD v5.22 (сборка от 2012.02.13.12)	
Вычислительный модуль scales.dll вер: 1.0.0.8 ID: 24CBC163 www.nppmera.ru	
common@nppmera.ru Модули Закрыт	ь)

Рисунок 9 - Вид информационного окна программы «Recorder»

8.2.2 Для проверки работоспособности поверяемого ИК установить с помощью СП на входе в ИК значение измеряемого параметра равное по значению НП ДИ ИК в единицах измерений параметра.

Примечание — Вместо значения, равного НП ДИ ИК, допускается устанавливать значение, равное 1-ой КТ ДИ ИК.

ИК признается работоспособным, если отображается информация с действующими значениями измеряемых величин.

8.3 Определение метрологических характеристик ИК

8.3.1 Проверку проводить комплектным и (или) поэлементным способом.

8.4 Определение абсолютной погрешности измерений абсолютного атмосферного давления

8.4.1 Поверку ИК выполнить в 2 этапа комплектным способом:

1 этап – контроль (оценка) состояния и МХ ПП;

2 этап – поверку электрической части ИК с целью проверки функционирования.

– Для контроля (оценки) ПП, проверить внешний вид, наличие пломб и маркировку – ПП не должен иметь видимых внешних повреждений, пломбирование согласно сборочному чертежу, маркировка типа и номера ПП согласно паспорту.

– Проверить свидетельства о поверке (первичной или периодической). Свидетельство о поверке должно быть действующим, значение погрешности (относительно к ИЗ) ПП, указанное в свидетельстве, должно находиться в допускаемых пределах.

Примечание - В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данным ПП или его описанием типа.

Схема ИК абсолютного давления показана на Рисунке 10.

Рисунок 10 - Схема ИК абсолютного давления

– Поверку электрической части ИК абсолютного давления воздуха выполнить в следующей последовательности.

– Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и с ее помощью для ИК абсолютного давления воздуха проверить канал на функционирование. Показания в программе «Recorder» должны совпадать с показаниями на индикаторе барометра БРС-1М. Завершить работу программы.

 Барометры БРС-1М на выходе выдают сигнал в цифровом виде, который обрабатывается средствами ВТ. Электрическая часть канала в поверке не нуждается. Абсолютная погрешность измерительного канала равна абсолютной погрешности первичного преобразователя.

8.4.2 Результаты поверки ИК абсолютного давления воздуха считать положительными если:

 ПП поверен, имеет действующее свидетельство о поверке, максимальная основная и дополнительная погрешности измерений для заданных условий эксплуатации, не превышает ±67 Па;

– канал АИИС измерений абсолютного давления воздуха исправен, и его показания совпадают с показаниями на индикаторе барометра БРС-1М.

В противном случае система бракуется и направляется в ремонт.

8.5 Определение приведенной (к ВП) погрешности измерений избыточного давления жидкостей и газов, перепада давления

8.5.1 Поверку каждого ИК выполнить в 3 этапа поэлементным способом:

1 этап – контроль (оценка) состояния и МХ ПП;

 2 этап – поверку электрической части ИК с целью определения диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);

3 этап – определение и оценка максимальной погрешности ИК.

– Для контроля (оценки) ПП отсоединить его от электрической части ИК. Проверить внешний вид, наличие пломб и маркировку. ПП не должен иметь видимых внешних повреждений, опломбирование выполнено согласно сборочному чертежу, маркировка типа и номера ПП - согласно паспорту.

Проверить свидетельства о поверке (первичной или периодической). Свидетельство о поверке должно быть действующим, значение погрешности (относительно к ИЗ) ПП, указанное в свидетельстве, должно находиться в допускаемых пределах.

Примечание - В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данным ПП или данными из «Описания типа» ПП. Данное примечание распространяется на все ПП

– Поверку электрической части ИК измерений избыточного давления жидкостей и газов, перепада давления выполнить в следующей последовательности. Собрать схему поверки в соответствии с Рисунком 11, для чего на вход электрической части ИК, вместо ПП, подключить калибратор Fluke 753. Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и для всех ИК избыточного давления и перепада давления жидких и газообразных сред установить значения в соответствии с Таблицей 3.

Рисунок 11 - Схема поверки ИК избыточного давления, перепада давления жидких и газообразных сред

Таблица 3 – Контро	ольные точки измерений	і давления, пе	репада давления
--------------------	------------------------	----------------	-----------------

Наименование параметра ИК	Размерность	нп ди ик	ВП ДИ ИК	Количество КТ на ДИ ИК, п	Номинальные зна- чения тока в КТ, мА
1	2	3	4	5	6
Перепад статических давлений					
отбираемого воздуха на мерном	кПа	0	24,5	5	4; 8; 12; 16; 20
сопле					
(Параметр: ДРотб.)					
Перепад статических давле-					
нии перепускаемого воздуха	кПа	0	24,5	5	4; 8; 12; 16; 20
(Tanayamp: A Phan)					
Павление избыточное возлуха					
на наллув полшипника венти-	п.	0	245.2	5	
па паддув подшиника венти	кпа	0	245,2	2	4; 8; 12; 16; 20
(Параметр: Рвен.)					
Давление избыточное воздуха	-			-	
в редукторе	кПа	0	245,2	5	4; 8; 12; 16; 20
(Параметр: Рред.)					
Давление избыточное воздуха				and the second	
наддува лаоиринта привода	кПа	0	245,2	5	4; 8; 12; 16; 20
(Tananemn: P2c)					

