Федеральное агентство по техническому регулированию и метрологии УРАЛЬСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ -ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО УНИТАРНОГО ПРЕДПРИЯТИЯ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ ИМ.Д.И.МЕНДЕЛЕЕВА»

(УНИИМ – филиал ФГУП «ВНИИМ им.Д.И.Менделеева»)

Согласовано

Директор ФГБУН «ФИЦ питания и биотехнологии»

Пикитюк Д.Б.

Утверждаю

филиала Директор УНИИМ ФГУП «ВНИИМ им.Д.И.Менделеева»

Медведевских С.В.

2020 ...

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Измерители содержания полярных веществ testo 270

МЕТОДИКА ПОВЕРКИ МП 38-251-2019

> Екатеринбург 2020

ПРЕДИСЛОВИЕ

- 1 РАЗРАБОТАНА Уральский научно-исследовательский институт метрологии филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» (УНИИМ филиал ФГУП «ВНИИМ им. Д.И. Менделеева»), ФГБУН «ФИЦ питания и биотехнологии».
- 2 ИСПОЛНИТЕЛЬ и. о. зав. лаб. 251 Собина Е.П., ст.н.с. лаб. пищевых биотехнологий и специализированных продуктов Саркисян В.А.
- 3 УТВЕРЖДЕНА директором УНИИМ филиала ФГУП «ВНИИМ им.Д.И.Менделеева» в 2020 г.
- 4 СОГЛАСОВАНА директором ФГБУН «ФИЦ питания и биотехнологии» в 2020 г.

СОДЕРЖАНИЕ

1	Область применения	4
	Нормативные ссылки	
	Операции поверки	
	Средства поверки	
	Требования безопасности	
	Условия поверки и подготовки к ней	
7	Подготовка к поверке	
8	Проведение поверки	7
	Оформление результатов поверки	
	иложение А	
Пр	иложение Б	19

Государственная система обеспечения единства измерений. Измерители содержания полярных веществ testo 270 Методика поверки

МП 38-251-2019

Дата введения в действие:

1 Область применения

Настоящая методика поверки распространяется на измерители содержания полярных веществ testo 270 (далее – измерители) производства Testo SE & Co. KGaA, Германия. Измерители подлежат первичной (до ввода в эксплуатацию и после ремонта) и периодической поверке.

Поверка измерителей должна производиться в соответствии с требованиями настоящей методики.

Интервал между поверками – один год.

2 Нормативные ссылки

В настоящей методике поверки использованы ссылки на следующие документы:

ГОСТ 12.2.007.0–75 «Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности»

Приказ Минпромторга России от 02.07.2015 № 1815 «Об утверждении порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельств о поверке»

Приказ Минтруда России от 24.07.2013 N 328н «Об утверждении Правил по охране труда при эксплуатации электроустановок»

ГОСТ 1129-2013 «Масло подсолнечное. Технические условия»

ГОСТ ОІМL R 76-1-2011 «Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания»

ГОСТ 5583-78 «Кислород газообразный технический и медицинский. Технические условия»

ГОСТ 1770-74 «Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия»

ГОСТ 25336-82 «Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры»

ГОСТ 20015-88 «Хлороформ. Технические условия»

ТУ 6-02-1244-83 «Эфир петролейный. Технические условия»

ТУ 2631-158-44493179-13 с изм. 1 «Гексан. Технические условия»

ТУ 2600-001-43852015-10 «Эфир диэтиловый. Технические условия»

ГОСТ 61-75 «Реактивы. Кислота уксусная. Технические условия»

ТУ 6-09-3540-78 «Фосфорномолибденовая кислота водная. Технические условия»

ГОСТ 3769-78 «Реактивы. Аммоний сернокислый. Технические условия»

ГОСТ 4204-77 «Реактивы. Кислота серная. Технические условия»

ГОСТ Р 57251-2016 «Спирт этиловый технический. Правила приемки и методы анализа».

ГОСТ 29227-91 «Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования»

3 Операции поверки

3.1 При поверке должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Номер пункта ме-	Обязательность проведения операций при	
Наименование операции	тодики поверки	первичной поверке	периодической поверке
1 Внешний осмотр	9.1	да	да
2 Опробование	9.2	да	да
3 Проверка метрологических характеристик	9.3	да	да
3.1 Проверка абсолютной погрешности измерений массовой доли полярных веществ	9.3.1	да	да
3.2 Проверка диапазона измерений массовой доли полярных веществ	9.3.2	да	нет
3.3 Проверка абсолютной погрешности измерений температуры исследуемой среды	9.3.3	да	да
3.4 Проверка диапазона измерений температуры исследуемой среды	9.3.4	да	нет

- 3.2 В случае невыполнения требований хотя бы к одной из операций поверка прекращается, измеритель бракуется.
- 3.3 На основании письменного заявления владельца измерителя допускается проводить периодическую поверку для меньшего числа величин. Данную информацию приводят в свидетельстве о поверке.

