Федеральное агентство по техническому регулированию и метрологии Уральский научно-исследовательский институт метрологии - филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии им.Д.И.Менделеева» (УНИИМ - филиал ФГУП «ВНИИМ им.Д.И.Менделеева»)

УТВЕРЖДАЮ

Директор УНИИМ - филиала

ФГУП «ВНИИМ им. ДИ. Менделеева»

С.В. Медведевских

2020 г

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Трансформаторы тока ТВ

МЕТОДИКА ПОВЕРКИ МП 26-26-2020

Разработана:

Уральский научно-исследовательский институт метрологии - филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии им.Д.И.Менделеева» (УНИИМ - филиал ФГУП «ВНИИМ им.Д.И.Менделеева»), г. Екатеринбург.

Исполнители:

А.А. Ахмеев, А.М. Шабуров (УНИИМ - филиал ФГУП «ВНИИМ им.Д.И.Менделеева»)

Утверждена:

УНИИМ - филиал ФГУП «ВНИИМ им.Д.И.Менделеева» 27.04.2020 г.

ВВЕДЕНА ВПЕРВЫЕ

Настоящий документ не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения УНИИМ - филиала ФГУП «ВНИИМ им.Д.И.Менделеева».

СОДЕРЖАНИЕ

1 Область применения	4
2 Нормативные ссылки	
3 Операции поверки	
4 Средства поверки	
5 Требования к квалификации поверителей	
6 Требования безопасности	
7 Условия поверки и подготовка к ней	
8 Проведение поверки	
8.1 Внешний осмотр	
8.2 Проверка электрического сопротивления изоляции	6
8.3 Размагничивание	6
8.4 Проверка правильности обозначения контактных зажимов и выводов	
8.5 Определение погрешностей	7
8.6 Определение коэффициента остаточной намагниченности	
8.7 Определение индуктивности намагничивания и постоянной времени	11
9 Оформление результатов поверки	12
Приложение А	
Приложение Б	1.4

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ Трансформаторы тока ТВ МЕТОДИКА ПОВЕРКИ

MΠ 26-26-2020

Дата введения: 01.05.2020

1 Область применения

Настоящая методика распространяется на трансформаторы тока ТВ (далее – трансформаторы), предназначенные для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления в установках переменного тока промышленной частоты с номинальным напряжением 110 и 220 кВ.

До ввода в эксплуатацию, а также после ремонта трансформаторы подлежат первичной поверке, а в процессе эксплуатации – периодической поверке.

Интервал между поверками – 16 лет.

2 Нормативные ссылки

В настоящей методике использованы ссылки на следующие документы:

Приказ Минпромторга РФ № 1815 от 02.07.2015 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке»

Приказ Министерства труда и социальной защиты Российской Федерации от 24 июля 2013 г. № 328н «Об утверждении Правил по охране труда при эксплуатации электроустановок»

ГОСТ 12.2.007.0-75 ССБТ. Изделия электротехнические. Общие требования безопасности

ГОСТ 12.3.019-80 ССБТ. Испытания и измерения электрические. Общие требования безопасности

Приказ Федерального агентства по техническому регулированию и метрологии от 27 декабря 2018 г. \mathbb{N}_2 2768

3 Операции поверки

3.1 При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Номер	Проведение операции при	
Наименование операции	пункта методики поверки	первичной поверке	Периоди- ческой поверке
Внешний осмотр	8.1	Да	Да
Проверка электрического сопротивления изоляции	8.2	Да	Да
Размагничивание	8.3	Да	Да
Проверка правильности обозначения контактных зажимов и выводов	8.4	Да	Да
Определение погрешностей	8.5	Да	Да
Определение коэффициента остаточной намагниченности	8.6	Да	Да
Определение индуктивности намагничивания и постоянной времени	8.7	Да	Да

4 Средства поверки

4.1 При проведении поверки рекомендуется применять эталоны, СИ и ВО указанные в таблице 2.

