ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы электрических цепей векторные E5063A, E5071C

Назначение средства измерений

Анализаторы электрических цепей векторные E5063A, E5071C (далее - анализаторы) предназначены для измерений комплексных S-параметров двух и четырехполюсных устройств в коаксиальных трактах.

Описание средства измерений

Принцип действия анализаторов основан на возможности раздельного измерения параметров падающей и отраженной волны сигнала с применением направленных ответвителей. В своём составе анализатор содержит генератор качающейся частоты (ГКЧ), двухканальный приёмник с двумя опорными смесителями и блок измерений S-параметров. ГКЧ формирует высокостабильный по амплитуде сигнал в полосе частот от 9 кГц до 20 ГГц (в зависимости от установленной опции).

Конструктивно анализатор выполнен в виде настольного моноблока. В анализаторе имеется встроенная система самодиагностики. Анализаторы могут иметь два или четыре входных порта. Коаксиальный выход с соединителем типа N в соответствии с ГОСТ 13317-89.

Анализатор обеспечивает измерение частотных, амплитудных и фазовых характеристик различных устройств. В анализаторе реализованы все виды векторной коррекции системных ошибок, в том числе поддерживаются модули электронной калибровки. Путём трансформации данных из частотной области во временную анализатор позволяет точно локализовать место обрыва. Анализаторы применяются в процессе разработки, ремонта и эксплуатации радиотехнических устройств, в том числе в составе автоматизированных измерительных систем, оборудованы разъёмами для подключения GPIB, LAN, USB

Анализаторы применяются в процессе разработки, ремонта и эксплуатации радиотехнических устройств, в том числе в составе автоматизированных измерительных систем.

Анализаторы поставляются со следующими опциями, приведёнными в таблице 1.

Таблица 1

Обозначе-	Описание опции	Модель ан	ализатора
ние опции		E5063A	E5071C
006	Анализ устройств беспроводной передачи мощности	+	-
008	Режим измерения с независимым смещением частоты синтезатора относительно приёмника	-	+
010	Анализ во временной области	+	+
011	Анализ во временной области и приложение для тестирования печатных плат	+	-
017	Извлекаемый источник хранения данных	-	+
019	Стандартный источник хранения данных	-	+
1E5	Высокостабильный источник опорной частоты	-	+
205	2-х портовый прибор с частотным диапазоном от 100 кГц до 500 МГц	+	-
215	2-х портовый прибор с частотным диапазоном от 100 кГц до 1,5 ГГц	+	-
235	2-х портовый измерительный блок с частотным диапазоном от 100 кГц до 3 ГГц с цепями подачи смещения	+	+

PPJN' SKLELLIE" GLEWNON U.B.

