УТВЕРЖДАЮ Генеральный директор ООО «Автопрогресс–М»

А.С. Никитин

x16» декабря 2019 г.

Аппаратура геодезическая спутниковая PrinCe i90

МЕТОДИКА ПОВЕРКИ

MΠ AΠM 57-19

Настоящая методика поверки распространяется на аппаратуру геодезическую спутниковую PrinCe i90, производства «Shanghai Huace Navigation Technology Ltd», КНР (далее – аппаратуру) и устанавливает методику ее первичной и периодической поверки.

Интервал между поверками – 1 год.

1 Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1 – Операции поверки

№	нда 1 — Операции поверки	№ пункта	Проведени	е операций при
п/п	Наименование операции	документа по	первичной	периодической
		поверке	поверке	поверке
1	Внешний осмотр	7.1	Да	Да
2	Опробование	7.2	Да	Да
3	Определение метрологических	7.3		
	характеристик	7.3	-	-
3.1	Определение абсолютной и средней			
	квадратической погрешностей измерений			
	длин базисов в режимах «Статика»,	7.2.1	п п	
	«Быстрая статика»	7.3.1	Да	Да
3.2	Определение абсолютной и средней			
	квадратической погрешностей измерений	l		
	длин базисов в режимах «Кинематика»,			
	«Кинематика в реальном времени (RTK)»	7.3.2	Да	Да
3.3	Определение абсолютной и средней			
	квадратической погрешностей измерений			
	длин базисов в режиме «Кинематика в			
	реальном времени (RTK)» с учетом угла		0.000	
	наклона	7.3.3	Да	Да
3.4	Определение абсолютной и средней			
	квадратической погрешностей измерений			
	длин базисов в режиме «Дифференциальные			
	кодовые измерения (DGPS)»	7.3.4	Да	Да

2 Средства поверки

При проведении поверки должны применяться эталоны и вспомогательные средства поверки, приведенные в таблице 2

Таблица 2 - Средства поверки

№ пункта документа по поверке	Наименование эталонов, вспомогательных средств поверки и их основные метрологические и технические характеристики	
7.1	OTTO WOLLD WIND WORK OF THE STATE OF THE STA	
7.2	Эталоны не применяются	
7.3.1	Фазовый светодальномер (тахеометр) или эталонный базисный	
7.3.2	комплекс 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. №2831; Рулетка измерительная металлическая UM3M (рег. № 67910-17)	
7.3.3	Фазовый светодальномер (тахеометр) или эталонный базисный комплекс 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. №2831; Рулетка измерительная металлическая UM3M (рег. № 67910-17) Квадрант оптический КО-60M, ±120°, ПГ ±30" (рег. №26905-04)	
7.3.4	Фазовый светодальномер (тахеометр) или эталонный базисный	

комплекс 2 разряда в соответствии с Государственной поверочной			
схемой для координатно-временных средств измерений,			
утверждённой Приказом Росстандарта от 29.12.2018 г. №2831;			
Рулетка измерительная металлическая UM3M (рег. № 67910-17)			

Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью, удовлетворяющей требованиям настоящей методики поверки.

3 Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы на аппаратуру, имеющие достаточные знания и опыт работы с ней.

4 Требования безопасности

При проведении поверки, меры безопасности должны соответствовать требованиям по технике безопасности согласно эксплуатационной документации на аппаратуру и поверочное оборудование, правилам по технике безопасности, действующим на месте проведения поверки, а также правилам по технике безопасности при производстве топографо-геодезических работ ПТБ-88 (Утверждены коллегией ГУГК при СМ СССР 09.02.1989 г., № 2/21).

5 Условия поверки

При проведении поверки должны соблюдаться, следующие условия измерений:

- температура окружающей среды, °С

(от -45 до +75)

Полевые измерения (измерения на открытом воздухе) должны проводиться при отсутствии осадков, порывов .

6 Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- проверить наличие действующих свидетельств о поверке на эталонные средства измерений;
- аппаратуру и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией.
- аппаратура должна быть установлена на специальных основаниях (фундаментах) или штативах, не подвергающихся механическим (вибрация, деформация, сдвиги) и температурным воздействиям.