Таблица 2 – Эталоны, СИ и ВО применяемые при поверке

Номер пункта	Наименование и тип средства поверки,					
методики	его метрологические и основные технические характеристики					
8.2 - 8.7	Термогигрометр электронный Center-313 (регистрационный номер ФИФ 22129-09); Прибор контроля показателей качества электрической энергии портативный ППКЭ-1-50 (регистрационный номер ФИФ 16024-98).					
8.2	Мегаомметр ЦС0202 (регистрационный номер ФИФ 38890-08).					
8.3, 8.4, 8.5, 8.6, 8.7	Рабочий эталон 2 разряда единиц коэффициента и угла масштабного преобразования синусоидального тока, приказ Федерального агентства по техническому регулированию и метрологии от 27 декабря 2018 г. № 2768, трансформатор тока измерительный лабораторный ТТИ-5000.51 (регистрационный номер ФИФ 55278-13) или два ТТИ-5000.5 (регистрационный номер ФИФ 27007-04); Прибор сравнения КНТ-05 (регистрационный номер ФИФ 37854-08); Анализатор трансформаторов тока СТ Analyzer (регистрационный номер ФИФ 40316-08); Осциллограф цифровой запоминающий НDО4054 (регистрационный номер ФИФ 53644-13); Нагрузочный трансформатор с номинальным током, обеспечивающим 200 % номинального первичного тока поверяемого трансформатора; Калиброванное нагрузочное устройство до 100 В·А - при соѕ φ = 0,8 (соѕ φ = 1), например НТТ 50.5-1.					

Примечание – Допускается применение средств поверки, отличных от приведенных в таблице 2, при условии обеспечения необходимой точности измерений.

4.2 Проверяют наличие действующих свидетельств об аттестации эталонов и свидетельств о поверке СИ.

5 Требования к квалификации поверителей

5.1 К проведению поверки допускают лиц, работающих в организации, аккредитованной на право поверки, изучивших настоящую методику, эксплуатационные документы на трансформаторы, имеющих стаж работы в качестве поверителей средств измерений электрических величин не менее одного года и группу допуска по электробезопасности не ниже III.

6 Требования безопасности

- 6.1 При поверке трансформаторов соблюдают требования электробезопасности по ГОСТ 12.3.019-80, ГОСТ 12.2.007.0-75 и руководствуются Правилами по охране труда при эксплуатации электроустановок, утвержденными Приказом Министерства труда и социальной защиты РФ от 24 июля 2013 г. № 328н.
- 6.2 Также должны быть обеспечены требования безопасности, указанные в эксплуатационных документах на средства поверки.

7 Условия поверки и подготовка к ней

7.1 При проведении поверки соблюдают следующие условия:

– температура окружающего воздуха, °C от 10 до 35;

относительная влажность воздуха, %
атмосферное давление, кПа
от 30 до 80;
от 85 до 105;

– электропитание – однофазная сеть, В
от 198 до 242;

– частота, Гцот 47,5 до 52,5.

7.2 Средства поверки подготавливают к работе согласно указаниям, приведенным в эксплуатационных документах.

8 Проведение поверки

8.1 Внешний осмотр

При проведении внешнего осмотра проверяют соответствие трансформаторов требованиям, приведенным в Руководстве по эксплуатации (РЭ):

- состояние поверхности наружных изоляционных частей;
- состояние защитных покрытий наружных частей;
- состояние площадок под заземляющие зажимы, если таковые имеются;
- правильность заполнения табличек технических данных;
- маркировка выводов;
- соответствие контактных выводов;
- комплектность.
- 8.2 Проверка электрического сопротивления изоляции
- 8.2.1 Измерение сопротивления вторичных обмоток трансформатора относительно «земли» производится мегаомметром на 1000 В.
- 8.2.2 Результаты проверки считаются положительными, если сопротивление изоляции составляет не менее 50 МОм.

