УТВЕРЖДАЮ

Заместитель директора по производственной метрологии ФГУП «ВНИИМС» Иванникова « 02» 42 2019 г.

Преобразователи измерительные серий D5000, D6000

МЕТОДИКА ПОВЕРКИ

МП 207-047-2019

1. Введение

Настоящая методика распространяется на преобразователи измерительные серий D5000, D6000 (далее по тексту - преобразователи или ИП), изготавливаемые фирмой «G.M. International S.r.l.», Италия и устанавливает методы и средства их первичной и периодической поверок. Интервал между поверками – 5 лет.

2. Операции поверки

При проведении первичной и периодической поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер пункта МП	Проведение операции при		
		первичной поверке	периодической поверке	Примечание
1 Внешний осмотр	6.1	Да	Да	
2 Определение основной погрешности ИП	6.2.1	Да	Да	Кроме моделей D5263S, D6263S, D5264S, D6264S
	6.2.2	Да	Да	Только для моделей D5263S, D6263S
	6.2.3	Да	Да	Только для моделей D5264S, D6264S

3. Средства поверки

При проведении поверки применяют средства измерений, указанные в таблице 2.

	Метрологические характеристики		
**	или регистрационный номер		
Наименование и тип	в Федеральном информационном фонде		
	по обеспечению единства измерений		
Компаратор-калибратор универсальный КМ300Р	регистрационный № 54727-13		
Мера электрического сопротивления постоянного тока многозначная МС 3071	Регистрационный № 66932-17		
Калибратор многофункциональный Fluke 5720A	регистрационный № 52495-13		
Мультиметр 3458А	регистрационный № 25900-03		
Калибратор многофункциональный и коммуникатор ВЕАМЕХ МС6 (-R)	регистрационный № 52489-13		
Термометр лабораторный электронный ЛТ-300	регистрационный № 61806-15-		
Удлиняющие провода по ГОСТ 1790-77, ГОСТ 1791-67			
к ТП (в соответствии с требованиями по ГОСТ 8.338-	-		
2002)			
USB адаптера PPC5092	<u> </u>		
Модуль (коннектор) JDFT050	-		
Модуль (коннектор) JDFT049	-		
Разъем MOR017	*		
Разъем MOR022	*		
Программное обеспечение (ПО) SWC5090	*		
Персональный компьютер (ПК)	-		
Источник питания	-		
Примечание:			
Допускается применение аналогичных средств	поверки, обеспечивающих определен		

метрологических характеристик поверяемых СИ с требуемой точностью.

4. Требования безопасности

При проведении поверки необходимо соблюдать:

- требования безопасности, которые предусматривают «Правила технической эксплуатации электроустановок потребителей» и «Правила по охране труда при эксплуатации электроустановок» (ПОТЭУ (2014));
- указания по технике безопасности, приведенные в эксплуатационной документации на эталонные средства измерений;
- указания по технике безопасности, приведенные в руководстве по эксплуатации преобразователей.

К проведению поверки допускаются лица, аттестованные на право проведения поверки данного вида средств измерений, ознакомленные с руководством по эксплуатации преобразователей и прошедшие инструктаж по технике безопасности.

5. Условия поверки и подготовка к ней

- 5.1 При проведении поверки должны соблюдаться следующие условия:
 - температура окружающего воздуха, °С

 $+23 \pm 1$;

- относительная влажность окружающего воздуха, %, не более

80;

- атмосферное давление, кПа

от 86 до 106,7;

- напряжение питания, В 24±1

5.2 Средства поверки должны быть защищены от вибраций и ударов, от внешних магнитных и электрических полей.

6. Проведение поверки

6.1. Внешний осмотр

При внешнем осмотре устанавливают:

- отсутствие механических повреждений, коррозии, нарушений покрытий, надписей и других дефектов, которые могут повлиять на работу преобразователей и на качество поверки;
 - соответствие маркировки ИП требованиям эксплуатационной документации.

