

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ И МОСКОВСКОЙ ОБЛАСТИ» (ФБУ «РОСТЕСТ-МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора ФБУ «Ростест-Москва»

А.Д. Меньшиков

«16» марта 2020 г.

Государственная система обеспечения единства измерений

«Ростест-

СПЕКТРОФОТОМЕТРЫ FOSS МОДИФИКАЦИИ Infratec $^{\rm TM}$, NIRS $^{\rm TM}$ DS2500 L

Методика поверки

РТ-МП-6842-448-2020

1 Введение

Настоящая методика распространяется на спектрофотометры FOSS модификаций Infratec $^{\rm TM}$, NIRS $^{\rm TM}$ DS2500 L (далее – спектрофотометры) производства FOSS Analytical A/S, Дания, и устанавливает методы и средства их первичной и периодической поверки.

Интервал между поверками 1 год.

2 Операции поверки

- 2.1 При проведении поверки выполняют следующие операции:
- внешний осмотр п.7.1
- опробование п.7.2
- определение абсолютной погрешности шкалы длин волн п.7.3
- определение относительного среднего квадратического отклонения (ОСКО) при измерении спектральной оптической плотности п.7.4
- 2.2 При получении отрицательного результата в процессе выполнения любой из операций поверки спектрофотометр признают непригодным и его поверку прекращают.

3 Средства поверки

- При проведении поверки спектрофотометра применяются следующие средства поверки:
- комплект нейтральных светофильтров КС-100, диапазон СКНП от 0,01 до 0,93 отн. ед. в диапазоне от 250 до 2500 нм, ПГ \pm 0,5, отн. ед.
- комплект светофильтров КНС-10.5, диапазон СКНП от 0,02 до 0,95 отн.ед., ПГ от \pm 0,15 до \pm 0,35 отн. ед., диапазон от 260 до 2700 нм, ПГ от \pm 0,05 до \pm 0,5 нм
 - светофильтр ПС-7 из комплекта КС-102, диапазон от 400 до 800 нм, ПГ ± 0.05 нм
- прибор комбинированный Testo-622, температура от минус 10 до 60 °C, $\Pi\Gamma$ ±0,4 °C, влажность от 10 до 95 %, $\Pi\Gamma$ ±3%, давление от 300 до 1200 г Π а, $\Pi\Gamma$ ±5 г Π а
- 3.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

4 Требования безопасности

При проведении поверки спектрофотометров должны соблюдаться требования безопасности согласно эксплуатационной документации, а также правила техники безопасности, принятые на предприятии, эксплуатирующем спектрофотометр.

Для получения данных, необходимых для поверки, допускается участие операторов, обслуживающих спектрофотометры (под контролем поверителя).

5 Условия поверки

5.1 Поверка спектрофотометра должна проводиться при следующих внешних условиях:

температура окружающего воздуха, °C
 от 15 до 25
 относительная влажность, %
 от 10 до 90
 от 84 до 106,7

5.2 Не допускается попадание на спектрофотометр прямых солнечных лучей.

6 Подготовка к проведению поверке

- 6.1. Подготовить спектрофотометр к работе в соответствии с указаниями руководства по эксплуатации.
 - 6.2. Включить спектрофотометр и прогреть его в течение 10 мин.

7 Проведение поверки

7.1 Внешний осмотр

При внешнем осмотре должно быть установлено:

отсутствие механических повреждений корпуса, органов управления и соединительных проводов, влияющих на работоспособность спектрофотометра;

наличие маркировки (наименование или товарный знак завода-изготовителя, тип и заводской номер прибора).

7.2 Опробование

- 7.2.1. Для опробования спектрофотометр включают и подготавливают к работе в соответствии с разделом «Установка прибора» руководства по эксплуатации.
 - 7.2.2. Провести идентификацию программного обеспечения.

Проверяется наименования программного обеспечения и номера версий ПО.

считается положительным, если наименования Результат программного обеспечения и номера версий соответствуют данным таблицы 1

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	
Наименование программного обеспечения	ISIscan Nova	Mosaic
Номер версии (идентификационный номер) ПО	не ниже 8.0	не ниже 8.0

7.2.3. При опробовании должно быть установлено:

- работоспособность деталей кюветного отделения, крышки кюветного отделения;
- правильность отработки задаваемых режимов программы измерений.