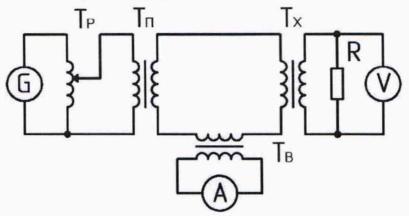
8.3 Размагничивание

8.3.1 Размагничивание проводят на переменном токе частотой 50 Гц. Трансформаторы с номинальной частотой выше 50 Гц допускается размагничивать при номинальной частоте.

Трансформаторы тока размагничивают одним из трех указанных ниже способов:

1 Схема размагничивания приведена на рисунке 1. Вторичную обмотку замыкают на резистор мощностью не менее 250 Вт и сопротивлением R, Oм, рассчитываемым (с отклонением в пределах ± 10 %) по формуле

$$R = 250/I_{\text{HOM}}^2,$$
 (1)


где:

 $I_{\text{ном}}$ – номинальный вторичный ток поверяемого трансформатора тока, А.

Через первичную обмотку пропускают номинальный ток, затем плавно (в течение одной или двух минут) уменьшают его до значения, не превышающего 2 % от номинального.

2 Через первичную обмотку трансформатора тока при разомкнутой вторичной обмотке пропускают ток, равный 10 % от номинального значения первичного тока, затем плавно снижают его до значения, не превышающего 0,2 % от номинального.

3 Через вторичную обмотку трансформатора тока при разомкнутой первичной обмотке пропускают ток, равный 10 % от номинального значения вторичного тока, затем плавно снижают его до значения, не превышающего 0,2 % от номинального.

G - сеть (генератор);

T_P – регулируемое устройство (автотрансформатор);

Тп – понижающий силовой трансформатор;

Тх – поверяемый трансформатор;

Тв – вспомогательный трансформатор тока;

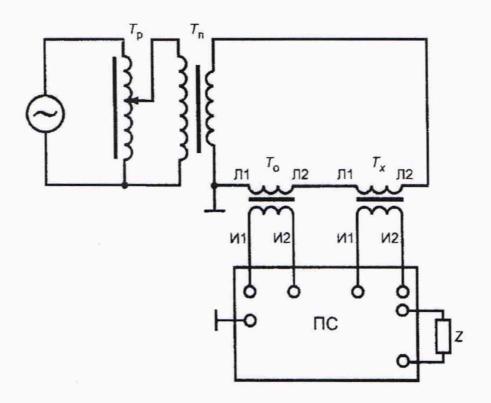

R - резистор.

Рисунок 1 – Пример схемы размагничивания трансформатора тока

- 8.4 Проверка правильности обозначения контактных зажимов и выводов
- 8.4.1 Схема проверки приведена на рисунке 2 или рисунке 3. Поверяемый трансформатор и эталон включают в соответствии с маркировкой контактных зажимов. Затем плавно увеличивают первичный ток до значения, составляющего (5 ÷ 10) % от номинального. В случае правильной маркировки выводов на приборе сравнения можно определить соответствующие значения погрешностей поверяемого трансформатора. При неправильном обозначении контактных зажимов и выводов или неисправности поверяемого трансформатора срабатывает защита в приборе сравнения токов.

8.5 Определение погрешностей

- 8.5.1 Собрать схему, представленную на рисунке 2 или рисунке 3, подключив выводы вторичной обмотки эталонного T_o (дополнительного эталонного T_b) и поверяемого (T_x) трансформаторов к одноименным выводам прибора сравнения ПС. Установить на нагрузочном устройстве Z требуемое значение нагрузки с индуктивно-активным (или активным) коэффициентом мощности $\cos \varphi = 0.8$ ($\cos \varphi = 1$).
- 8.5.2 Регулирующим устройством T_p плавно установить значение тока, равное минимальному, с последующим его увеличением до максимального. Значения тока следует устанавливать в соответствии с приложением Б, для проверки в расширенном диапазоне первичного тока до 200 % следует установить значения, равные 150 % и 200 % номинального значения. Регулирующим устройством плавно снизить ток до нулевого значения.
- 8.5.3 Повторить операции по 8.5.1-8.5.2, поочередно подключая к прибору сравнения ПС выводы остальных вторичных обмоток поверяемого трансформатора тока T_x .