4 Средства поверки

- 4.1 При проведении поверки применяют следующие средства поверки:
- ГСО 9437-2009 стандартный образец смеси триглицеридов жирных кислот, аттестованное значение массовой доли суммы триглицеридов жирных кислот не менее 99,0 %, границы допускаемых значений абсолютной погрешности аттестованного значения СО при P=0,95 составляют $\pm 0,4$ %;
- измеритель температуры двухканальный прецизионный МИТ 2.05: диапазон измерений температуры при подключении термометра сопротивления на 100 Ом от минус 200 до плюс 500 °C, пределы допускаемой абсолютной погрешности измерений температуры $\pm (0.004+10^{-5}\cdot t)$ °C), ФИФ № 29933-05;
- термометр сопротивления платиновый вибропрочный эталонный ПТСВ-3-3 (далее эталонный термометр): диапазон измерений температуры от минус 50 до плюс 500 °C, доверительная погрешность термометра в диапазоне от плюс 30 до плюс 150 °C составляет $\pm 0,03$ °C, в диапазоне от плюс 150 до плюс 230 °C составляет $\pm 0,04$ °C, ФИФ № 32777-06;
- термостат переливной прецизионный ТПП-1.0, диапазон воспроизведения температуры от плюс 40 до плюс 200 °C, нестабильность поддержания температуры не более ± 0.02 °C;

- весы неавтоматического действия по ГОСТ OIML R 76-1-2011 специального 1-го класса точности с наибольшим пределом взвешивания не более 220 г и дискретностью не более 0,0001 г;
- реактор окислительный испытательный Oxitest фирмы Velp Scientifica, Италия, диапазон температур от комнатной до 120 °C, диапазон давления от 0 до 0,8 МПа;
 - шприц Hamilton объемом 10 мм³, ФИФ № 63779-16;
- шкаф сушильный лабораторный, обеспечивающий нагрев до температуры плюс 200 °C и отклонение температуры от заданной \pm 1 °C;
- прибор для тонкослойной хроматографии с денситометром, относительное среднее квадратическое отклонение выходного сигнала не более 5%;
- центрифуга лабораторная Весhman J6, обеспечивающая скорость центрифугирования до 3000 об/мин.
- 4.2 Для контроля внешних влияющих факторов применяют средства измерений температуры и относительной влажности окружающей среды с диапазонами измерений, охватывающими условия по п. 7.
- 4.3 Средства измерений, применяемые для поверки, должны быть поверены, стандартные образцы должны иметь действующий паспорт, испытательное оборудование должно быть аттестовано.
- 4.4 Допускается применение других средств поверки, обеспечивающих требуемую точность и диапазоны измерений.

5 Требования к квалификации персонала

5.1 К проведению работ по поверке измерителей допускаются лица, прошедшие обучение в качестве поверителя, изучившие руководство по эксплуатации (далее – РЭ) на измерители и настоящую методику поверки.

6 Требования безопасности

При проведении поверки должны быть соблюдены требования Приказа Минтруда России от 24.07.2013 № 328н «Об утверждении Правил по охране труда при эксплуатации электроустановок», требования ГОСТ 12.2.007.0.

7 Условия поверки и подготовки к ней

- 7.1 При проведении поверки должны быть соблюдены следующие условия:
- температура окружающей среды, °С

от +15 до +25

- относительная влажность, %, не более

80

8 Подготовка к поверке

8.1 Перед проведением поверки необходимо измеритель подготовить к работе в соответствии с руководством по эксплуатации, поверочные образцы приготовить в соответствии с Приложением А настоящей методики поверки.

9 Проведение поверки

9.1 Внешний осмотр

При внешнем осмотре необходимо установить:

- отсутствие видимых повреждений;
- соответствие комплектности, указанной в РЭ;
- четкость обозначений и маркировки;
- при наклонах измерителя не должно быть посторонних внутренних шумов и стуков.
- 9.2 Опробование
- 9.2.1 Проверку работоспособности измерителя осуществляют при его включении в соответствии с РЭ: на дисплее измерителя должно отображаться значение измеренной температуры близкой к значению температуры окружающего воздуха в помещении.
 - 9.3 Проверка метрологических характеристик
- 9.3.1 Проверка абсолютной погрешности измерений массовой доли полярных веществ
- 9.3.1.1 Проверку абсолютной погрешности измерений массовой доли полярных веществ проводят с использованием не менее трех поверочных образцов, приготовленных в соответствии с Приложением А настоящей методики поверки. Проводят не менее 5 измерений массовой доли полярных веществ для каждого поверочного образца.

По результатам измерений для каждого измерения вычисляют абсолютную погрешность измерений массовой доли полярных веществ по формуле

$$\Delta_i = X_{ii} - A_i,\tag{1}$$

где X_{ij} - результат j-го измерения массовой доли полярных веществ i-го поверочного образца, %;

 A_i - значение массовой доли полярных веществ i-го поверочного образца, %.

Полученные значения абсолютной погрешности измерений массовой доли полярных веществ должны удовлетворять требованиям таблицы 2.

- 9.3.2 Проверка диапазона измерений массовой доли полярных веществ
- 9.3.2.1 Проверку диапазона измерений массовой доли полярных веществ проводят одновременно с определением абсолютной погрешности по п. 9.3.1 настоящей методики поверки.
- 9.3.2.2 За диапазон измерений массовой доли полярных веществ принимают диапазон, приведенный в таблице 2, если полученные по формуле (1) значения погрешностей удовлетворяют требованиям, указанным в таблице 2.
- 9.3.3 Проверка абсолютной погрешности измерений температуры исследуемой среды
- 9.3.3.1 Проверку абсолютной погрешности измерений температуры исследуемой среды проводят не менее чем в трех контрольных значениях, равномерно распределенных внутри диапазона измерений температуры, включая два крайних значения диапазона (или близких к ним).