6.2. Определение основной погрешности ИП

Первичную и периодическую поверку проводят для всех входных и выходных каналов, но только для режимов измерений (преобразований) электрических входных сигналов при одном настроенном диапазоне входных и (или) выходных сигналов (в зависимости от типа сигналов).

При первичной и периодической поверке количество поверяемых входных и (или) выходных каналов, типов входных и (или) выходных сигналов допускается согласовывать с пользователем. При этом делают соответствующую запись в свидетельстве о поверке.

Допускается проводить поверку преобразователей в диапазонах измерений входных и (или) выходных сигналов, согласованных с пользователем, но лежащих внутри полного диапазона измерений входных и (или) выходных сигналов. При этом делают соответствующую запись в свидетельстве о поверке.

Поверку ИП проводят с использованием аналогового выхода ИП или персонального компьютера с ΠO SWC5090.

При раздельном нормировании допускаемой погрешности измерений (преобразований) ИП (на погрешность измерений аналого-цифрового преобразователя (АЦП) и цифро-аналогового преобразователя (ЦАП)) пределы допускаемой погрешности измерений ИП соответствуют:

- пределам допускаемой погрешности измерений АЦП при ипользовании персонального компьютера с ПО SWC5090;
- сумме пределов допускаемых погрешностей измерений АЦП и ЦАП при ипользовании аналогового выхода ИП.

Сумма пределов допускаемых основных абсолютных погрешностей измерений АЦП и ЦАП ($\Delta_{\text{АЦП+ЦАП}}$, мА (Ом, мВ, В)) рассчитывается по формуле 1:

$$\Delta_{\text{АЦП+ЦАП}} = \pm ((\Delta_{\text{АЦП(прив)}} + \Delta_{\text{ЦАП(прив)}}) \cdot (X_{\text{вых макс}} - X_{\text{вых мин}}))$$
(1)

где: $\Delta_{\text{АЦП(прив)}}$ — значение допускаемой основной приведенной погрешности измерений АЦП к диапазону измерений входных сигналов, %;

 $\Delta_{\text{ЦАП(прив)}}$ — значение допускаемой основной приведенной погрешности измерений ЦАП к диапазону выходных сигналов, %;

 $X_{\text{вых макс}}$, $X_{\text{вых мин}}$ — соответственно верхний и нижний пределы диапазона выходных сигналов поверяемого прибора, мА (Ом, мВ, В)

Значение пределов допускаемой основной приведенной погрешности измерений АЦП к диапазону измерений входных сигналов ($\Delta_{\text{АЦП(прив)}}$, %) рассчитывается по формуле 2:

$$\Delta_{\text{ALIII}(\text{прив})} = \frac{\Delta_{\text{ALIII}(\text{a6c})}}{X_{\text{BX MAKC}} - X_{\text{BX MAH}}} \cdot 100\% \tag{2}$$

где: $\Delta_{\text{АЦП(a6c)}}$ - значение пределов допускаемой основной абсолютной погрешности измерений АЦП, мА (Ом, мВ, В);

 $X_{\text{вх маке}}, X_{\text{вх мин}}$ - соответственно верхний и нижний пределы диапазона измерений входных сигналов поверяемого прибора, мА (Ом, мВ, В)

Значение пределов допускаемой основной приведенной погрешности измерений ЦАП к диапазону выходных сигналов ($\Delta_{\text{ЦА}\Pi(\text{прив})}$, %) рассчитывается по формуле 3:

$$\Delta_{\text{ЦА}\Pi(\text{прив})} = \frac{\Delta_{\text{ЦА}\Pi(\text{a6c})}}{\chi_{\text{вых макс}} - \chi_{\text{вых мин}}} \cdot 100\%$$
 (3)

где: $\Delta_{\text{ЦАП(абс)}}$ - значение пределов допускаемой основной абсолютной погрешности измерений АЦП, мА (Ом, мВ, В);

 $X_{\text{вых макс}}, \ X_{\text{вых мин}}$ - соответственно верхний и нижний пределы диапазона выходных сигналов поверяемого прибора, мА (Ом, мВ, В)

6.2.1. Определение основной погрешности ИП (Кроме моделей D5263S, D6263S, D5264S, D6264S).