продолжение таолицы 3					
Давление избыточное воздуха наддува лабиринта передней опоры компрессора (Параметр: Pn n)	кПа	0	245,2	5	4; 8; 12; 16; 20
Давление избыточное воздуха в суфлируемой задней полости опоры компрессора (Параметр: Рзпк)	кПа	0	245,2	5	4; 8; 12; 16; 20
Давление избыточное в мас- ляной полости корпуса опор (Параметр: Рко)	кПа	0	245,2	5	4; 8; 12; 16; 20
Перепад давлений масла на стендовом фильтре (Параметр: <i>ΔРм</i>)	кПа	0	245,2	5	4; 8; 12; 16; 20
Давление избыточное топлива на входе в двигатель (Параметр: Рвх.топл.)	кПа	0	392,3	5	4; 8; 12; 16; 20
Давление избыточное воздуха за клапаном перепуска (Параметр: Рзкп.)	кПа	-49,0	+392,3	5	5,333; 8,333; 11,333; 14,333; 17,333
Давление избыточное воздуха в улите регулятора воздуха РВ-6Б (Параметр: Рул.)	кПа	0	490,3	5	4; 7,333; 10,667; 13,0; 17,333
Давление избыточное воздуха на входе в трубу Вентури (Параметр: Р ^{вх.} вент.)	кПа	0	588,4	5	4; 8; 12; 16; 20
Давление избыточное воздуха в горле трубы Вентури (Параметр: Р ^{горло} вент.)	кПа	0	588,4	5	4; 8; 12; 16; 20
Давление избыточное воздуха за компрессором (Параметр: Р*к)	кПа	0	588,4	5	4; 8; 12; 16; 20
Давление избыточное воздуха в суфлируемой полости опо- ры турбины (Параметр: Ртурб.)	кПа	0	588,4	5	4; 8; 12; 16; 20
Давление избыточное полное отбираемого воздуха (Параметр: Р*отб.)	кПа	0	588,4	5	4; 8; 12; 16; 20
Давление избыточное отбира- емого воздуха перед мерным соплом (Параметр: Р ^{мс} отб.)	кПа	0	588,4	5	4; 8; 12; 16; 20
Давление избыточное пере- пускаемого воздуха перед мерным соплом (Параметр: Р ^{мс} пер.)	кПа	0	588,4	5	4; 8; 12; 16; 20
Давление избыточное (Параметр: Ppes1 Ppes5)	кПа	0	588,4	5	4; 8; 12; 16; 20

Продолжение таблицы 3

Давление избыточное воздуха за пусковым компрессором (Параметр: Рпк)	кПа	0	980,7	5	4; 8; 12; 16; 20
Давление избыточное топлива во втором пусковом коллек- торе (Параметр: Pm ² nyck.)	кПа	0	980,7	5	4; 8; 12; 16; 20
Давление избыточное масла на входе в двигатель (Параметр: Рм)	кПа	0	980,7	5	4; 8; 12; 16; 20
Давление избыточное масла перед стендовым фильтром дополнительной очистки мас- ла (Параметр: Рстф)	кПа	0	980,7	5	4; 8; 12; 16; 20
Давление избыточное топлива в основном коллекторе (Параметр: Рт осн.)	кПа	0	1471,0	5	4; 7,75; 11,5; 15,25; 19
Давление избыточное топлива в первом пусковом коллекто- ре (Параметр: Pm ¹ nyck.)	кПа	0	2451,7	5	4; 8; 12; 16; 20

– Используя программу «Recorder», поочередно для всех ИК избыточного давления перепада давления и относительной влажности жидких и газообразных сред, провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения тока в КТ исследуемого ДИ ИК устанавливать с помощью калибратора в единицах измерений постоянного тока, мА, в соответствии с Таблицей 3.

– После завершения сбора данных для каждого ИК с помощью программы «Recorder» в автоматическом или расчетном режиме определить максимальную приведенную к ВП погрешность измерений по формулам (1) и (4)

8.5.2 Результаты поверки ИК избыточного давления перепада давления жидких и газообразных сред считать положительными, если суммарное с ПП максимальное значение погрешности находится в допускаемых пределах:

±1,0 % от ВП для ИК: Рко, ∆Рм, Рвх.топл., Рпк, Рт2пуск., Рм, Рстф, Рт осн., Рт1пуск.;

±0,5 % от ВП для остальных ИК.

В противном случае система бракуется и направляется в ремонт.

8.6 Определение относительной и приведенной (к ВП) погрешности измерений температуры ПП терморезистивного типа

8.6.1 Поверку ИК выполнить в 3 этапа поэлементным способом:

1 этап – контроль (оценка) состояния и МХ ПП;

 2 этап – поверку электрической части ИК с целью определения диапазона измерений и погрешности измерений;

3 этап – определение и оценка максимальной погрешности ИК.

8.6.2 Для контроля (оценки) ПП отсоединить их от электрической части ИК.

– Проверить внешний вид, наличие пломб и маркировку – ПП не должен иметь видимых внешних повреждений, пломбирование, маркировка типа и номера ПП согласно паспорту (этикетке).

Для каждого ПП проверить наличие свидетельства о поверке.

 После контроля (оценки) состояния и МХ преобразователи температуры установить на штатное место, закрепить, подключить кабель соединения преобразователя с электрической частью ИК.

8.6.3 Поверку электрической части ИК температуры провести в следующей последовательности.

– Собрать схему поверки в соответствии с Рисунком 12, для чего на вход электрической части ИК, подключить калибратор Fluke 753.

– Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и для всех ИК напряжения переменного тока установить значения в соответствии с Таблицей 4.

 Используя программу «Recorder» поочередно для всех указанных в Таблице 4 ИК провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения сопротивления в КТ исследуемого ДИ ИК устанавливать с помощью калибратора Fluke 753 в омах в соответствии с Таблицей 4.