- 9.3.3.2 Подготавливают термостат и эталонный термометр к работе согласно РЭ. Устанавливают температуру, соответствующую первому контрольному значению и дожидаются выхода термостата на установленный температурный режим.
- 9.3.3.3 Устанавливают в рабочую зону термостата эталонный термометр, подключенный к измерителю МИТ 2.05, и проверяемый зонд измерителя.
- 9.3.3.4 Через 10 минут производят три отсчета показаний эталонного термометра ($t_{\tiny 3mi}$) и измерителя ($t_{\tiny измi}$) с интервалом 10 секунд, среднее арифметическое значение рассчитывают по формулам:

$$\bar{t}_{uxm} = \frac{\sum t_{uxmi}}{n},\tag{2}$$

$$\bar{t}_{sm} = \frac{\sum t_{smi}}{n}.$$
 (3)

- 9.3.3.5 Повторяют измерения для остальных контрольных значений температуры.
- 9.3.3.6 По результатам измерений для каждой контрольной точки вычисляют абсолютную погрешность измерений температуры по формуле

$$\Delta_{t} = \overline{t}_{u_{2M}} - \overline{t}_{sm}. \tag{4}$$

Полученные значения абсолютной погрешности измерений температуры исследуемой среды должны удовлетворять требованиям таблицы 2.

- 9.3.4 Проверка диапазона измерений температуры исследуемой среды
- 9.3.4.1 Проверку диапазона измерений температуры проводят одновременно с определением абсолютной погрешности по п. 9.3.3 настоящей методики поверки.
- 9.3.4.2 За диапазон измерений температуры исследуемой среды принимают диапазон, приведенный в таблице 2, если полученные по формуле (4) значения погрешностей удовлетворяют требованиям, указанным в таблице 2.

Таблица 2 – Метрологические характеристики измерителей

Наименование характеристики	Значение
Диапазон измерений массовой доли полярных веществ, %	от 0 до 25
Пределы допускаемой абсолютной погрешности измерений массовой доли полярных веществ, %	± 4
Диапазон измерений температуры исследуемой среды, °С	от +40 до +200
Пределы допускаемой абсолютной погрешности измерений температуры исследуемой среды, °C	± 1,5

10 Оформление результатов поверки

- 10.1 Оформляют протокол проведения поверки, рекомендуемая форма протокола приведена в Приложении Б настоящей методики поверки.
- 10.2 При положительных результатах поверки измеритель признают пригодным к применению и выдают свидетельство о поверке согласно Приказа Минпромторга России от 02.07.2015 № 1815. Знак поверки наносится на свидетельство о поверке.
- 10.3 При отрицательных результатах поверки выдают извещение о непригодности согласно Приказа Минпромторга России от 02.07.2015 № 1815.

Разработчик:

К.х.н., и. о. зав. лаб. 251 УНИИМ – филиала ФГУП «ВНИИМ им.Д.И.Менделеева»

Ст.н.с. лаб. пищевых биотехнологий и специализированных продуктов ФГБУН «ФИЦ питания и биотехнологии»

Собина Е.П.

Саркисян В.А.

ПРИЛОЖЕНИЕ А

(обязательное)

Приготовление поверочных образцов

Поверочные образцы представляют собой масло подсолнечное рафинированное дезодорированное высшего сорта по ГОСТ 1129-2013 с известным значением массовой доли полярных веществ.

Поверочным образцом с массовой долей полярных веществ вблизи нижней точки диапазона измерений является масло подсолнечное по ГОСТ 1129-2013 с интервалом массовых долей полярных веществ от 3 до 10 %.

Процедура приготовления поверочного образца с массовой долей полярных веществ, соответствующих середине диапазона измерений в интервале значений от 10 до 18 % описана в п. А.3.

Процедура приготовления поверочного образца с массовой долей полярных веществ вблизи верхней точки диапазона измерений с интервалом массовых долей полярных веществ от 18 до 25 % описана в п.А.2.

- А.1 Реактивы, посуда и оборудование*:
- А.1.1 Масло подсолнечное рафинированное дезодорированное высшего сорта по ГОСТ 1129-2013;
- A.1.2 Реактор окислительный испытательный Oxitest фирмы Velp Scientifica, Италия, диапазон температур от комнатной до 120 °C, диапазон давления от 0 до 0,8 МПа;
- А.1.3 Весы неавтоматического действия по ГОСТ OIML R 76-1-2011 специального 1-го класса точности GR-202 фирмы A&D Co, LTD, Япония, наибольший предел взвешивания 210 г, наименьший предел взвешивания 0,01, дискретность 0,0001 г;
 - А.1.4 Кислород газообразный медицинский по ГОСТ 5583-78;
 - А.1.5 Колба мерная 2-25-2 по ГОСТ 1770-74;
 - А.1.6 Стаканы В-1-50 ТС по ГОСТ 25336-82;
 - А.1.7 Хлороформ очищенный высший сорт по ГОСТ 20015-88;
 - А.1.8 ГСО 9437-2009 стандартный образец смеси триглицеридов жирных кислот;
 - А.1.9 Шприц Hamilton объемом 10 мм³, ФИФ № 63779-16;
- A.1.10 Пластинки хроматографические алюминиевые, покрытые слоем силикагеля с размером частиц от 0,060 до 0,300 мм (от 60 меш до 230 меш) толщиной 0,25 мм, без флуоресцентного индикатора, размер пластинки не менее 150×100 мм;
- А.1.11 Камера хроматографическая, закрытая герметичной крышкой по ТУ 4320-012-29508133-2009, размеры камеры 215 мм \times 166 мм \times 90 мм, общий объем 1,5 л;
 - А.1.12 Стеклянные палочки;
 - А.1.13 Петролейный эфир по ТУ 6-02-1244-83, температура кипения от 40 до 70 °C;
 - А.1.14 Гексан по ТУ 2631-158-44493179-13 с изм. 1 квалификации хч;
 - А.1.15 Диэтиловый эфир по ТУ 2600-001-43852015-10 квалификации чда;
 - А.1.16 Кислота уксусная ледяная по ГОСТ 61-75 квалификации хч;
 - А.1.17 Фосфорномолибденовая кислота по ТУ 6-09-3540-78 квалификации чда;
 - А.1.18 Аммоний сернокислый по ГОСТ 3769-78 квалификации чда;
 - А.1.19 Кислота серная по ГОСТ 4204-77 квалификации чда;
 - А.1.20 Спирт этиловый технический по ГОСТ Р 57251-2016;