6.2.1.1. Погрешность определяют в пяти контрольных точках, находящихся внутри настроенного диапазона измерений, включая нижний и верхний пределы настроенного диапазона или при значениях, соответствующих $1,5\pm0,5$; 25 ± 5 ; 50 ± 5 ; 75 ± 5 ; $98,5\pm0,5$ % от диапазона измерений.

При необходимости устанавливают на ИП соответствующий режим измерения/преобразования сигналов.

- 6.2.1.2. В зависимости от используемых входных (выходных) сигналов и в соответствии с руководством по эксплуатации, подключают меру электрического сопротивления постоянного тока многозначную МС 3071 (компаратор-калибратор универсальный КМ300Р или калибратор многофункциональный Fluke 5720A), мультиметр 3458A (калибратор многофункциональный и коммуникатор ВЕАМЕХ МС6 (-R) или ПК с ПО SWC5090) и источник питания к соответствующим клеммам ИП.
- 6.2.1.3. С эталонного прибора воспроизводят значение нормируемого сигнала, соответствующее первой контрольной точке.

- 6.2.1.4. После стабилизации показаний поверяемого ИП, снимают их при помощи мультиметра 3458A (калибратора многофункционального и коммуникатора BEAMEX MC6 (-R) или ПК с ПО SWC5090).
 - 6.2.1.5. Повторяют операции по п.п. 6.2.1.3-6.2.1.4 для остальных контрольных точек.
- 6.2.1.6. Рассчитывают основную абсолютную погрешность ($\Delta_{aбc}$, мА (Ом, мВ, В)) для каждой поверяемой точки по формуле 4:

$$\Delta_{abc} = X_{usm} - X_{\exists pacy} \tag{4}$$

где: $X_{u_{3M}}$ — значение измеренного выходного сигнала, мА (Ом, мВ, В);

 $X_{\it Эрасч}$ — значение сигнала, воспроизводимое эталонным прибором, мА (Ом, мВ, В);

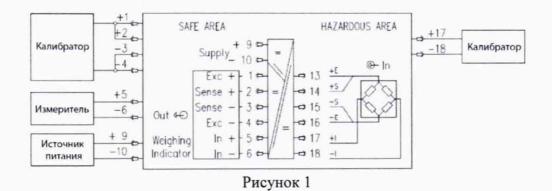
или

– расчетное значение сигнала, воспроизводимое эталонным прибором в эквиваленте единицы измерения выходного сигнала, мА (Ом, мВ, В) рассчитанное по формуле 5:

$$X_{3pac4} = X_{sux \min} + \frac{X_{3} - X_{\text{exmin}}}{X_{sx \max} - X_{ex \min}} \cdot (X_{sux \max} - X_{sux \min})$$
 (5)

где: $X_{\text{sx max}}$, $X_{\text{sx min}}$ — соответственно верхний и нижний пределы настроенного диапазона входных сигналов поверяемого прибора, мА (Ом, мВ, В);

 $X_{\text{вых max}}$, $X_{\text{вых min}}$ — соответственно верхний и нижний пределы настроенного диапазона выходных сигналов поверяемого прибора, мА (Ом, мВ, В);


 $X_{\rm 3}$ – значение сигнала, воспроизводимое эталонным прибором, мА (Ом, мВ, В).

6.2.1.7. Полученные значения основной абсолютной погрешности во всех контрольных точках не должны превышать предельно допустимых значений, приведенных в Описании типа на преобразователи измерительные серий D5000, D6000, изготавливаемые фирмой «G.M. International S.r.l.», Италия.