Рисунок 12 - Схема поверки ИК температуры с ПП терморезистивного типа

Таблица 4 – Контрольные точки измерений	температуры с ПП	терморезистивного типа
---	------------------	------------------------

Наименование ИК (измеряемо- го параметра)	Размерность	ни ди ик	вп ди ик	Количество КТ на ДИ ИК, п	Номи- нальные значения темпера- туры в КТ, <i>x_k</i>	Номиналь- ные значения сопротивле- ния на выхо- де ПП в КТ (Ом)
Температура воздуха на входе в двигатель (Параметр: th)	к	213	343	6	213; 243; 273; 303; 333; 343	76,33; 88,22; 100; 111,67; 123,24; 127,08
Температура топлива на входе в двигатель (Параметр: t ^{ex.} monл.)	°C	-40	+80	5	-40; -10; 20; 50; 80	84,27; 96,09; 107,79; 109,40; 130,90

После завершения сбора данных для каждого ИК с помощью программы «Recorder» в автоматическом или расчетном режиме определить максимальную относительную и приведенную в % к ВП ИК погрешность измерений, по формулам (1), (2) и (4). Результаты поверки ИК температуры, считать положительными, если максимальное значение, суммарной с первичным преобразователем, погрешности измерений ИК находится в допускаемых пределах:

±1.5 % от ВП для t^{ex.} топл;

±0.5 % от ИЗ для *tн*

В противном случае система бракуется и направляется в ремонт.

8.7 Определение приведенной (к ВП) погрешности измерений температуры ПП термоэлектрического типа

8.7.1 Поверку ИК выполнить в 3 этапа поэлементным способом:

1 этап – контроль (оценка) состояния и МХ ПП;

 2 этап – поверку электрической части ИК с целью определения диапазона измерений и погрешности измерений;

3 этап – определение и оценка максимальной погрешности ИК.

8.7.2 Для контроля (оценки) ПП отсоединить их от электрической части ИК.

 Проверить внешний вид, наличие пломб и маркировку – ПП не должен иметь видимых внешних повреждений, пломбирование, маркировка типа и номера ПП согласно паспорту (этикетке).

Для каждого ПП проверить наличие свидетельства о поверке.

 После контроля (оценки) состояния и МХ преобразователи температуры установить на штатное место, закрепить, подключить кабель соединения преобразователя с электрической частью ИК.

8.7.3 Поверку электрической части ИК температуры провести в следующей последовательности.

 Собрать схему поверки в соответствии с Рисунком 13, для чего на вход электрической части ИК, подключить калибратор Fluke 753.

– Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и для всех ИК напряжения переменного тока установить значения в соответствии с Таблицей 5.

 Используя программу «Recorder» поочередно для всех указанных в Таблице 5 ИК провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения частоты в КТ исследуемого ДИ ИК устанавливать с помощью калибратора Fluke 753 в милливольтах в соответствии с Таблицей 5.

Рисунок 13 - Схема поверки ИК температуры с ПП термоэлектрического типа

Наименование ИК (измеряемо- го параметра)	Размерность	нп ди ик	ВП ДИ ИК	Количество КТ на ДИ ИК, п	Номи- нальные значения темпера- туры в KT, x_k	Номиналь- ные значения напряжения на выходе ПП в КТ (мВ)
Температура отбираемого воз-					0; 60; 120;	0; 2,023; 4,096;
духа за заслонкой двигателя		0	300	6	180; 240;	6,138; 8,138;
(Параметр: t*отб)			1		300	10,153; 12,209
Температура отбираемого воз-					0; 60; 120;	0; 2,023; 4,096;
духа перед мерным соплом	°C	0	300	6	180; 240;	6,138; 8,138;
(Параметр: t ^{мс} отб)					300	10,153; 12,209
Температура перепускаемого	1 [0; 60; 120;	0; 2,023; 4,096;
воздуха перед мерным соплом		0	300	6	180; 240;	6,138; 8,138;
(Параметр: t ^{мс} пер)					300	10,153; 12,209

Таблица 5 – Контрольные точки измерений температуры с ПП термоэлектрического типа

После завершения сбора данных для каждого ИК с помощью программы «Recorder» в автоматическом или расчетном режиме определить максимальную приведенную в % к ВП ИК погрешность измерений, по формулам (1) и (4).

Результаты поверки ИК температуры, считать положительными, если максимальное значение, суммарной с первичным преобразователем, погрешности измерений ИК находится в допускаемых пределах:

±1.0 % от ВП всех ИК

В противном случае система бракуется и направляется в ремонт.

8.8 Определение относительной погрешности измерений расхода массового жидкости

8.8.1 Поверку ИК выполнить в 2 этапа комплектным способом:

1 этап – контроль (оценка) состояния и МХ ПП;

 2 этап – поверку электрической части ИК с целью проверки функционирования.

– Для контроля (оценки) ПП, проверить внешний вид, наличие пломб и маркировку – ПП не должен иметь видимых внешних повреждений, пломбирование согласно сборочному чертежу, маркировка типа и номера ПП согласно паспорту.

 Проверить свидетельства о поверке (первичной или периодической). Свидетельство о поверке должно быть действующим, значение погрешности (относительно к ИЗ) ПП, указанное в свидетельстве, должно находиться в допускаемых пределах.

Примечание - В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данным ПП или его описанием типа.

Схема ИК абсолютного давления показана на рисунке 15.

Рисунок 14 - Схема ИК расхода массового

 Поверку электрической части ИК расхода массового выполнить в следующей последовательности.

 Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и с ее помощью для ИК расхода массового проверить канал на функционирование. Показания в программе «Recorder» должны совпадать с показаниями на индикаторе вторичного преобразователя массового расходомера. Завершить работу программы.

Вторичный преобразователь массового расходомера на выходе выдает сигнал в цифровом виде, который обрабатывается средствами ВТ. Электрическая часть канала в поверке не нуждается. Относительная погрешность измерительного канала равна относительной погрешности первичного преобразователя.

8.8.2 Результаты поверки ИК расхода массового считать положительными если:

 ПП поверен, имеет действующее свидетельство о поверке, максимальная основная и дополнительная относительная погрешности измерений для заданных условий эксплуатации, не превышает ±0,7 % от ИЗ для ИК: Gтопл.

 канал АИИС измерений расхода массового исправен, и его показания совпадают с показаниями на индикаторе вторичного преобразователя массового расходомера.

В противном случае система бракуется и направляется в ремонт.

8.9 Определение приведенной (к ВП) погрешности измерений виброускорения

8.9.1 Поверку каждого ИК выполнить в 2 этапа комплектным способом:

 – 1 этап – поверку электрической части ИК с целью определение диапазона измерений и МХ (погрешности измерений);

2 этап – определение и оценка максимальной погрешности ИК.

8.9.2 Собрать схему поверки в соответствии с Рисунком 15, для чего закрепить датчик виброускорения на рабочей площадке виброустановки калибровочной портативной модели 9100D.

– Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder».

Используя программу «Recorder» поочередно для всех указанных в Таблице 6 ИК провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения частоты в КТ исследуемого ДИ ИК устанавливать для каждого значения частоты и виброскорости с помощью виброустановки калибровочной портативной модели 9100D, в соответствии с Таблицей 6.

Рисунок 15 - Схема поверки ИК виброускорения

Наименование ИК (измеряемого пара- метра)	Размерность	нп ди ик	вп ди ик	Коли- чество КТ на ДИ ИК, n	Номиналь- ные значения виброуско- рения в КТ, (g)	Номиналь- ные значения виброуско- рения в КТ, (м/c ²)
Виброускорение (Параметры: g1g7)	g	0	10	5	0; 2,5; 5; 7,5; 10	0; 24,52; 49,05; 73,58; 98,10
Частота	Гц	385	415	5	385; 391; 397;	403; 409; 415

Таблица 6 – Контрольные точки измерений виброускорения

– После завершения сбора данных для каждого ИК с помощью программы «Recorder» определить максимальную погрешность измерений γ, приведенную в % к ВП ИК по формулам (1) и (4).

8.9.3 Результаты поверки ИК виброускорения считать положительными, если относительная погрешность для каждого ИК находится в допускаемых пределах ±12 %.

В противном случае система бракуется и направляется в ремонт.

8.10 Определение приведенной (к ДИ) погрешности измерений частоты переменного тока

8.10.1 Поверку каждого ИК выполнить в 2 этапа комплектным способом:

 – 1 этап – поверку электрической части ИК с целью определение диапазона измерений и МХ (погрешности измерений);

2 этап – определение и оценка максимальной погрешности ИК.

8.10.2 Поверку электрической части ИК частоты переменного трехфазного тока провести в следующей последовательности.

– Собрать схему поверки в соответствии с рисунком 16, для чего на вход электрической части ИК, подключить калибратор Fluke 753. – Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и для ИК частоты переменного тока установить значения в соответствии с таблицей 7.

– Используя программу «Recorder» провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения частоты в КТ исследуемого ДИ ИК устанавливать с помощью калибратора Fluke 753 в Гц в соответствии с таблицей 7.

Рисунок 16 - Схема поверки ИК частоты переменного тока

Наименование ИК (измеряемо- го параметра)	Размерность	нп ди ик	вп ди ик	Количество КТ на ДИ ИК, п	Номинальные значения частоты в КТ, x_k
Частота переменного тока (Параметр: f)	Гц	380	480	5	380; 405; 430; 455; 480

Таблица 7 – Контрольные точки измерений частоты переменного тока

После завершения сбора данных для ИК с помощью программы «Recorder» в автоматическом или расчетном режиме определить максимальную погрешность измерений у, приведенную в % к ДИ ИК по формулам (1) и (3).

8.10.3 Результаты поверки ИК частоты переменного тока, считать положительными, если максимальное значение, суммарной с первичным преобразователем, погрешности измерений для ИК частоты находится в допускаемых пределах ±1,5 % от ДИ.

В противном случае система бракуется и направляется в ремонт.

8.11 Определение приведенной (к ВП) погрешности измерений напряжения постоянного тока

8.11.1 Поверку каждого ИК выполнить в 2 этапа комплектным способом:

 – 1 этап – поверку электрической части ИК с целью определение диапазона измерений и МХ (погрешности измерений);

2 этап – определение и оценка максимальной погрешности ИК.

 Собрать схему поверки в соответствии с рисунком 17, для чего на вход ИК, подключить источник постоянного напряжения и калибратор в режиме измерений напряжения постоянного тока.

– Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и для всех ИК напряжения постоянного тока установить значения в соответствии с таблицей 8.

Используя программу «Recorder» поочередно для всех указанных в таблице 8 ИК провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения напряжения в КТ исследуемого ДИ ИК устанавливать с помощью калибратора в вольтах в соответствии с таблицей 8. Места подключения указаны в Приложении В.