7 Проведение поверки

7.1 Внешний осмотр

При внешнем осмотре должно быть установлено соответствие аппаратуры следующим требованиям:

- отсутствие механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики аппаратуры;
- наличие маркировки и комплектность, согласно требованиям эксплуатационной документации на аппаратуру.

7.2 Опробование

- 7.2.1 При опробовании должно быть установлено соответствие аппаратуры следующим требованиям:
- отсутствие качки и смещений неподвижно соединенных деталей и элементов аппаратуры;
 - правильность взаимодействия с комплектом принадлежностей;
 - работоспособность всех функциональных режимов.
- 7.2.2 Проверку идентификационных данных программного обеспечения (далее ПО) проводить следующим образом:

- для идентификации ПО «LandStar 7», установленного на контроллер, следует запустить ПО, перейти на вкладку «Настройки», открыть меню «ПО». Номер версии высвечивается в первой строке данного меню;
- для идентификации МПО «update_i90_v2.0.7_b20190617.bin», установленного в аппаратуру, следует запустить аппаратуру, затем нажать кнопку «Fn» для выбора меню «Info» затем нажать кнопку «Питание».. Номер версии высветится в строке «Version»;
- для идентификации ПО «СНС Geomatics Office», установленного на ПК, необходимо запустить ПО, в главном экране выбрать вкладку «Поддержка», затем выбрать пункт «О программе».

Номер версии должен соответствовать данным приведенным в таблице 3.

Таблица 3

Идентификационные данные (признаки)		Значение	
Идентификационное наименование ПО	update_i90_v2.0.7_ b20190617.bin	LandStar 7	CHC Geomatics Office
Номер версии (идентификационный номер			
ПО), не ниже	2.0.7	7.3.3.20191011	2.1.0.699

7.3 Определение метрологических характеристик

7.3.1 Определение абсолютной и средней квадратической погрешностей измерений длин базисов в режимах «Статика», «Быстрая статика»

Абсолютная и средняя квадратическая погрешности измерений длин базисов в режиме «Статика», «Быстрая статика» определяются путем многократных измерений (не менее 5) эталонного базисного комплекса 2 разряда или контрольной длины базиса, определённой фазовым светодальномером (тахеометром) 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. №2831 и действительное значение которого расположено в диапазоне от 0 до 30,0 км.

Установить поверяемую аппаратуру над центрами пунктов базиса и привести ее спутниковые антенны к горизонтальной плоскости.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со спутников.

Провести измерения на поверяемой аппаратуре при условиях, указанных в таблице 4 настоящей методики.

Выключить аппаратуру согласно требованиям руководства по эксплуатации.

При использовании контрольных длин базиса, ещё раз измерить эталонным тахеометром их значения. Результат измерений не должен отличаться от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную эталонному дальномеру. В случае если измеренная длина отличается от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, необходимо повторить съёмку аппаратурой заново.

Провести обработку данных с использованием штатного ПО к аппаратуре.

Абсолютная погрешность измерений каждой длины базиса (при доверительной вероятности 0,95) определяется как сумма систематической и случайной погрешностей по формуле:

$$\Delta L_{j} = \left(\frac{\sum_{i=1}^{n} L_{j_{i}}}{n_{j}} - L_{j_{0}}\right) \pm 2 \sqrt{\frac{\sum_{i=1}^{n} \left(L_{j_{i}} - \frac{\sum_{i=1}^{n} L_{j_{i}}}{n_{j}}\right)^{2}}{n_{j} - 1}},$$

где ΔL_j – погрешность измерений j длины базиса в плане/по высоте, мм;

 L_{i_0} — эталонное значение j длины базиса в плане/по высоте, мм;

 L_{j_i} — измеренное поверяемой аппаратурой значение j длины базиса i измерением в плане/по высоте, мм;

 n_{i} — число измерений j длины базиса.