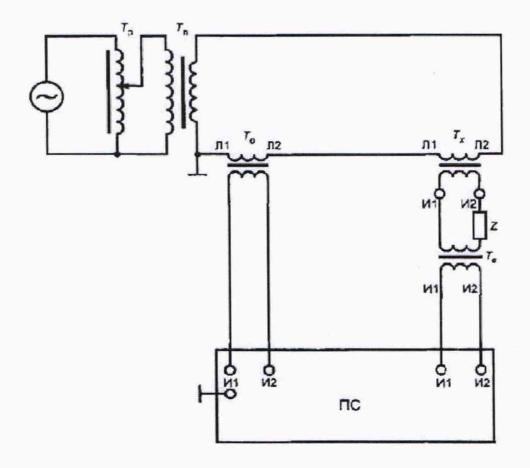
G - сеть (генератор);

 T_{p} — регулирующее устройство (автотрансформатор);

Т_n – понижающий силовой трансформатор;

 T_o — рабочий эталон;

T_x – поверяемый трансформатор;


ПС - прибор сравнения;

Z - нагрузка;

 Π_1, Π_2 – контактные зажимы первичной обмотки;

 ${\rm H}_1, {\rm H}_2$ – контактные зажимы вторичной обмотки.

Рисунок 2 — Схема измерений погрешности трансформаторов тока в расширенном диапазоне первичного тока до 200~% номинального значения, с применением в качестве эталона TTU-5000.51

G - сеть (генератор);

 T_{p} — регулирующее устройство (автотрансформатор);

T_n – понижающий силовой трансформатор;

 T_o – рабочий эталон;

Т_в – дополнительный рабочий эталон;

*T*_x – поверяемый трансформатор;

ПС – прибор сравнения;

Z – нагрузка;

 $\Pi_1, \, \Pi_2 \, - \,$ контактные зажимы первичной обмотки;

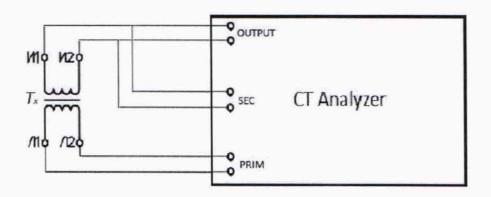
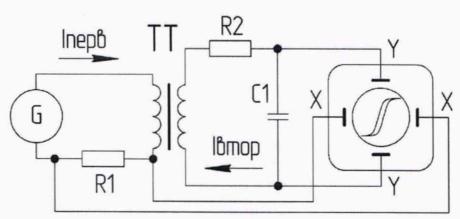

 $И_1, \, V_2 - \,$ контактные зажимы вторичной обмотки.

Рисунок 3 — Схема измерений погрешности трансформаторов тока в расширенном диапазоне первичного тока до 200 % номинального значения, с применением в качестве эталона ТТИ-5000.5 и дополнительного эталона ТТИ-5000.5

8.5.4 Результаты проверки считать положительными, если при подаче тока на обмотки трансформатора тока T_x прибор сравнения ПС будет индицировать значения погрешностей, не превышающие нормированные значения указанные в приложении Б.

8.6 Определение коэффициента остаточной намагниченности

Определение коэффициента остаточной намагниченности Kr, %, проводится с использованием анализатора трансформаторов тока СТ Analyzer. Собрать схему, представленную на рисунке 4.