Рисунок 17 - Схема поверки ИК напряжения постоянного тока

Наименование ИК (измеряемого параметра)	Размерность	нп ди ик	ВП ДИ ИК	Количество КТ на ДИ ИК, п	Номинальные значе- ния напряжения в КТ (В)
Напряжение постоянного тока на клеммах стартер-генератора (Параметр: Urc)	В	0	70	5	0; 15; 30; 45; 70

Таблица 8 – Контрольные точки измерений напряжения постоянного тока

 После завершения сбора данных для каждого ИК с помощью программы «Recorder» в автоматическом или расчетном режиме определить максимальную погрешность измерений у, приведенную в % к ВП ИК по формулам (1) и (4).

8.11.2 Результаты поверки ИК напряжения постоянного тока, считать положительными, если максимальное значение погрешности измерений для ИК находится в допускаемых пределах ±1,5 % от ВП.

В противном случае система бракуется и направляется в ремонт.

8.12 Определение приведенной (к ВП) погрешности измерений напряжения переменного тока

8.12.1 Поверку ИК выполнить в 3 этапа поэлементным способом:

1 этап – контроль (оценка) состояния и МХ ПП;

 2 этап – поверку электрической части ИК с целью определения диапазона измерений и погрешности измерений;

3 этап – определение и оценка максимальной погрешности ИК.

8.12.2 Для контроля (оценки) ПП отсоединить их от электрической части ИК.

 Проверить внешний вид, наличие пломб и маркировку – ПП не должен иметь видимых внешних повреждений, пломбирование, маркировка типа и номера ПП согласно паспорту (этикетке).

Для каждого ПП проверить наличие свидетельства о поверке.

 После контроля (оценки) состояния и МХ преобразователи напряжения установить на штатное место, закрепить, подключить кабель соединения преобразователя с электрической частью ИК.

 Собрать схему поверки в соответствии с рисунком 18Ошибка! Источник ссылки не найден., для чего на вход ИК, подключить калибратор в режиме воспроизведения напряжения переменного тока.

– Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и для всех ИК напряжения переменного тока установить значения в соответствии с таблицей 9.

– Используя программу «Recorder» поочередно для всех указанных в таблице 9 ИК провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения напряжения в КТ исследуемого ДИ ИК устанавливать с помощью калибратора в соответствии с таблицей 9.

Рисунок 18 - Схема поверки ИК напряжения переменного тока

Наименование ИК (измеряемого параметра)	Размерность	нп ди ик	вп ди ик	Количество КТ на ДИ ИК, п	Номинальные значе- ния напряжения в КТ (В)
Фазовое напряжение генератора пе- ременного тока (Параметр: U2m1 U2m3)	в	0	300	5	0; 1,5; 3; 4,5; 6

Таблица 9 – Контрольные точки измерений напряжения переменного тока

 После завершения сбора данных для каждого ИК с помощью программы «Recorder» в автоматическом или расчетном режиме определить максимальную погрешность измерений γ, приведенную в % к ВП ИК по формулам (1) и (4).

8.12.3 Результаты поверки ИК напряжения переменного тока, считать положительными, если максимальное значение погрешности измерений для ИК находится в допускаемых пределах ±2,5 % от ВП.

В противном случае система бракуется и направляется в ремонт.

8.13 Определение приведенной (к ВП) погрешности измерений силы постоянного тока

8.13.1 Поверку ИК выполнить в 3 этапа поэлементным способом:

1 этап – контроль (оценка) состояния и МХ ПП;

 2 этап – поверку электрической части ИК с целью определения диапазона измерений и погрешности измерений;

3 этап – определение и оценка максимальной погрешности ИК.

8.13.2 Для контроля (оценки) ПП отсоединить их от электрической части ИК.

– Проверить внешний вид, наличие пломб и маркировку – ПП не должен иметь видимых внешних повреждений, пломбирование, маркировка типа и номера ПП согласно паспорту (этикетке).

Для каждого ПП проверить наличие свидетельства о поверке.

– После контроля (оценки) состояния и МХ преобразователи тока установить на штатное место, закрепить, подключить кабель соединения преобразователя с электрической частью ИК.

 Собрать схему поверки в соответствии с рисунком 19, для чего на вход ИК, подключить калибратор в режиме воспроизведения напряжения постоянного тока.

– Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и для всех ИК напряжения постоянного тока установить значения в соответствии с таблицей 10.

– Используя программу «Recorder» поочередно для всех указанных в таблице 10 ИК провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения напряжения в КТ исследуемого ДИ ИК устанавливать с помощью калибратора величину напряжения в вольтах в соответствии с таблицей 10.

Рисунок 19 - Схема поверки ИК силы постоянного тока

Наименование ИК (измеряемо- го параметра)	Размерность	нп ди ик	ВП ДИ ИК	Количество КТ на ДИ ИК, п	Номинальные значения си- лы тока в КТ (А)	Номинальные значения напряжения в КТ (В)
Сила постоянного тока в цепях якоря стартер-генератора в стартерном режиме (Параметр: Ігсс)		0	2500	6	0; 500; 1000; 1500; 2000; 2500	0; 0,833; 1,667; 2,5; 3,334; 4,167
Сила постоянного тока в цепях якоря стартер-генератора в стартерном режиме (Параметр: Ігсг)	A	0	1500	5	0; 300; 600; 900; 1200; 1500	0; 1; 2; 3; 4; 5
Сила постоянного тока, потреб- ляемого пусковым компрессо- ром (Параметр: Іпк)		0	50	5	0; 12,5; 25; 37,5; 50	0; 0,5; 1; 1,5; 2

1аолица 10 – Контрольные точки измерении си	илы постоянного то	ка
---	--------------------	----

 После завершения сбора данных для каждого ИК с помощью программы «Recorder» в автоматическом или расчетном режиме определить максимальную погрешность измерений у, приведенную в % к ВП ИК по формулам (1) и (4).