Средняя квадратическая погрешность измерений каждой из длин базиса определяется по формуле:

$$m_j = \sqrt{\frac{\sum_{i=1}^{n} (L_{ji} - L_{j0})^2}{n_j}},$$

где m_i — средняя квадратическая погрешность измерений j длины базиса.

Значения абсолютной погрешности (при доверительной вероятности 0,95) и средней квадратической погрешности измерений для каждой из длин базиса в режимах «Статика», «Быстрая статика» не должны превышать значений, указанных в Приложении А к настоящей методике поверки.

7.3.2 Определение абсолютной и средней квадратической погрешностей измерений длин базисов в режимах «Кинематика», «Кинематика в реальном времени (RTK)»

Абсолютная и средняя квадратическая погрешности измерений длин базисов в режимах «Кинематика», «Кинематика в реальном времени (RTK)» определяются путем многократных измерений (не менее 10) эталонного базисного комплекса 2 разряда или контрольной длины базиса, определённой фазовым светодальномером (тахеометром) 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. №2831 и действительное значение которого расположено в диапазоне от 0 до 30,0 км.

Установить поверяемую аппаратуру над центрами пунктов базиса и привести ее спутниковые антенны к горизонтальной плоскости.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со спутников.

Провести измерения на поверяемой аппаратуре при условиях, указанных в таблице 4 настоящей методики.

Выключить аппаратуру согласно требованиям руководства по эксплуатации.

При использовании контрольной длины базиса, ещё раз измерить эталонным дальномером её значения. Результат измерений не должен отличаться от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную эталонному дальномеру. В случае если измеренная длина отличается от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, необходимо повторить съёмку аппаратурой заново.

Абсолютная погрешность измерений длины базиса (при доверительной вероятности 0.95) определяется как сумма систематической и случайной погрешностей по формуле:

$$\Delta L = \left(\frac{\sum_{i=1}^{n} L_{i}}{n} - L_{o}\right) \pm 2 \sqrt{\frac{\sum_{i=1}^{n} \left(L_{i} - \frac{\sum_{i=1}^{n} L_{i}}{n}\right)^{2}}{n - 1}},$$

где ΔL – погрешность измерений длины базиса в плане/по высоте, мм;

 L_0 – эталонное значение длины базиса в плане/по высоте, мм;

 L_i — измеренное аппаратурой значение длины базиса i измерением в плане/по высоте, мм;

п – число измерений длины базиса.

Средняя квадратическая погрешность измерений длины базиса определяется по формуле:

$$m = \sqrt{\frac{\sum_{i=1}^{n} (L_i - L_0)^2}{n}},$$

где m - средняя квадратическая погрешность измерений длины базиса.

Значения абсолютной погрешности (при доверительной вероятности 0,95) и средней квадратической погрешности измерений длины базиса в режимах «Кинематика», «Кинематика в реальном времени (RTK)» не должны превышать значений, указанных в Приложении А к настоящей методике поверки.

7.3.3 Определение абсолютной и средней квадратической погрешностей измерений длин базисов в режиме «Кинематика в реальном времени (RTK)» с учетом угла наклона

Абсолютная и средняя квадратическая погрешности измерений длин базисов в режимах «Кинематика», «Кинематика в реальном времени (RTK)» определяются путем многократных измерений (не менее 10) эталонного базисного комплекса 2 разряда или контрольной длины базиса, определённой фазовым светодальномером (тахеометром) 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. №2831 и действительное значение которого расположено в диапазоне от 0 до 30,0 км.

Установить испытываемые образцы аппаратуры над центрами пунктов, расположенных на концах эталонного базиса и привести аппаратуру к горизонтальной плоскости. Один из образцов аппаратуры необходимо установить на веху.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со спутников.

Наклоняя один из образцов аппаратуры в диапазоне от 0 до 85°, не менее, чем в 5, фиксируемых при помощи квадранта, точках, провести одновременные измерения расстояния на образцах аппаратуры при условиях, указанных в таблице 4 настоящей методики поверки.

Затем вернуть наклоненный образец в горизонтальное положение.