Regif-

Обозначе-	Описание опции	Модель анализатора		
ние опции		E5063A	E5071C	
240	2-х портовый измерительный блок с частотным диапазоном от 9 кГц до 4,5 ГГц без цепей подачи смещения	-		
245	2-х портовый измерительный блок с частотным диапазоном от 100 кГц до 4,5 ГГц с цепями подачи смещения	+	+	
260	2-х портовый измерительный блок с частотным диапазоном от 9 кГц до 6,5 ГГц без цепей подачи смещения	-	+	
265	2-х портовый измерительный блок с частотным диапазоном от 100 кГц до 6,5 ГГц с цепями подачи смещения	+	+	
280	2-х портовый измерительный блок с частотным диапазоном от 9 кГц до 8,5 ГГц без цепей подачи смещения	-	+	
285	2-х портовый измерительный блок с частотным диапазоном от 100 кГц до 8,5 ГГц с цепями подачи смещения	-	+	
2D5	2-х портовый измерительный блок с частотным диапазоном от 300 кГц до 14 ГГц с цепями подачи смещения	+	+	
2H5	2-х портовый измерительный блок с частотным диапазоном от 300 кГц до 18 ГГц с цепями подачи смещения	+	-	
2K5	2-х портовый измерительный блок с частотным диапазоном от 300 кГц до 20 ГГц с цепями подачи смещения	-	+	
440	4-х портовый измерительный блок с частотным диапазоном от 9 кГц до 4,5 ГГц без цепей подачи смещения	-	+	
445	4-х портовый измерительный блок с частотным диапазоном от 100 кГц до 4,5 ГГц с цепями подачи смещения	-	+	
460	4-х портовый измерительный блок с частотным диапазоном от 9 кГц до 6,5 ГГц без цепей подачи смещения	-	+	
465	4-х портовый измерительный блок с частотным диапазоном от 100 кГц до 6,5 ГГц с цепями подачи смещения	-	+	
480	4-х портовый измерительный блок с частотным диапазоном от 9 кГц до 8,5 ГГц без цепей подачи смещения	-	+	
485	4-х портовый измерительный блок с частотным диапазоном от 100 кГц до 8,5 ГГц с цепями подачи смещения	-	+	
4D5	4-х портовый измерительный блок с частотным диапазоном от 300 кГц до 14 ГГц с цепями подачи смещения	-	+	
4K5	4-х портовый измерительный блок с частотным диапазоном от 300 кГц до 20 ГГц с цепями подачи смещения	-	+	
790	ПО для управления конфигурируемым многопортовым блоком	-	+	
TDR	Расширение функции анализа во временной области	-	+	
UNQ	Стандартный источник опорной частоты	-	+	
E5092A	Конфигурируемый многопортовый блок с частотным диапазоном от 50 МГц до 20 ГГц	-	+	
E5092A- 020	Коммутация сигналов до 20 ГГц	-	+	

Общий вид анализаторов, место нанесения знака утверждения типа и схема пломбировки анализаторов от несанкционированного доступа приведены на рисунках 1-4.



Рисунок 1 – Общий вид анализатора Е5063А. Вид спереди

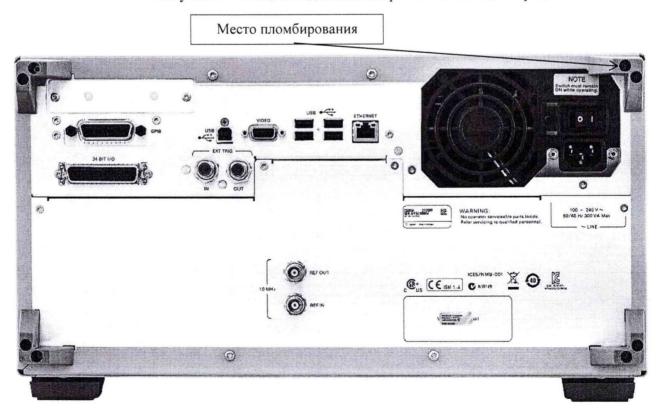


Рисунок 2 – Общий вид задней панели анализатора Е5063А

auf

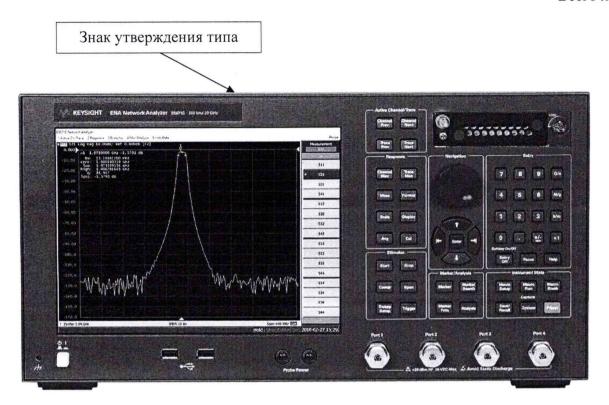


Рисунок 3 – Общий вид анализатора Е5071С. Вид спереди



Рисунок 4 – Общий вид задней панели анализатора Е5071С

Программное обеспечение

Анализаторы работают под управлением программного обеспечения (ПО), предназначенного для управления, вывода результатов технического анализа и спектра сигналов на экран монитора анализатора. Идентификационные данные метрологически значимой части ПО приведены в таблице 2. Уровень защиты ПО «низкий» в соответствии с Р 50.2.077-2014.