8.13.3 Результаты поверки ИК силы постоянного тока, считать положительными, если максимальное значение погрешности измерений для ИК находится в допускаемых пределах ±1,5 % от ВП.

В противном случае система бракуется и направляется в ремонт.

8.14 Определение приведенной (к ВП) погрешности измерений силы переменного тока

8.14.1 Поверку ИК выполнить в 3 этапа поэлементным способом:

1 этап – контроль (оценка) состояния и МХ ПП;

 2 этап – поверку электрической части ИК с целью определения диапазона измерений и погрешности измерений;

3 этап – определение и оценка максимальной погрешности ИК.

8.14.2 Для контроля (оценки) ПП отсоединить их от электрической части ИК.

 Проверить внешний вид, наличие пломб и маркировку – ПП не должен иметь видимых внешних повреждений, пломбирование, маркировка типа и номера ПП согласно паспорту (этикетке).

Для каждого ПП проверить наличие свидетельства о поверке.

 После контроля (оценки) состояния и МХ преобразователи напряжения установить на штатное место, закрепить, подключить кабель соединения преобразователя с электрической частью ИК.

 Собрать схему поверки в соответствии с рисунком 20, для чего на вход ИК, подключить калибратор в режиме воспроизведения напряжения переменного тока.

– Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и для всех ИК силы переменного тока установить значения в соответствии с таблицей 11.

– Используя программу «Recorder» поочередно для всех указанных в таблице 11 ИК провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения напряжения в КТ исследуемого ДИ ИК устанавливать с помощью калибратора величину напряжения в вольтах в соответствии с таблицей 11.

Рисунок 20 - Схема поверки ИК силы переменного тока

Наименование ИК (изме- ряемого параметра)	Размерность	нп ди ик	ВП ДИ ИК	Количество КТ на ДИ ИК, п	Номинальные значения си- лы тока в КТ (А)	Номинальные значения напряжения в КТ (В)
Фазовый ток генератора переменного тока (Параметр: Ігт ₁ Ігт ₃)	A	0	400	5	0; 100; 200; 300; 400	0; 1; 2; 3; 4

Таблица 11 – Контрольные точки измерений силы переменного тока

 После завершения сбора данных для каждого ИК с помощью программы «Recorder» в автоматическом или расчетном режиме определить максимальную погрешность измерений у, приведенную в % к ВП ИК по формулам (1) и (4).

8.14.3 Результаты поверки ИК силы переменного тока, считать положительными, если максимальное значение погрешности измерений для ИК находится в допускаемых пределах ±2,5 % от ВП.

В противном случае система бракуется и направляется в ремонт.

8.15 Определение приведенной (к ВП) погрешности измерений напряжения постоянного тока, соответствующего значениям температуры в диапазоне преобразований первичных измерительных преобразователей термоэлектрического типа ХА (К)

8.15.1 Поверку каждого ИК выполнить в 2 этапа комплектным способом:

 – 1 этап – поверку ИК с целью определение диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);

2 этап – определение и оценка максимальной погрешности ИК.

8.15.2 Поверку ИК выполнить в следующей последовательности.

 Собрать схему поверки в соответствии с рисунком 21, для чего на вход электрической части ИК вместо ПП подключить калибратор Fluke 753 в режиме воспроизведения напряжения постоянного тока от 0 до 100 мВ. Места подключений указаны в таблице В1, Приложения В.

Рисунок 21 - Схема поверки ИК напряжения постоянного тока

– Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и с ее помощью для каждого ИК температуры газообразных сред с первичными преобразователями термоэлектрического типа установить значения в соответствии с Таблицей 12.

– Используя программу «Recorder» поочередно для ИК, указанных в Таблице 12, провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения напряжения в КТ исследуемого ДИ ИК установить с помощью калибратора напряжения постоянного тока (мВ).

Наименование ИК (измеряемого параметра)	Размер- ность	нп ди ик	вп ди ик	Количество КТ на ДИ ИК, п	Номинальные значения напря- жения в КТ, x_k
Напряжение постоянного тока, соответ- ствующее температуре газов перед тур- биной в диапазоне преобразований ПП термоэлектрического типа ХА (К) от 0 до 1300 °С (Параметры: t*21 t*218, tpe31 tpe35)	мВ	0	52,410	5	0; 12,209; 24,905; 37,326; 52,410
Напряжение постоянного тока, соот- ветствующее температуре газов за тур- биной в диапазоне преобразований ПП термоэлектрического типа ХА (К) от 0 до 800 °С (Параметр: t*m)	мВ	0	33,275	5	0; 8,138; 16,397; 24,905; 33,275

Таблица 12 - Контрольные точки измерений напряжения постоянного тока

 После завершения сбора данных с помощью программы «Recorder» в автоматическом или расчетном режиме для каждого ИК определить максимальную погрешность измерений у, приведенную в % к ВП по формулам (1) и (4).

8.15.3 Результаты поверки ИК напряжения постоянного тока, соответствующего значениям температуры считать положительными, если максимальное значение погрешности измерений находится в пределах ±1,0 % от ВП.

В противном случае система бракуется и направляется в ремонт.

8.16 Определение приведенной (к ВП) погрешности сопротивления постоянному току, соответствующего значениям температуры в диапазоне преобразований первичных измерительных преобразователей терморезистивного типа

8.16.1 Поверку каждого ИК выполнить в 2 этапа комплектным способом:

 – 1 этап – поверку ИК с целью определение диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);

2 этап – определение и оценка максимальной погрешности ИК.

8.16.2 Поверку электрической части ИК температуры провести в следующей последовательности.