^{* -} допускается применение реактивов, посуды, средств измерений, стандартных образцов и испытательного и вспомогательного оборудования, отличных от приведенных, при условии обеспечения необходимой точности.

- А.1.21 Шкаф сушильный лабораторный, обеспечивающий нагрев до температуры 200 °C и отклонение температуры от заданной \pm 1 °C;
- А.1.22 Прибор для тонкослойной хроматографии с денситометром, относительное среднее квадратическое отклонение выходного сигнала не более 5%;
- А.1.23 Пипетки градуированные объемом 1 см 3 2-го класса точности по ГОСТ 29227-91;
- А.1.24 Пробирки полиэтиленовые центрифужные объемом 2 см³, 50 см³ с завинчивающимися крышками;
 - А.1.25 Колбы К-1-250-29/32 ТС ГОСТ 25336-82;
 - А.1.26 Метанол «сухой» по ТУ 20.14.22-018-29483781-2018;
 - А.1.27 Натрия метилат чистотой не менее 95 %;
 - А.1.28 Мешалка магнитная лабораторная с подогревом;
- А.1.29 Центрифуга лабораторная Bechman J6, обеспечивающая скорость центрифугирования до 3000 об/мин.
- А.2 Приготовление поверочного образца с массовой долей полярных веществ вблизи верхней точки диапазона измерений с интервалом массовых долей полярных веществ от 18 до 25 % можно осуществить двумя способами:
- А.2.1 Способ 1 заключается в окислении масла подсолнечного высшего сорта по ГОСТ 1129-2013 в замкнутой камере при избытке кислорода. Для этого в камеру реактора окислительного испытательного Oxitest помещают $(15,00\pm0,01)$ г масла, осуществляют нагрев и подачу кислорода при следующих условиях: температура 100 °C, давление кислорода 0,6 МПа. По истечении (60 ± 5) мин окисленное масло отбирают для измерений.
- А.2.2 Способ 2 заключается в проведении реакции метанолиза масла подсолнечного высшего сорта по ГОСТ 1129-2013. В коническую колбу вместимостью 250 см³ помещают навеску масла подсолнечного высшего сорта по ГОСТ 1129-2013, равную (180 \pm 0,5) г, закрывают крышкой и помещают на магнитную мешалку, перемешивают со скоростью от 300 до 400 об/мин и нагревают до (60 \pm 2) °C. Затем в колбу добавляют (4,5 \pm 0,1) г метанола, добавляют (0,90 \pm 0,01) г метилата натрия. Перемешивают смесь на магнитной мешалке в течение 1,5 ч, поддерживают температуру (60 \pm 2) °C. После этого колбу со смесью охлаждают под холодной водой для прекращения реакции метанолиза. Охлажденную смесь разливают в центрифужные пробирки объемом 50 см³ и центрифугируют в течение 15 мин со скоростью 3000 об/мин. После центрифугирования супернатант аккуратно отбирают пипеткой в чистую центрифужную пробирку. Масло подсолнечное после метанолиза содержит от 18 до 25 % полярных веществ, его используют для дальнейших измерений.
- А.3 Приготовление поверочного образца с массовой долей полярных веществ, соответствующих середине диапазона измерений в интервале значений от 10 до 18 %
- A.3.1 Навески масла по п.A.1.1 и поверочного образца, приготовленного по п.A.2, равные $(10,0\pm0,1)$ г взвешивают на весах с точностью до четвертого знака, помещают в стакан по п.A.1.6. и тщательно перемешивают стеклянной палочкой.

А.4 Приготовление растворов образцов

- A.4.1 Навеску поверочного образца, приготовленного в соответствии с п.А.2, равную (0.25 ± 0.1) г, взвешивают на весах с точностью до четвертого знака, помещают в мерную колбу объемом $25\ \text{cm}^3$, растворяют в хлороформе и доводят до метки, тщательно перемешивают.
- А.4.2 Навеску стандартного образца ГСО 9437-2009, равную (0.25 ± 0.1) г, взвешивают на весах с точностью до четвертого знака, помещают в мерную колбу объемом 25 см 3 , растворяют в хлороформе и доводят до метки. Массовую концентрацию триглицеридов жирных

кислот (неполярных веществ) в полученном растворе (раствор №1) C_{ICO_1} , мг/см³, вычисляют по формуле

$$C_{ICO_1} = \frac{m_{ICO} \cdot A_{ICO} \cdot 10}{V_{pacm}}, \tag{A.1}$$

где $m_{\Gamma CO}$ - навеска раствора стандартного образца по п.А.4.2, г;

 A_{ICO} - аттестованное значение массовой доли триглицеридов жирных кислот в стандартном образце Γ CO 9437-2009, %;

 V_{pacm} — объем раствора стандартного образца, приготовленного по п.А.4.2 (V_{pacm} = 25 см³).