6.2.2. Определение основной погрешности ИП (Только для моделей D5263S, D6263S)

- 6.2.2.1. Погрешность определяют в пяти контрольных точках, находящихся внутри настроенного диапазона измерений, включая нижний и верхний пределы настроенного диапазона.
- 6.2.2.2. В соответствии с руководством по эксплуатации и (или) рисунком 1 подключают компаратор-калибратор универсальный КМ300Р (клеммы 17, 18), калибратор многофункциональный Fluke 5720А (клеммы 1, 2, 3 ,4), мультиметр 3458А или калибратор многофункциональный и коммуникатор BEAMEX МС6 (-R) (клеммы 5, 6) и источник питания (клеммы 9, 10) к соответствующим клеммам ИП. Рекомендуется поместить поверяемый прибор в пассивный термостат.

Общий вид схемы подключения к клеммам ИП указан на рисунке 1:

- 6.2.2.3. Подают значение, соответствующее 4,1 В с калибратора, подключенного к клеммам 1, 2, 3, 4
- 6.2.2.4. Находят минимальное (нулевое) значение выходного сигнала поверяемого прибора (Хн, мВ). Воспроизводят с эталонного прибора, подключенного к клеммам 17, 18 значение соответствующее 0 мВ. В качестве нулевого значения, берется значение выходного сигнала, считываемое с измерителя, подключенного к клеммам 5, 6.
- 6.2.2.5. Находят максимальное значение выходного сигнала поверяемого прибора (Хл, мВ). Воспроизводят с эталонного прибора, подключенного к клеммам 17, 18 значение, соответствующее 16 мВ. В качестве максимального значения, берется значение выходного сигнала, считываемое с измерителя, подключенного к клеммам 5, 6.
- 6.2.2.6. Последовательно воспроизводят с эталонного прибора, подключенного к клеммам 17, 18 значения соответствующие требуемым контрольным (поверяемым) точкам (0, 4, 8, 12, 16 мВ) записывая значения, считываемые с помощью измерителя, подключенного к клеммам 5, 6.
- 6.2.2.7. Рассчитывают теоретические значения выходного сигнала поверяемого прибора для каждой поверяемой точки по п.п. 6.2.2.8 - 6.2.2.12.
- 6.2.2.8. Теоретическое значение выходного сигнала для контрольной точки 0 мВ (0 % от диапазона измерений), соответствует нулевому значению выходного сигнала (п. 6.2.2.4).
- 6.2.2.9. Рассчитывают теоретическое значение выходного сигнала (Хт25%, мВ) для контрольной точки, соответствующей 4 мВ (25 % от диапазона измерений) по формуле 6:

$$X_{T25\%} = ((X_{\mathcal{I}} - X_{\mathcal{H}}) \cdot 0.25) + X_{\mathcal{H}}$$
 (6)

- $X_{T25\%} = \left(\left(X_{\text{Д}} X_{\text{H}} \right) \cdot 0.25 \right) + X_{\text{H}} \quad (6)$ где : X_{H} минимальное (нулевое) значение выходного сигнала поверяемого прибора рассчитанное в соответствии с п. 6.2.2.4, мВ;
- Х_Л максимальное значение выходного сигнала поверяемого прибора рассчитанное в соответствии с п. 6.2.2.5, мВ
- 6.2.2.10. Рассчитывают теоретическое значение выходного сигнала (Хт50%, мВ) для контрольной точки, соответствующей 8 мВ (50 % от диапазона измерений) по формуле 7:

$$X_{750\%} = ((X_{\mathcal{I}} - X_H) \cdot 0.50) + X_H$$
 (7)

- где : Х_Н минимальное (нулевое) значение выходного сигнала поверяемого прибора рассчитанное в соответствии с п. 6.2.2.4, мВ;
- Хл максимальное значение выходного сигнала поверяемого прибора рассчитанное в соответствии с п. 6.2.2.5, мВ
- 6.2.2.11. Рассчитывают теоретическое значение выходного сигнала (Хт75%, мВ) для контрольной точки, соответствующей 12 мВ (75 % от диапазона измерений) по формуле 8:

$$X_{775\%} = ((X_{\mathcal{I}} - X_H) \cdot 0.75) + X_H$$
 (8)