Таблица 2 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение для моделей			
Идентификационное наименование ПО	E5063A	E5071C		
Идентификационное наименование ПО	E5063A Network	E5071C Network		
•	Analyzers Firmware	Analyzers Firmware		
	Update			
Номер версии (идентификационный номер) ПО	не ниже А.04.01	не ниже В.12.03		

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики анализаторов Е5063 А

Наименование характеристики	3н	Значение					
Динамический диапазон ¹⁾ , дБ							
Частотный диапазон:	Полоса $\Pi \Psi = 3 \ \kappa \Gamma \mu^{2}$	Полоса ПЧ = 10 Гц					
– от 100 до 300 кГц включ.	63	88					
св. 0,3 до 8,5 МГц включ.	68	93					
св. 8,5 до 100 МГц включ.	91	116					
св. 0,1 до 4,34 ГГц включ.	92	117					
св. 4,34 до 8,5 ГГц включ.	81	106					
св. 8,5 до 13,0 ГГц включ.	75	100					
св. 13,0 до 16,0 ГГц включ.	65	90					
– cв. 16,0 до 18,0 ГГц	62	87					

Пределы допускаемой абсолютной погрешности измерений амплитуды (фазы) в динамическом диапазоне при опорном уровне выходной мощности минус 10 дБм³⁾

ekola ghanasone nph onophe		
Уровень входной мощности, дБм	Амплитуда, дБ	Фаза, градус
6	$\pm 0,281$	$\pm 10,198$
0	$\pm 0,086$	±1,463
-10	$\pm 0,012$	±0,078
-20	$\pm 0,020$	±0,123
-30	$\pm 0,024$	±0,145
-40	$\pm 0,028$	±0,173
-50	$\pm 0,033$	±0,209
-60	$\pm 0,045$	±0,287
-70	$\pm 0,072$	±0,465
-80	$\pm 0,160$	±1,053
-90	$\pm 0,398$	±2,677
-100	$\pm 1,070$	±7,526

Характеристики выходного порта (источника-генератора)

Частотный диапазон, МГц:	
– опция 205	от 0,1 до 500
– опция 215	от 0,1 до 1500
– опция 235	от 0,1 до 3000
– опция 245	от 0,1 до 4500
– опция 265	от 0,1 до 6500
– опция 285	от 0,1 до 8500
– опция 2D5	от 0,1 до 14000
– опция 2Н5	от 0,1 до 18000

Продолжение таблицы 3					
Наименование характеристики	I		Значение		
Разрешение по частоте, Гц					
– от 100 кГц до 6,5 ГГц включ.			1		
св. 6,5 до 130, ГГц включ.			2		
- cв. 13,0 до 18,0 ГГц			11		
Пределы допускаемой относительной	погрешно-				
сти установки частоты			$\pm 7.10^{-6}$		
Диапазон установки выходной мощности	и, дБм				
– от 100 до 300 кГц включ.			от -20 до -5		
св. 300 кГц до 8,5 ГГц включ.			от -20 до 0		
- cв. 8,5 до 18 ГГц			от -15 до -5		
Разрешающая способность установки в	ыходной				
мощности, дБ			0,05		
Характеристики і	входного пог	ота (приемни			
Максимально допустимое значение мог		X 1			
входе тестового порта анализатора, дБм			6		
Уровень собственных шумов, дБм/Гц ⁴ , п	не более				
– от 0,1 до 8,5 МГц включ.			-103		
- cв. 8,5 до 100 МГц включ.			-126		
- cв. 0,1 до 4,34 ГГц включ.			-127		
- cв. 4,34 до 8,5 ГГц включ.		-116			
- cb. 8,5 до 130, ГГц включ.		-115			
- cв. 13,0 до 16,0 ГГц включ.		-105			
- cв. 16,0 до 18,0 ГГц включ.		-102			
Значение перекрёстных помех, дБ, не бо	пее				
 – от 100 до 300 кГц включ. 		-88			
св. 0,3 до 8,5 МГц включ.		-93			
св. 8,5 МГц до 4,34 ГГц включ.		-115			
- cв. 4,34 до 6,0 ГГц включ.		-105			
- cв. 6,0 до 13,0 ГГц включ.		-100			
- cв. 13,0 до 16,0 ГГц включ.		-90			
св. 16,0 до 18,0 ГГц включ.		-85			
Шумы трассы (при маг	ксимальной і	выхолной мо			
, , , , , , , , , , , , , , , , , , , ,		, дБм, СКЗ ⁵⁾	Фаза, гр	алус	
	коэффици-		коэффициент	коэффици-	
	ент пере-	циент от-	передачи	ент отраже-	
	дачи	ражения	тереди т	ния	
Частотный диапазон / ПЧ	Au 111	Panenn			
– от 100 до 300 кГц включ./ 3 кГц	8	16	0,050	0,100	
- cb. 0,3 до 8,5 МГц включ./ 3 кГц	6	10	0,040	0,066	
- cв. 8,5 МГц до 4,34 ГГц включ./70 кГц	5	9	0,035	0,060	
- cb. 4,34 до 8,5 ГГц включ./ 70 кГц	10	20	0,066	0,130	
- cb. 8,5 до 13,0 ГГц включ./ 70 кГц	15	30	0,100	0,200	
- cв. 13,0 до 16,0 ГГц включ./ 70 кГц	25	35	0,170	0,230	
- cв. 16,0 до 18,0 ГГц / 70 кГц	30	45	0,200	0,300	
			0,200	0,000	