А.4.3 0,5 см³ раствора №1, приготовленного по п.А.4.2, отбирают градуированной пипеткой объемом 1 см³ и помещают в центрифужную пробирку объемом 2 см³, добавляют 0,5 см³ хлороформа, тщательно перемешивают. Массовую концентрацию триглицеридов жирных кислот (неполярных веществ) в полученном растворе (раствор №2) C_{ICO_2} , мг/см³, рассчитывают по формуле

$$C_{ICO_2} = \frac{C_{ICO_1} \cdot V_{ICO_1}}{V_{pacm_2}}, \tag{A.2}$$

где $C_{\Gamma CO_1}$ - массовая концентрация триглицеридов жирных кислот (неполярных веществ) в растворе стандартного образца (раствор №1), приготовленного по п.А.4.2, мг/см³;

 V_{ICO_1} - объем раствора стандартного образца (раствора №1), приготовленного по п.А.4.2 и отобранного для приготовления раствора №2, ($V_{ICO_1} = 0.5 \text{ см}^3$);

$$V_{pacm_2}$$
 – объем раствора №2 ($V_{pacm_2} = 1 \text{ см}^3$).

А.4.4 0,5 см³ раствора №2 отбирают градуированной пипеткой объемом 1 см³ и помещают в центрифужную пробирку объемом 2 см³, добавляют 0,5 см³ хлороформа, тщательно перемешивают. Массовую концентрацию триглицеридов жирных кислот (неполярных веществ) в приготовленном растворе (раствор №3) C_{rco} , мг/см³, рассчитывают по формуле

$$C_{ICO_3} = \frac{C_{ICO_2} \cdot V_{ICO_2}}{V_{pacm_3}} \tag{A.3}$$

где C_{ICO_2} - массовая концентрация триглицеридов жирных кислот (неполярных веществ) в растворе стандартного образца (раствора №2), приготовленного по п.А.4.3, мг/см³;

 V_{ICO_2} - объем раствора стандартного образца (раствор №2), приготовленного по п.А.4.3 и отобранного для приготовления раствора №3, ($V_{ICO_2} = 0.5 \text{ см}^3$);

$$V_{pacm_3}$$
 - объем раствора №3 ($V_{pacm_3} = 1 \text{ см}^3$).

- A.4.5 Навеску масла подсолнечного по п.А.1.1, равную (0.25 ± 0.1) г, взвешивают на весах с точностью до четвертого знака, помещают в мерную колбу объемом 25 см³, растворяют в хлороформе и доводят до метки, тщательно перемешивают.
- $A.4.6~(0.25\pm0.1)$ г масла, приготовленного по п.А.3, взвешивают на весах с точностью до четвертого знака, помещают в мерную колбу объемом 25 см 3 , растворяют в хлороформе и доводят до метки, тщательно перемешивают.
- А.4.7 В таблице А.1 представлены наименования приготовленных растворов образцов и ожидаемые массовые концентрации неполярных веществ.

Таблица А.1. – Наименования приготовленных растворов образцов и ожидаемые мас-

совые концентрации неполярных веществ

No	Наименование рас-	Ожидаемое значе-	Пункт методики	Применение
п/п	твора образца	ние массовой кон-	поверки	раствора
		центрации неполяр-		
		ных веществ, мг/см ³		
1	Раствор стандарт-	11,73	п. А.4.2	Построение ГХ
	ного образца ГСО			y-
	9437-2009 - pac-			
	твор №1			
2	Раствор стандарт-	5,87	п. А.4.3	Построение ГХ
	ного образца ГСО			
	9437-2009 - pac-			
	твор №2			
3	Раствор стандарт-	2,94	п. А.4.4	Построение ГХ
	ного образца ГСО			
	9437-2009 - pac-			
	твор №3	.*		
4	Раствор стандарт-	9,38	п. А.6.3.1	Оценка погрешности
	ного образца ГСО			ГХ
	9437-2009 - pac-			
	твор №4			
5	Раствор стандарт-	3,52	п. А.6.3.1	Оценка погрешности
	ного образца ГСО			ГХ
	9437-2009 - pac-	+		
	твор №5			

- A.5 Разделение полярных и неполярных соединений в растворах, полученных по пп.A.4.1-A.4.6, методом тонкослойной хроматографии
- A.5.1 На две хроматографические пластинки с помощью шприца Hamilton объемом 10 мм^3 наносят по 4 мм^3 растворов, приготовленных по $\pi.A.4.1 A.4.6$. Растворы наносят в виде пятен на расстоянии не менее 1 см друг от друга. Каждый раствор наносят не менее двух раз на каждую пластинку. Вводят раствор на пластинку постепенно, давая просохнуть каплям и не допуская растекания.
- А.5.2 Массу триглицеридов жирных кислот (неполярных веществ) в растворах стандартных образцов №1, №2, №3 $m_{\scriptscriptstyle HB_i}$, мг, нанесенных на пластинку, вычисляют по формуле

$$m_{_{HG_i}} = \frac{C_{ICO_i} \cdot V_{ICO_i}}{1000}, \tag{A.4}$$

где C_{ICO_i} - массовая концентрация триглицеридов жирных кислот (неполярных веществ) в растворе, приготовленном по п.А.4.2 – А.4.4, мг/см³;

 $V_{{\scriptscriptstyle TCO_i}}$ - объем раствора, нанесенного на хроматографическую пластинку, ($V_{{\scriptscriptstyle TCO_i}}$ = 4 мм 3).