T_x – поверяемый трансформатор;

 Π_{1}, Π_{2} – контактные зажимы первичной обмотки;

И1, И2 - контактные зажимы вторичной обмотки.

Рисунок 4 — Схема подключения анализатора трансформаторов тока CT Analyzer к поверяемому трансформатору

Петлю гистерезиса также можно посмотреть и измерить коэффициент остаточной намагниченности K_r , %, на электронно-лучевом или цифровом осциллографе с использованием дополнительной схемы формирования сигналов для отклоняющих пластин по схеме, показанной на рисунке 5.

G – сеть (генератор);

R1, R2 — измерительный резистор;

С1 - конденсатор;

ТТ - поверяемый трансформатор тока;

Рисунок 5 – Схема определения коэффициента остаточной намагниченности методом осциллографирования

Измерительный резистор R1 подбирается с сопротивлением, лежащим в пределах от 0,1 до 1 Ом, чтобы минимизировать его влияние на измерение гистерезисной петли. Для уменьшения погрешности сопротивление R2 должно быть высоким (R2 \approx 100 кОм), и превышать на несколько порядков реактивное сопротивление конденсатора C1 (C1 \approx 1 мкФ).

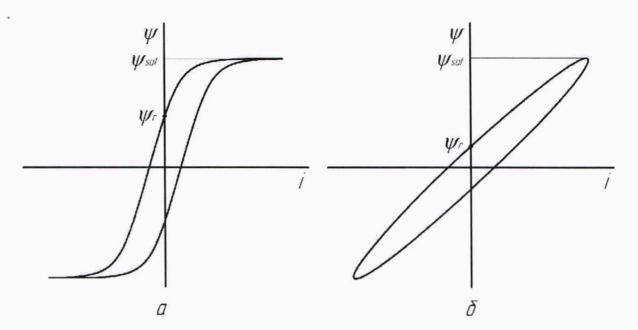


Рисунок 6 – Варианты отображения петли гистерезиса

Коэффициент остаточной намагниченности K_r , %, определяется по формуле

$$K_r = \frac{\psi_r}{\psi_{cot}} \cdot 100,\tag{2}$$

где:

 Ψ_r – остаточное потокосцепление;

 Ψ_{sat} - потокосцепление насыщения.

Результаты считают положительными, если полученные при поверке значения коэффициента остаточной намагниченности ≤ 10 %.

8.7 Определение индуктивности намагничивания и постоянной времени

Определение индуктивности намагничивания L_m и постоянной времени T_s проводится с использованием анализатора трансформаторов тока СТ Analyzer в соответствии с руководством по эксплуатации на данный прибор, схема подключения представлена на рисунке 4. Определение постоянной времени вторичного контура T_s должно быть проведено в трансформаторах тока предназначенных для защиты, полученные значения не должны отличаться от указанных в таблице Б.2, приложения Б более чем на ± 30 %.

9 Оформление результатов поверки

- 9.1 Результаты поверки трансформаторов заносят в протокол поверки (Приложение А), на основании которого (при положительных результатах) оформляют свидетельство о поверке по форме, установленной Приказом Минпромторга России от 02.07.2015 № 1815.
- 9.2 При несоответствии результатов поверки требованиям любого из пунктов настоящей методики трансформаторы к дальнейшей эксплуатации не допускают, выдают извещение о непригодности по форме, установленной Приказом Минпромторга России от 02.07.2015 № 1815, с указанием причины непригодности.