***	_	-
Продолжение	тапппппп	4
Продолжени	1 aomini	2

Продолжение таол				2		
Наименование ха				Значени		
Неисправленные	характерист					
		Напра-	Согласова-	Согласо-	Отклонение	Отклонение
		влен-	ние источ-	вание	модуля коэф-	модуля ко-
Частотный диапа	зон	ность,	ника, дБ	нагрузки,	фициента от-	эффициента
		дБ		дБ	ражения, дБ	передачи, дБ
- от 100 до 300 кl	Гц включ.	10	20	-	$\pm 3,0$	±3,0
- cв. 0,3 до 1,0 M	Гц включ.	10	20	-	$\pm 3,0$	±3,0
- cв. 1,0 до 100 M	1Гц включ.	25	25	14	$\pm 1,0$	±1,0
- св. 0,1 до 3,0 ГІ	ц включ.	25	25	11	±1,0	±1,0
- св. 3,0 до 6,0 ГІ	ц включ.	20	20	10	$\pm 1,0$	±1,0
- cв. 6,0 до 10,0 I		15	15	7	±1,0	±1,0
- св. 10,0 до 13,0		10	15	-	± 1.0	±1,0
- св. 13,0 до 18,0		10	15	-	±1,0	±1,0
Исправленные ха				занием калиб	ровочного наб	
		Напра-	Согласо-	Согласо-	Отклонение	Отклонение
		влен-	вание ис-	вание	модуля коэф-	модуля ко-
Частотный ди	апазон	ность, дБ	точника,	нагрузки,	фициента от-	эффициента
тастотный ди	lallason	ность, до	дБ	дБ	ражения, дБ	передачи, дБ
– от 0,1 до 10 MI	THE DESIGNATION OF THE PROPERTY OF THE PROPERT	49	41	47	±0,011	±0,082
- cв. 0,01 до 3 ГГ		46	40	46	± 0.021	± 0.032 ± 0.037
	ц включ.	38	35	36	± 0.054	±0,037 ±0,128
<u>- св. 3 до 9 ГГц</u>						
Значение моду-	Пределы д	опускаемо		•	сти измерений а	амплитуды
ля коэффициен-	0.1 10	VE		нта передачи		0 FF
та передачи, дБ	от 0,1 до 10			о 3 ГГц вклн		9 ГГц включ.
10	±0,1			±0,118),215
0	±0,0			±0,054),152
-10	±0,1			±0,063),159
-20	±0,1			±0,067),163
-30	±0,1			±0,071),167
-40	$\pm 0,1$			±0,077),173
-50	±0,2			±0,088),190
-60	±0,6			±0,121	1),263
-70	±1,8			±0,229),571
-80	±4,8	352		$\pm 0,575$,563
-90	±10,	537	=	±1,597	±4	1,141
Значение моду-	Предел	ы допускае	емой абсолю	тной погреш	ности измерен	ий фазы
ля коэффициен-		К	оэффициент	а передачи, г	радус	
та передачи, дБ	от 0,1 до 10	МГц вклю	оч. св. 0,01 д			
10	±1,7	743	=	±1,444		2,096
0	±0,6			±0,358		,009
-10	±0,709			±0,410		1,052
-20	±0,7			±0,433		,075
-30	±0,7			$\pm 0,459$		1,102
-40	±0,9			±0,497		1,143
-50	±1,6			±0,573		1,255
-60	±4,4			±0,791		1,753
-70	±13,			±1,520	1	3,895
-80	±48,		1	±3,919		1,364
-90				11,634		7,645
-90 ±180,000				-11,034	±3	7,043