- А.5.3 Пластинки помещают в хроматографическую камеру и получают хроматограмму в соответствии с приложением А ГОСТ Р ИСО 8420-2013.
- А.5.4 В качестве подвижной фазы используют смесь легкого петролейного эфира, диэтилового эфира и уксусной кислоты в соотношении 70 : 30 : 2 по объему. Вместо петролейного эфира по п.А.1.13 допускается использовать гексан по п.А.1.14.
- A.5.5 В качества проявителя используют раствор фосфорномолибденовой кислоты по п.А.1.17 в этаноле по п.А.1.20 с массовой концентрацией 100 г/дм³, либо смесь, состоящую из

- 20 %-го раствора аммония сернокислого по п.А.1.18 и концентрированной серной кислоты по п.А.1.19 в соотношении 100 : 7 по объему.
- A.5.6 Просушивают пластины в сушильном шкафу по п.А.1.21 при температуре (185 \pm 5) °C.
 - А.5.7 Получают хроматограмму вида, представленного на рисунке А.1.

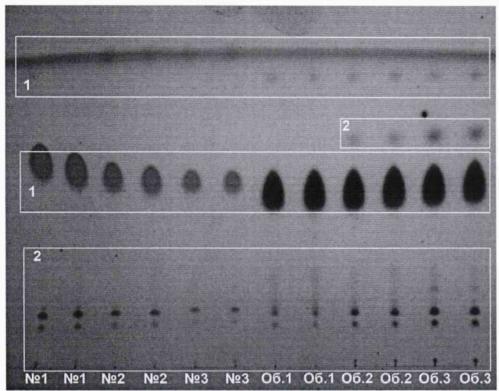


Рисунок А.1 – Хроматограмма, полученная после разделения полярных и неполярных соединений в растворах стандартного образца и в исследуемых растворах поверочных образцов: 1 – неполярные соединения, 2 – полярные соединения. Слева направо нанесены растворы стандартного образца (растворы №1, №2, №3), и поверочные образцы (Об.1, 2, 3) с увеличением массовой доли полярных веществ.

А.5.8 Прибором для тонкослойной хроматографии с денситометром «Сорбфил» измеряют площади образовавшихся после хроматографирования пятен триглицеридов жирных кислот (неполярных веществ). Для построения градуировочной характеристики (далее – Γ X) используют площади пятен неполярных веществ, выделенных из растворов стандартных образцов:

Масса неполяр-	Измеренное значение площа-	Среднее арифметическое зна-
ных веществ, мг	ди пятна на пластинке, у.е.	чение площади пятна, у.е.
$m_{_{_{_{_{_{_{i}}}}}}}$	Y_{ij}	\overline{Y}_{i}
$m_{_{HB_{_{1}}}}$	$Y_{11}, Y_{12}, \dots Y_{1j}$	$\overline{Y_1}$
$m_{_{HG_2}}$	$Y_{21}, Y_{22}, \dots Y_{2j}$	$\overline{Y_2}$
$m_{_{HB_{_{3}}}}$	$Y_{31}, Y_{32}, \dots Y_{3j}$	$\overline{Y_3}$

Также получают значения площадей пятен для растворов поверочных образцов.

А.6 Построение ГХ методом наименьших квадратов

А.6.1 По экспериментальным данным для растворов стандартных образцов (раствора N_2 1, N_2 2, N_2 3) строят ГХ.

A.6.2 Рассчитывают среднее арифметическое значение площади пятна i-го раствора стандартного образца по формуле

$$\overline{Y}_i = \frac{\sum_{j=1}^n Y_{ij}}{n},\tag{A.5}$$

где n — количество нанесенных на пластинку пятен i-го раствора, n=4.

Получают линейную ГХ следующего вида

$$\overline{Y}_i = a + b m_{ns.}, \tag{A.6}$$

где \overline{Y}_i — среднее арифметическое значение площади пятен неполярных веществ, полученных при хроматографировании i-го раствора стандартного образца;

 $m_{_{HB_{i}}}$ – масса неполярных веществ в объеме i-го раствора стандартного образца, мг, нанесенного на пластинку, и рассчитанная по формуле (A.4).

Для определения коэффициентов a и b по полученным данным вычисляют дисперсии результатов измерений площадей пятна i-го раствора стандартного образца, нанесенного на пластинку, по формуле

$$S_{Y_i}^2 = \frac{1}{n-1} \sum_{i=1}^{N} (Y_{ij} - \overline{Y}_i)^2, \qquad (A.7)$$

а затем сумму S_{ω} обратных величин дисперсий по формуле

$$S_{\omega} = \sum_{i=1}^{I} \frac{1}{S_{\gamma_i}^2} \,. \tag{A.8}$$

Вычисляют для каждого среднеарифметического значения \overline{Y}_i его вес ω_i

$$\omega_i = \frac{\left(\frac{1}{S_{\gamma_i}^2}\right)}{S_{\omega}}.$$
 (A.9)