Повернуть на 120° в горизонтальной плоскости.

Повторить процедуру 3 раза, до возвращения наклоненного образца в исходное положение.

Выключить аппаратуру согласно требованиям руководства по эксплуатации.

При использовании контрольной длины базиса, ещё раз измерить тахеометром её значения. Результат измерений не должен отличаться от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную тахеометру. В случае если измеренная длина отличается от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, необходимо повторить съёмку аппаратурой заново.

Провести обработку данных с использованием штатного ПО к аппаратуре.

Абсолютная погрешность измерений длины базиса (при доверительной вероятности 0,95) определяется как сумма систематической и случайной погрешностей по формуле:

$$\Delta L = \left(\frac{\sum_{i=1}^{n} L_{i}}{n} - L_{o}\right) \pm 2 \sqrt{\frac{\sum_{i=1}^{n} \left(L_{i} - \frac{\sum_{i=1}^{n} L_{i}}{n}\right)^{2}}{n - 1}},$$

где ΔL — погрешность измерений длины базиса в плане/по высоте, мм;

 L_0 – эталонное значение длины базиса в плане/по высоте, мм;

 L_i — измеренное аппаратурой значение длины базиса i измерением в плане/по высоте, мм;

n – число измерений длины базиса.

Средняя квадратическая погрешность измерений длины базиса определяется по формуле:

$$m = \sqrt{\frac{\sum_{i=1}^{n} (L_i - L_0)^2}{n}},$$

где т – средняя квадратическая погрешность измерений длины базиса.

Значения абсолютной погрешности (при доверительной вероятности 0,95) и средней квадратической погрешности измерений длины базиса в режиме «Кинематика в реальном времени (RTK)» с учетом угла наклона должны соответствовать значениям, приведенным в Приложении А к настоящей методике поверки.

7.3.4 Определение абсолютной погрешности и средней квадратической погрешности измерений длин базисов в режиме «Дифференциальные кодовые измерения (DGPS)»

Абсолютная и средняя квадратическая погрешности измерений длин базисов в режиме «Дифференциальные кодовые измерения (DGPS)» определяются путем многократных измерений (не менее 10) эталонного базисного комплекса 2 разряда или контрольной длины базиса, определённой фазовым светодальномером (тахеометром) 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. №2831 и действительное значение которого расположено в диапазоне от 0 до 30,0 км.

Установить поверяемую аппаратуру над центрами пунктов базиса и привести ее спутниковые антенны к горизонтальной плоскости.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со спутников.

Провести измерения на поверяемой аппаратуре при условиях, указанных в таблице 4 настоящей методики.

Выключить аппаратуру согласно требованиям руководства по эксплуатации.

При использовании контрольной длины базиса, ещё раз измерить эталонным тахеометром её значения. Результат измерений не должен отличаться от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную эталонному дальномеру. В случае если измеренная длина отличается от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, необходимо повторить съёмку аппаратурой заново.

Абсолютная погрешность измерений длины базиса (при доверительной вероятности 0,95) определяется как сумма систематической и случайной погрешностей по формуле:

$$\Delta L = \left(\frac{\sum_{i=1}^{n} L_{i}}{n} - L_{o}\right) \pm 2 \sqrt{\frac{\sum_{i=1}^{n} \left(L_{i} - \frac{\sum_{i=1}^{n} L_{i}}{n}\right)^{2}}{n - 1}},$$

где ΔL — погрешность измерений длины базиса в плане/по высоте, мм;

 L_0 — эталонное значение длины базиса в плане/по высоте, мм;

 L_i — измеренное аппаратурой значение длины базиса i измерением в плане/по высоте, мм;

n — число измерений длины базиса.

Средняя квадратическая погрешность измерений длины базиса определяется по формуле:

$$m = \sqrt{\frac{\sum_{i=1}^{n} (L_i - L_0)^2}{n}} ,$$

Значения абсолютной погрешности (при доверительной вероятности 0,95) и средней квадратической погрешности измерений длины базиса в режиме «Дифференциальные кодовые измерения (DGPS)» не должны превышать значений, указанных в Приложении А к настоящей методике поверки.