- где : Х_Н минимальное (нулевое) значение выходного сигнала поверяемого прибора рассчитанное в соответствии с п. 6.2.2.4, мВ;
- ХД максимальное значение выходного сигнала поверяемого прибора рассчитанное в соответствии с п. 6.2.2.5, мВ
- 6.2.2.12. Теоретическое значение выходного сигнала для контрольной точки 16 мВ (100 % от диапазона измерений), соответствует максимальному значение выходного сигнала (п. 6.2.2.5).
- 6.2.2.13. Рассчитывают основную абсолютную погрешность (Дабс, мВ) для каждой контрольной (поверяемой) точки по формуле 9:

$$\Delta_{a\delta c} = X_{Ti} - X_{u_{3Mi}} \tag{9}$$

где: X_{Ti} – теоретическое значение выходного сигнала для i-й контрольной точки, мB; $X_{uзмi}$ – значение измеренного выходного сигнала для і-й контрольной точки, мВ;

6.2.2.14. Полученные значения основной абсолютной погрешности во всех контрольных точках не должны превышать (занижать) $\pm 0,005$ мВ.

6.2.3. Определение основной погрешности ИП (Только для моделей D5264S, D6264S)

- 6.2.3.1. Погрешность определяют в пяти контрольных точках, находящихся внутри настроенного диапазона измерений, включая нижний и верхний пределы настроенного диапазона.
- 6.2.3.2. В соответствии с руководством по эксплуатации и (или) рисунком 2 подключают компаратор-калибратор универсальный КМ300Р (клеммы 17, 18), мультиметр 3458А или калибратор многофункциональный и коммуникатор BEAMEX MC6 (-R) (клеммы 1, 2), источник питания (клеммы 9, 10) к соответствующим клеммам ИП, а также USB адаптер РРС5092 подключенный к ПК с ПО SWC5090.

Общий вид схемы подключения к клеммам ИП указан на рисунке 2:

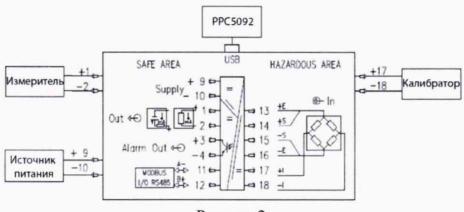


Рисунок 2

6.2.3.3. Получают (настраивают) нулевое значение (Acquire Zero), для этого воспроизводят с эталонного прибора, подключенного к клеммам 17, 18 значение соответствующее 0 мВ. Устанавливают значение 100000 Div в строке максимальный вес (Maximum weight) окна программного обеспечения SWC5090. Нажимают кнопку «Получить нулевое значение (Acquire Zero)». Общий вид окна программного обеспечения SWC5090 приведен на рисунке 3:

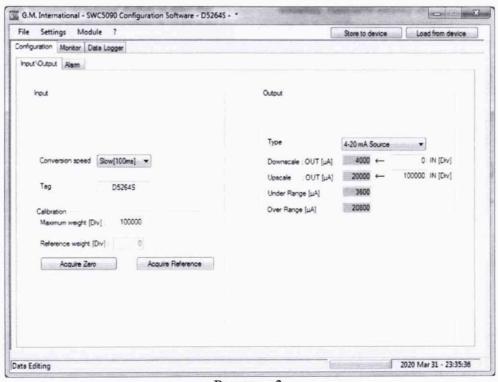


Рисунок 3

6.2.3.4. Получают (настраивают) эталонное значение (Acquire Reference), для этого воспроизводят с эталонного прибора, подключенного к клеммам 17, 18 значение соответствующее 16 мВ. Нажимают кнопку «Получить эталонное значение (Acquire Reference)». Устанавливают значение 100000 Div в строке эталонного значения (Reference weight) появившегося окна программного обеспечения SWC5090 в соответствии с рисунком 4.