Вычисляют среднеарифметические значения $\overline{m}_{\scriptscriptstyle HB}$ и \overline{Y} по формулам:

$$\overline{m}_{\scriptscriptstyle HG} = \sum_{i=1}^{l} \omega_{i} m_{\scriptscriptstyle HG_{i}} , \qquad (A.10)$$

$$\overline{Y} = \sum_{i=1}^{I} \omega_i \overline{Y}_i. \tag{A.11}$$

$$b = \frac{\sum_{i=1}^{I} \omega_{i} \overline{Y}_{i} (m_{_{HB_{i}}} - \overline{m}_{_{HB}})}{\sum_{i=1}^{I} \omega_{i} (m_{_{HB_{i}}} - \overline{m}_{_{HB}})^{2}},$$
(A.12)

$$a = \overline{Y} - b\overline{m}_{\text{HS}}. \tag{A.13}$$

А.6.3 Оценка погрешности измерений массы неполярных веществ по ΓX Готовят дополнительно два раствора стандартного образца (раствор №4, №5).

А.6.3.1 0,8 см³ раствора №1, приготовленного по п.А.4.2, отбирают градуированной пипеткой объемом 1 см³ и помещают в центрифужную пробирку объемом 2 см³, добавляют 0,2 см³ хлороформа, тщательно перемешивают. Массовую концентрацию триглицеридов жирных кислот (неполярных веществ) в полученном растворе (раствор №4) C_{rco_4} , мг/см³, рассчитывают по формуле

$$C_{\Gamma CO_4} = \frac{C_{\Gamma CO_1} \cdot V_{\Gamma CO_1}}{V_{pacm_4}}, \tag{A.14}$$

где C_{ICO_1} - массовая концентрация триглицеридов жирных кислот (неполярных веществ) в растворе стандартного образца (раствор №1), приготовленного по п.А.4.2, мг/см³;

 V_{ICO_1} - объем раствора стандартного образца (раствора №1), приготовленного по п.А.4.2 и отобранного для приготовления раствора №4, ($V_{ICO_1} = 0.8 \text{ cm}^3$);

$$V_{pacm_4}$$
 – объем раствора №4 ($V_{pacm_4} = 1 \text{ см}^3$).

А.6.3.2 0,3 см³ раствора №1, приготовленного по п.А.4.2, отбирают градуированной пипеткой объемом 1 см³ и помещают в центрифужную пробирку объемом 2 см³, добавляют 0,7 см³ хлороформа, тщательно перемешивают. Массовую концентрацию триглицеридов жирных кислот (неполярных веществ) в полученном растворе (раствор №5) C_{ICO_5} , мг/см³, рассчитывают по формуле

$$C_{ICO_5} = \frac{C_{ICO_1} \cdot V_{ICO_1}}{V_{pacm_5}}, \tag{A.15}$$

где C_{ICO_1} - массовая концентрация триглицеридов жирных кислот (неполярных веществ) в растворе стандартного образца (раствор №1), приготовленного по п.А.4.2, мг/см³;

 V_{rCO_1} - объем раствора стандартного образца (раствора №1), приготовленного по п.А.4.2 и отобранного для приготовления раствора №5, ($V_{rCO_1} = 0.3 \text{ см}^3$);

$$V_{pacm_5}$$
 – объем раствора №5 ($V_{pacm_5} = 1 \text{ cm}^3$).

Полученные растворы стандартных образцов №4 и №5 наносят на хроматографические пластинки как описано в п.А.5.1. Каждый раствор стандартного образца наносят не менее четырех раз. Проводят операции по пп. А.5.2 - А.5.8. Рассчитывают среднее арифметическое значение площади пятен i-го раствора стандартного образца $\overline{Y_i}$ по формуле (A.5).

Рассчитывают значение массы неполярных веществ по ГХ по формуле

$$m_{_{HB_i}} = \frac{\overline{Y_i} - a}{h}. \tag{A.16}$$

$$S_{m_{HB_i}} = \frac{1}{|b|} \sqrt{S_{Y_i}^2 + S_a^2 + S_b^2 \cdot m_{HB_i}^2} , \qquad (A.17)$$

где $S_{\gamma_i}^2$ - дисперсия результатов измерений площадей пятна i-го раствора стандартного образца, нанесенного на пластинку;

 S_a и S_b - стандартные отклонения коэффициентов a и b, вычисленные по формулам:

$$S_b = \frac{1}{\sqrt{S_{\omega} \cdot \sum_{i=1}^{l} \omega_i (m_{_{HS_i}} - \overline{m}_{_{HS}})^2}},$$
 (A.18)

$$S_a = \sqrt{\frac{1}{S_\omega} + S_b^2 m_{ns}^2} \,. \tag{A.19}$$

Погрешность $\Delta_{m_{m_i}}$ измеряемой по ГХ массы неполярных веществ для доверительной вероятности P=0,95 оценивают по формуле

$$\Delta_{m_{\text{tot}}} = 1,96 \cdot S_{m_{\text{tot}}}. \tag{A.20}$$

- А.6.4 Пределы абсолютной погрешности массы неполярных веществ $m_{_{_{\!\!H\!G_{\!\!H\!G}_{\!\!H\!G}}}}$ =0,04 мг, полученной по ГХ, не должна превышать $\pm 0,015$ мг при доверительной вероятности P=0,95. В противном случае построение ГХ повторяют.
 - А.7 Определение массовой доли полярных веществ в поверочных образцах
- A.7.2 С помощью шприца Hamilton объемом 10 мм^3 наносят по 4 мм^3 растворов, приготовленных по п.А.4.1, А.4.5 и А.4.6, на хроматографическую пластинку в виде пятен. Каждый раствор наносят не менее четырех раз. Далее проводят операции по пп. А.5.2 А.5.8.
- А.7.3 Рассчитывают средние арифметические значения площадей по формуле (А.5). Массу неполярных веществ $m_{{}_{\!\!\mathit{HS}_i}}$ в i-ом поверочном образце рассчитывают по ΓX по формуле (А.16).
- А.7.4 Массовую долю полярных веществ A_i в i-ом поверочном образце рассчитывают по формуле