Результат опробования считается положительным, если задаваемые режимы программы измерений выполняются правильно.

- 7.3. Определение абсолютной погрешности шкалы длин волн
- 7.3.1. Установить в кюветное отделение светофильтр ПС-7 из комплекта КС-102 для модификации Infratec TM и НГГ из комплекта КНС-10.5 для модификации NIRSTM DS2500 L и провести регистрацию его спектра поглощения 3 раза.
- 7.3.2. Нажать на кнопку «Печать» (значок принтера) и последовательно выбрать из появившегося меню и сохранить следующие отчеты:
- для модификации InfratecTM: «Поверка_(пики)_Infratec.pdf»;
 для модификации NIRSTM DS2500 L «Поверка_(пики)_2500L_1.pdf», «Поверка_(пики)_2500L_2.pdf», «Поверка (пики) 2500L 3.pdf».
- 7.3.3. По данным сохраненных отчетов определить длины волн $\lambda_{iизм}$, соответствующие максимумам оптической плотности, и определить арифметические значения длин волн контрольных пиков поглощения λ_{icn}
 - 7.3.4. Определить абсолютную погрешность шкалы длин волн Δ_{λ} , нм, по формуле:

$$\Delta_{\lambda} = \lambda_{\text{icp}} - \lambda_{\text{idenct}},$$
 (1)

где $\lambda_{\text{ідейст}}$ – действительные значения длин волн, указанные в свидетельстве о поверке, нм

 λ_{icp} – измеренные значения длин волны, нм

Результат операции считается положительным, если абсолютная погрешность шкалы длин волн не превышает ±4 нм.

- 7.4. Определение относительного среднего квадратического отклонения (ОСКО) при измерении спектральной оптической плотности
- 7.4.1. Последовательно установить в кюветное отделение светофильтры из комплекта КС-100 для модификации InfratecTM и из комплекта КНС-10.5 для модификации NIRSTM DS2500 L и провести по 3 измерения их спектров поглощения.
- 7.4.2. Нажать на кнопку «Печать» (значок принтера) и последовательно выбрать из появившегося меню и сохранить следующие отчеты:

 — для модификации Infratec TM: «Поверка_(ОП)_Infratec.pdf»;

 — для модификации NIRS TM DS2500 L: «Поверка_(ОП)_2500L.pdf».

7.4.3. Рассчитать среднее значение оптической плотности для каждого светофильтра для длины волны 600, 750, 1000, 1100 для модификации Infratec TM и 400, 750, 1000,1500, 2450 для модификации NIRS TM DS2500 L по формуле:

$$\overline{D} = \frac{\sum_{i=1}^{n} D_{i}}{n}, \overline{B} \qquad (2)$$

где $\overline{\mathrm{D}}$ – среднее значение оптической плотности для каждого светофильтра;

D_і – измеренные значения оптической плотности светофильтров;

n - количество измерений (n = 3).

7.4.4. Рассчитать относительное среднее квадратическое отклонение результата измерений S по формуле:

$$S = \frac{100}{\overline{D}} \cdot \sqrt{\frac{\sum_{i=1}^{n} \left(D_{i} - \overline{D}\right)^{2}}{(n-1)}}, \% \quad (3)$$

Результаты поверки считаются положительными, если относительное СКО при измерении спектральной оптической плотности для каждого светофильтра на каждой длине волны не превышает:

в диапазоне от 0,03 до 0,5 Б включ.

1,0 %

- в диапазоне св. 0,5 до 2,0 Б

0.5 %

8 Оформление результатов поверки.

8.1 При положительных результатах поверки спектрофотометр признается годным к применению, и на него выдается свидетельство о поверке в соответствии с действующими правовыми нормативными документами.

Знак поверки в виде оттиска клейма наносится на свидетельство о поверке.

8.2. Спектрофотометр, не удовлетворяющий хотя бы одному из требований п.п.7.1 - 7.5 настоящей методики, признается непригодным. Отрицательные результаты поверки оформляются выдачей извещения о непригодности с указанием причин.

Начальник лаборатории 448 ФБУ «Ростест – Москва»

А.Г. Дубинчик

Начальник сектора 2 лаб.448 ФБУ «Ростест – Москва»

С.В. Панков