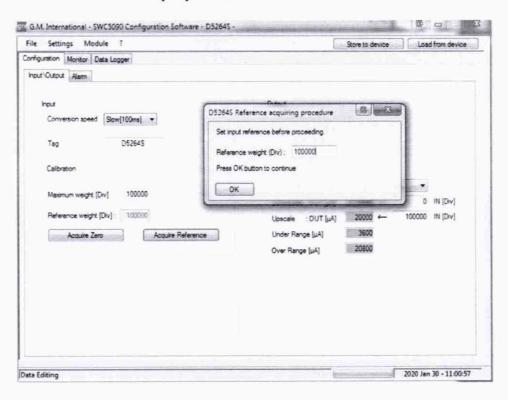


Рисунок 4

6.2.3.5. Переходят во вкладку «Monitor» ПО SWC5090 в соответствии с рисунком 5 и нажимают кнопку «Start».

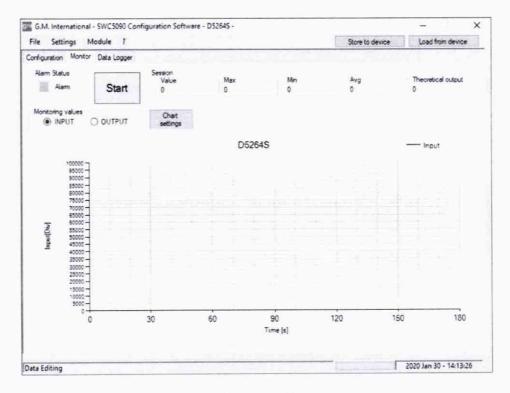


Рисунок 5

- 6.2.3.6. Последовательно воспроизводят с эталонного прибора, подключенного к клеммам 17, 18 значения соответствующие требуемым контрольным (поверяемым) точкам (0, 4, 8, 12, 16 мВ) записывая значения, считываемые с помощью ПО SWC5090, а также измерителя подключенного к клеммам 1, 2. Значения индицируемые на экране монитора с помощью ПО SWC5090 во всех контрольных точках не должны превышать (занижать) ± 20 Div.
- 6.2.3.7. Рассчитывают основную абсолютную погрешность ($\Delta_{aбc}$, мА) для каждой контрольной (поверяемой) точки по формуле 10:

$$\Delta_{\mathsf{afc}} = I_{\mathsf{H3M}} - I_{\mathsf{9}} \tag{10}$$

где: Іизм – значение измеренного выходного сигнала, мА;

 I_9 – значение сигнала, воспроизводимое эталонным прибором в эквиваленте силы постоянного тока, определяемое по формуле 11, мА:

$$I_{3} = I_{\text{Bblx}min} + \frac{(X_{3} - X_{\text{Bx}min})}{(X_{\text{Bx}max} - X_{\text{Bx}min})} \cdot (I_{\text{Bblx}max} - I_{\text{Bblx}min})$$
(11)

где: $X_{\text{вхmах}}$, $X_{\text{вхmin}}$ — соответственно верхний и нижний пределы настроенного интервала входных сигналов поверяемого прибора, мВ;

 $I_{\text{выхмах}}$, $I_{\text{выхміn}}$ — соответственно верхний и нижний пределы настроенного диапазона выходных сигналов поверяемого прибора, мА;

Х₃ – значение сигнала, воспроизводимое эталонным прибором, мВ.

6.2.3.8. Полученные значения основной абсолютной погрешности во всех контрольных точках не должны превышать (занижать) ± 0.01 мА.

7. Оформление результатов поверки

- 7.1 Приборы, прошедшие поверку с положительным результатом, признаются годными и допускаются к применению. На них оформляется свидетельство о поверке в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г. (или иным актуальным документом заменяющим его).
- 7.2 При отрицательных результатах поверки, в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г. (или иным актуальным документом заменяющим его), оформляется извещение о непригодности.

Разработали:

Научный сотрудник отдела метрологического обеспечения термометрии ФГУП «ВНИИМС»

Л.Д. Маркин

А.А. Игнатов

Начальник

отдела метрологического обеспечения термометрии

ФГУП «ВНИИМС»