Зав. отделом 26 УНИИМ - филиала ФГУП «ВНИИМ им.Д.И.Менделеева»

А.А.Ахмеев

Вед. инженер УНИИМ - филиала ФГУП «ВНИИМ им.Д.И.Менделеева»

А.М.Шабуров

Приложение A (рекомендуемое)

Форма протокола поверки Трансформаторов тока ТВ

протокол поверки

Трансформатор тока_______, класс точности_

Заводско	й №				
Год выпу	ска				
Номинал	ьный первичный	ток			
Номинал	ьный вторичный	ток			
Номинал	ьная частота (диа	шазон)			
Предприя	ятие-изготовител	ь			
Принадле	ежит				
			рансформатор на повер		
А.1 Резул	пьтат внешнего о				
			соответствует, не соот		
А.2 Резул	пьтат поверки сог	гротивления изоляц	ии		
				не соответству	тет
А.З Разм	агничивание				
А.4 Резу	пьтат проверки пр	равильности маркир	оовки выводов		
D		v	соответству	ет, не соответс	гвует
А.5 Резу	льтаты определен	ия погрешностей			
Таблица А.1	– Результаты опр	еделения погрешно	остей		
		Нагрузка	Значение первичного	Погрешность поверяемого	
	Номинальный	поверяемого	тока, % от	трансформатора	
Частота, Гц	первичный ток,	трансформатора	номинального	2 0/	
	A	тока, В·А; при соs ф =	значения	δ _f , %	Δ_{δ} , '
		при соз ф =			
			остаточной намагничен намагничивания и пост		
Заключе	ние по результата	ам поверки			
		•	годен / негоде		
Вилано	ODUJIATAJI OTDO O	поравия (наранизи	по о нопанковности)		20 -
3.0		поверке (извещен	ие о непригодности) с	or «»	20r.
-					
Поверку	проводил				
		одпись	инициалы, фа	милия	
Дата про	ведения поверки				
Организ	ация, проводивш	ая поверку			

Приложение Б

(обязательное)

Таблица Б.1 – Пределы допускаемых погрешностей вторичных обмоток для измерений и учёта.

Класс	Первичный ток, %	Пределы допускаемой погрешности			Диапазон вторичной
точности	номинального	токовой, %	угловой		нагрузки, %
	значения		МИН	срад	номинального значения
	5	±0,75	±30	±0,9	
0,2	20	±0,35	±15	±0,45	
	100-120	±0,2	±10	±0,3	
	150-200 ²⁾	±0,2	±10	±0,3	
	1	±0,75	±30	±0,9	
	5	±0,35	±15	±0,45	
0,2S	20	±0,2	±10	±0,3	
	100	±0,2	±10	±0,3	
	120	±0,2	±10	±0,3	
	150-200 ²⁾	±0,2	±10	±0,3	
	5	±1,5	±90	±2,7	25-100
0,5	20	±0,75	±45	±1,35	
	100-120	±0,5	±30	±0,9	-
	150-200 ²⁾	±0,5	±30	±0,9	
	1	±1,5	±90	±2,7	
	5	±0,75	±45	±1,35	
0,58	20	±0,5	±30	±0,9	
	100	±0,5	±30	±0,9	
	120	±0,5	±30	±0,9	
	150-200 ²⁾	±0,5	±30	±30	

 $^{^{1)}}$ Для трансформаторов с номинальными вторичными нагрузками 2; 2,5; 3; 5 и 10 В·А устанавливают нижний предел вторичных нагрузок 1 В·А. Для трансформаторов с номинальной вторичной нагрузкой 1 В·А устанавливают нижний предел вторичных нагрузок 0,8 В·А.

²⁾Значения для расширенных диапазонов токов.

*Таблица Б.2 – Пределы допускаемых погрешностей вторичных обмоток для защиты.

	Пределы допускаемой погрешности						
Класс	при номинальном первичном токе			полной при	при		
точности		угло	ЭВОЙ	номинальной	переходном		
	токовой, %	МИН	срад	предельной кратности, %	режиме, %		
5P, 5PR	±1	±60	±1,8	5	не нормируют		
10P, 10PR	±3	не нормируют	не нормируют	10	не нормируют		
TPY	±1	±60	±1,8	10	$\varepsilon_{\text{max}} \leq_{10}$		
TPZ	±1	180±18	5,3±0,6	10	ε _{ac max} ≤ ₁₀		