– Собрать схему поверки в соответствии с Рисунком 22, для чего на вход электрической части ИК, подключить калибратор Fluke 753.

 Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и для всех ИК сопротивления установить значения в соответствии с Таблицей 13.

 Используя программу «Recorder» поочередно для всех указанных в Таблице 13 ИК провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения сопротивления в КТ исследуемого ДИ ИК устанавливать с помощью калибратора Fluke 753 в омах в соответствии с Таблицей 13.

Рисунок 22 - Схема поверки ИК сопротивления

Наименование ИК (измеряемо- го параметра)	Размерность	нп ди ик	ВП ДИ ИК	Количество КТ на ДИ ИК, п	Номи- нальные значения темпера- туры в КТ, x_k (° С)	Номиналь- ные значения сопротивле- ния на выхо- де ПП в КТ (Ом)
Сопротивление постоянному току, соответствующее темпе- ратуре в диапазоне от -40 до +150 ° С (Параметр: tм)		84,27	157,33	-	-40; 0; 50;	84,27; 100; 119,40; 138,51; 157,33
Сопротивление постоянному току, соответствующее темпе- ратуре в диапазоне от -40 до +150 ° С (Параметр: t _{м.бак})	Ом	74,22	149,65	5	100; 150	74,22; 90,1; 109,95; 129,8; 149,65

Таблица 13 – Контрольные точки ИК сопротивления

После завершения сбора данных для каждого ИК с помощью программы «Recorder» в автоматическом или расчетном режиме определить максимальную приведенную в % к ВП ИК погрешность измерений, по формулам (1) и (4).

Результаты поверки ИК сопротивления, считать положительными, если максимальное значение, суммарной с первичным преобразователем, погрешности измерений ИК находится в допускаемых пределах:

±1,5 % от ВП.

В противном случае система бракуется и направляется в ремонт.

8.17 Определение приведенной (к ВП) погрешности измерений частоты переменного тока, соответствующего значениям частоте вращения ротора

8.17.1 Поверку каждого ИК выполнить в 2 этапа комплектным способом:

 – 1 этап – поверку ИК с целью определение диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);

- 2 этап – определение и оценка максимальной погрешности ИК.

8.17.2 Поверку электрической части ИК температуры провести в следующей последовательности.

– Собрать схему поверки в соответствии с Рисунком 23, для чего на вход электрической части ИК, подключить калибратор Fluke 753.

– Включить питание АИИС и загрузить операционную систему Windows. Запустить программу «Recorder» и для всех ИК напряжения переменного тока установить значения в соответствии с Таблицей 14.

– Используя программу «Recorder» поочередно для всех указанных в Таблице 14 ИК провести работы по сбору данных для определения максимальной погрешности измерений. Номинальные значения частоты в КТ исследуемого ДИ ИК устанавливать с помощью калибратора Fluke 753 в Гц в соответствии с Таблицей 14.

Рисунок 23 - Схема поверки ИК частоты

Наименование ИК (измеряемо- го параметра)	Размерность	нп ди иК	вп ди ик	Количество КТ на ДИ ИК, п	Номинальные значения частоты на входе ИК в КТ (Гц)
Частота переменного тока, со- ответствующая частоте враще- ния ротора ГВ в диапазоне от 2419 до 26909 об/мин (Параметр: n)	Гц	8,33	91,67	5	8,33; 29,17; 50; 70,84; 91,67

Таблица 13 –	Контрольные точки	ИК	частоты
--------------	-------------------	----	---------

После завершения сбора данных для каждого ИК с помощью программы «Recorder» в автоматическом или расчетном режиме определить максимальную приведенную в % к ВП ИК погрешность измерений, по формулам (1) и (4).

Результаты поверки ИК частоты, считать положительными, если максимальное значение, суммарной с первичным преобразователем, погрешности измерений ИК находится в допускаемых пределах:

±0,15 % от ВП

В противном случае система бракуется и направляется в ремонт.

9 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

9.1 Расчет характеристик погрешности

Значение абсолютной погрешности измерений в *j*-той точке определить по формуле:

$$\Delta A j = A j - A \mathfrak{I}, \tag{1}$$

где Аэ - значение физической величины, установленное рабочим эталоном.

9.2 Определение относительной погрешности

Значение относительной погрешности измерений в *j*-той точке определить по формуле:

$$\delta_j = \pm \frac{\Delta A_j}{|A_s|} \cdot 100 \% \tag{2}$$

9.3 Расчет значения приведенной (к ДИ) погрешности

Значения приведенной (к ДИ) погрешности измерений физической величины для каждой точки проверки определить по формуле:

$$\gamma_{j\mathcal{A}} = \frac{\Delta A_j}{\left|P_j - P_i\right|} \cdot 100 \%$$
(3)

где: *P_j* - значение верхнего предела измерений;

*Р*_{*i*}. значение нижнего предела измерений.

9.4 Расчет значений приведенной (к ВП) погрешности

Значения приведенной к верхнему пределу погрешности измерений физической величины для каждой точки проверки определить по формуле:

$$\gamma_{jB} = \frac{\Delta A_j}{|P_j|} \cdot 100 \%$$
⁽⁴⁾

9.5 Расчет среднего значений физической величины Среднее значение определяются по формуле:

$$A_C = \frac{\sum_{i=1}^n A_i}{n} \tag{5}$$

9.6 Расчет границ основной относительной погрешности канала измерений виброскорости

Границы основной относительной погрешности определяются по формуле:

$$\delta_{\rm B} = \pm 1.1 \sqrt{\delta_{\rm \exists T}^2 + \delta_A^2 + \delta_{\rm q}^2} \tag{6}$$

где бэт – доверительная погрешность поверочной виброустановки

10 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Результаты поверки заносятся в протокол поверки (Приложение А или Б).