$$A_{i} = \left(1 - \frac{m_{n\theta_{i}} \cdot V_{pacm}}{m_{no} \cdot V_{no}}\right) \cdot 100, \tag{A.21}$$

 m_{no} - масса навески i-го поверочного образца для приготовления раствора по п.А.4.1, А.4.5 или А.4.6, г:

 $V_{\it pacm}$ - объем раствора *i*-го поверочного образца по п.А.4.1, А.4.5 или А.4.6, ($V_{\it pacm}=25~{\rm cm}^3$);

 V_{no} - объем раствора i-го поверочного образца, нанесенного на хроматографическую пластинку, (V_{no} = 4 мм³).

А.8 Расчет абсолютной погрешности значения массовой доли полярных веществ в поверочных образцах

A.8.1 Расчет абсолютной погрешности массовой доли полярных веществ в *i*-ом поверочном образце проводят по формуле

$$\Delta_{A_i} = 1,96 \sqrt{\left(\frac{\Delta m}{m_{no}}\right)^2 + \left(\frac{\Delta V_{unpua_i}}{V_{no}}\right)^2 + \left(\frac{\Delta V_{\kappa o_i \sigma_{bi}}}{V_{pacm}}\right)^2 + \left(\frac{\Delta}{m_{na_i}}\right)^2}, \qquad (A.22)$$

где Δm - предел допускаемой абсолютной погрешности весов, г;

 m_{no} - масса навески поверочного образца для приготовления раствора, г;

 $\Delta V_{\mathit{unpuq}}\,$ - предел допускаемой абсолютной погрешности шприца, мм³;

 V_{no} - объем раствора *i*-ого поверочного образца, нанесенного на хроматографическую пластинку, мм³:

 $\Delta V_{\kappa_{07}\delta_{\rm bl}}$ - предел допускаемой абсолютной погрешности мерной колбы, см³;

 $V_{\it pacm}$ - объем мерной колбы, см 3 ;

 $\Delta_{\it m_m}$ - предел допускаемой абсолютной погрешности ГХ, мг;

 $m_{_{\!\scriptscriptstyle H\!B_{_{\!\scriptscriptstyle I}}}}$ - масса неполярных веществ в поверочном образце, полученная по $\Gamma {\rm X}$, мг.

А.8.2 Пределы абсолютной погрешности массовой доли полярных веществ в поверочном образце не превышают \pm 1,0 % при доверительной вероятности P=0,95.

приложение б

(рекомендуемое) ФОРМА ПРОТОКОЛА ПОВЕРКИ

11POTOKOJI №1	ІРОВЕДЕНИЯ ПОВЕРКИ
Измеритель содержания полярных веществ testo	270, зав №
Документ на поверку: МП 38-251-2019 «ГСИ. Из 270. Методика поверки». Информация об использованных средствах по	
Условия проведения поверки:	
- температура окружающего воздуха, °C - относительная влажность воздуха, % Результаты внешнего осмотра	
Результаты опробования	

Проверка метрологических характеристик

Таблица Б.1 - Результаты проверки абсолютной погрешности измерений массовой доли полярных веществ

Массовая доля полярных веществ в поверочном образце,	Результаты измерений массовой доли полярных веществ,	Абсолютная погрешность измерений массовой доли полярных веществ,	Пределы допускаемой абсолютной погрешности измерений массовой доли полярных веществ,
			± 4
			± 4
			± 4

Таблица Б.2 – Результаты проверки диапазона измерений массовой доли полярных веществ

Наименование характеристики и ее	Полученные значения диа-	Соответствие требованиям
размерность	пазона измерений	Да (+) / Нет (-)
Массовая доли полярных веществ, %	от 0 до 25	

Таблица Б.3 - Результаты проверки абсолютной погрешности измерений температуры исследуемой среды

Значение показаний эталонного термометра (t_{smi}) , °C	Среднее арифметическое значение показаний эталонного термометра (\bar{t}_{3m}) , °C	Значение по- казаний измерителя $(t_{u_{3Mi}})$, °C	Среднее ариф- метическое значение пока- заний измери- теля $(\bar{t}_{_{\text{изм}}})$, °C	Значение абсолютной погрешности измерений температуры (Δ_t) , °C	Пределы допускаемой абсолютной погрешности измерений температуры, °C
					± 1,5
					± 1,5
					± 1,5

Таблица Б.4 – Результаты проверки диапазона измерений температуры исследуемой среды

Наименование характеристики и ее	Полученные значения диа-	Соответствие требованиям
размерность	пазона измерений	Да (+) / Нет (-)
Температура исследуемой среды, °С	от +40 до +200	

Результат проведен	ия поверки	r:		
Выдано свидетельс	тво о повер	оке (извещение о	непригодности)
ot «»	20	r, №		
Поверитель				
	(Ф.И.О.)		подпись	
Организация, пров	одившая по	оверку		