Таблипа 4

Режим измерений	Кол-во спутников, шт.	Время измерений, мин	Интервал между эпохами, с.
Статика, Быстрая статика		от 20 до 60	
Кинематика, Кинематика в реальном времени (RTK)	≥ 6	от 0,05 до 0,20	1
Дифференциальные кодовые измерения (DGPS)»			

Поверка проводится при устойчивом закреплении поверяемой аппаратуры, открытом небосводе, отсутствии электромагнитных помех и многолучевого распространения сигнала спутников, а также при хорошей конфигурации спутниковых группировок.

8 Оформление результатов поверки

- 8.1. Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 7 настоящей методики поверки с указанием числовых значений результатов измерений и их оценки по сравнению с допускаемыми значениями.
- 8.2. При положительных результатах поверки, аппаратура признается годной к применению и на нее выдается свидетельство о поверке установленной формы. Знак поверки наносится на свидетельство о поверке в виде наклейки и (или) поверительного клейма.
- 8.3. При отрицательных результатах поверки, аппаратура признается непригодной к применению и на нее выдается извещение о непригодности установленной формы с указанием основных причин.

Руководитель отдела ООО «Автопрогресс – М»

К.А. Ревин

Приложение А

(Обязательное)

Метрологические характеристики

Таблица А.1 - Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений длины базиса, м	от 0 до 30000
Границы допускаемой абсолютной погрешности	
измерений длины базиса (при доверительной	
вероятности 0,95) в режимах, мм:	
- «Статика», «Быстрая статика», мм:	
- в плане	$\pm 2 \cdot (2,5+0,5\cdot 10^{-6}\cdot D)$
- по высоте	$\pm 2 \cdot (5,0+0,5\cdot 10^{-6}\cdot D)$
- «Кинематика» и «Кинематика в реальном времени	-2 (3,0 10,3 10 2)
(RTK)», mm:	
- в плане	±2·(8+1·10 ⁻⁶ ·D)
- по высоте	$\pm 2 \cdot (0.110^{-6} \cdot D)$
- «Кинематика в реальном времени (RTK)» с учётом	12 (13+1-10+1)
наклона аппаратуры, мм*:	
- в плане	$\pm 2 \cdot (13 + 1 \cdot 10^{-6} \cdot D + 0.7 \cdot \alpha)$
- по высоте	$\pm 2 \cdot (18+1 \cdot 10^{-6} \cdot D+0, 7 \cdot \alpha)$
- «Дифференциальный кодовый (DGPS)», мм:	±2·(18+1·10 ·D+0,/·a)
- в плане	12 (250 11 10-6 D)
- по высоте	$\pm 2 \cdot (250 + 1 \cdot 10^{-6} \cdot D)$
	±2·(500+1·10 ⁻⁶ ·D),
	где D – измеряемое расстояние в мм,
	α – угол наклона аппаратуры в
TI	градусах
Допускаемая средняя квадратическая погрешность	
измерений длины базиса в режиме, мм:	
- «Статика», «Быстрая статика», мм:	2,5+0,5·10 ⁻⁶ ·D
- в плане	5,0+0,5·10 ·D
- HO BLICOTE	5,0+0,5·10 ··D
- «Кинематика» и «Кинематика в реальном времени	
(RTK)», MM:	8+1·10 ⁻⁶ ·D
- в плане	
- ПО ВЫСОТЕ	15+1·10 ⁻⁶ ·D
- «Кинематика в реальном времени (RTK)» с учётом	
наклона аппаратуры, мм*:	
- в плане	$13+1\cdot10^{-6}\cdot D+0, 7\cdot\alpha$
- по высоте	18+1·10 ⁻⁶ ·D+0,7·α
- «Дифференциальный кодовый (DGPS)», мм:	
- в плане	250+1·10 ⁻⁶ ·D
- по высоте	500+1·10 ⁻⁶ ·D,
	где D – измеряемое расстояние в мм
	α – угол наклона аппаратуры в
	градусах