При положительных результатах поверки оформляется свидетельство о поверке, на верхний левый угол дверцы стойки приборной наносится знак поверки в виде наклейки.

Примечание – в свидетельстве о поверке указывать, что оно действительно при наличии действующих свидетельств о поверке на ПП, входящих в ИК, поверяемых поэлементным способом.

При отрицательных результатах поверки оформляется извещение о непригодности к применению с указанием причин забракования.

Начальник отдела 201 ФГУП «ВНИИМС»

искасссоби.М. Каширкина С» Онт С.Н. Чурилов

Ведущий инженер отдела 201 ФГУП «ВНИИМС»

Приложение А (справочное) Форма протокола поверки при расчетном способе поверки

ПРОТОКОЛ

Результаты замеров поверяемых каналов АИИС стенда НО1205

Дата:, время	
Диапазон поверки:	
Обозначение канала:	
Количество циклов:	
Обратный ход:	
Наименование эталона:	зав. №
Температура окружающей среды:	РС, влажность:%

Таблица А1 – (наименование измеряемого параметра)

Наименование параметра	Значение параметра
Номинальные значения параметра	
Измеренные значения параметра	

Максимальное значение, (абсолютной, относительной, приведенной) погрешности канала:

Максимально допустимое значение погрешности канала:

Вывод:

Испытание провел(а) Ф И.О.

Приложение Б

(рекомендуемое)

Форма протокола поверки при автоматическом способе поверки

Протокол

поверки измерительного (ых) канала (ов) Системы Дата:_____, время_____: Диапазон поверки: Количество циклов: ___. Количество порций: ___ Размер порции: ___ Обратный ход: Наименование эталона____ Температура окружающей среды: ___, влажность: ___ измерено:_____

Список контрольных точек.

Версия ПО "Recorder":____ ПО "Калибровка" версия:

Точка №	1	2	3	4	5
Значение					
Точка №	6	7	8		n
Значение					

Каналы:

Ка	нал	Описание	Част. дискр., Гц
Канал М	101		
Канал М	<u>®</u> 2		

Сводная таблица.

Эталон,	Измерено модулем

Dm - оценка погрешности (максимум), Dr - относительная погрешность.

Канал №1

Эталон	Измерено	Dm	Dr %

Погрешность (максимальная) на всем диапазоне:_____ Приведенная погрешность:_____%. Во время проверки использовалась следующая калибровочная (аппаратная) функция: Таблица линейной интерполяции.

C DE		
The second		
(x)		
		and a second sec

Интерполяция за границами: есть.

Канал №2

Эталон	Измерено	Dm	Dr %

Погрешность (максимальная) на всем диапазоне: Приведенная погрешность: %.

Во время проверки использовалась следующая калибровочная (аппаратная) функция: Таблица линейной интерполяции.

and the second		
in the second		
(x)		

Интерполяция за границами: есть.

Сводная таблица погрешностей

De - приведенная погрешность, Dr - относительная погрешность.

Канал	De, %	Dr, %	
 Marcinina			
Максимум			

Допусковый контроль

Допустимое значение приведенной погрешности: ____%.

1000	Канал	SN	Результат

Поверку провел (а)_____

Приложение В *(справочное)* Места подключения эталонов при поверке отдельных измерительных каналов

N₂	Наименование канала	Обозначение канала	Название прибора, шкафа	Название разъ- ема, клеммника	№ контактов
1.	Частота переменного тока, соот- ветствующая частоте вращения ротора ГВ	n	Шкаф кроссовый	XT-162	+2B, -2H
2.		t*omб			+IN32, –IN32
3.	Температура, измеряемая ПИП термоэлектрического типа XA(K)	t ^{мс} отб			+IN33, –IN33
4.		t ^{мс} пер			+IN35, -IN35
5.		t*m			+IN31, -IN31
6.		t*21			+IN1, -IN1
7.		t*22			+IN2, –IN2
8.		t*23			+IN3, –IN3
9.	. #)	t*24			+IN4, -IN4
10.		t*25			+IN5, –IN5
11.		t*26			+IN6, –IN6
12.		t*27	1		+IN7, –IN7
13.		t*28]		+IN8, -IN8
14.	••	t*29]		+IN9, -IN9
15.	Напряжение постоянного тока,	t*210	MIC-140	-	+IN10, -IN10
16.	температуры газообразных сред	t*211	1		+IN11, -IN11
17.	в диапазоне преобразований	t*212	1		+IN12, -IN12
18.	ПИП термоэлектрического типа	t*213	1		+IN25, -IN25
19.	XA(K),	t*214	1		+IN26, -IN26
20.		t*215	1		+IN27, -IN27
21.		t*216	1		+IN28, -IN28
22.		t*217	1		+IN29, -IN29
23.	-	t*218			+IN30, -IN30
24.		t _{pe3} 1			+IN36, -IN36
25.		t _{pes} 2	1		+IN37, -IN37
26.		t _{pe3} 3	1		+IN38, -IN38
27.		t _{pes} 4	1		+IN39, -IN39
28.		tpe35	1		+IN40, -IN40
29.	Напряжение постоянного тока на клеммах стартер-генератора	Игс	Шкаф кроссовый	XT156	+1, -17

Таблица В1 – Места подключения эталонов

•

Продолжение Таблицы В1

30.	Сопротивление постоянному то- ку, соответствующее значениям	tм	Illrad	XT157	+15, -31
31.	температуры в диапазоне преобразований ПИП терморезистивного типа	t _{м.бак}	кроссовый	XT157	+13, -29