Тродолжение таблицы 3									
Наименование		Значение							
характеристики									
Значение моду-	Пределы до	Пределы допускаемой абсолютной погрешности измерений амплитуды							
ля коэффицие-		коэффициента отражения, дБ							
нта отражения	от 0,1 до 10 М	ИГ ц включ	г. св. 0,01 до	3,0 ГГц вк.	люч.	св. 3 до	9 ГГц включ.		
0	$\pm 0,00$	41	士	0,0056			,0136		
0,1	$\pm 0,00$	49		0,0065		± 0	,0151		
0,2	$\pm 0,00$	59	士	0,0076			,0169		
0,4	$\pm 0,00$	82	±	0,0103			,0215		
0,6	±0,01	09	土	0,0135		± 0	,0273		
0,8	±0,01	40	±	0,0170			,0341		
1	±0,01	71	士	0,0208		±0	,0418		
Значение моду-	Предель	и допускае	мой абсолют	гной погреп	иности	измерент	ий фазы		
ля коэффицие-		КО	эффициента	отражения,	, граду	С			
нта отражения	от 0,1 до 10 N	ЛГц включ	. св. 0,01 до	3,0 ГГц вк.	люч.	св. 3 до	9 ГГц включ.		
0,1	±2,93	30	±	3,843		±8	3,782		
0,2	±1,79	90	±	2,289		±4	1,953		
0,4	±1,23	82	±	1,582		±3	3,189		
0,6	±1,14	45	±	1,388		$\pm 2,706$			
0,8	±1,00	59	±	±1,290			$\pm 2,510$		
1	±0,98	82	±	±1,194			2,394		
Исправленные ха	рактеристики	системы ⁶⁾	с использов	ванием кали	бровоч	ного наб	opa 85033E,		
			3,5 мм						
		Направ-	Согласо-	Согласо-	Отк	понение	Отклонение		
		ленность,	вание ис-	вание	моду	ля коэф-	модуля ко-		
		дБ	точника,	нагрузки,	фици	ента от-	эффициента		
Частотный ди	напазон:		дБ	дБ	раже	ения, дБ	передачи, дБ		
- от 0,1 до 10 MI	ц включ.	46	43	45	± 0	,006	$\pm 0,077$		
- cв. 10 MГц до 3	3 ГГц включ.	44	40	44		,007	±0,040		
- св. 3 до 9 ГГц		38	36	38	±0	,010	±0,112		
Значение моду-	Пределы до	опускаемої	й абсолютно	й погрешно	ости из	мерений	амплитуды		
ля коэффициен-			коэффициен	нта передач	и, дБ				
та передачи, дБ	от 0,1до 10	МГц вклю	ч. св. 0,01	до 3 ГГц в	ключ.	св. 3 до	9 ГГц включ.		
10	±0,	152		$\pm 0,118$		±	0,193		
0	±0,	089		$\pm 0,054$		±	0,130		
-10	±0,	098		$\pm 0,063$		±	0,138		
-20	±0,	102		$\pm 0,067$ $\pm 0,142$			0,142		
-30	±0,	107	±0,071				0,146		
-40	±0,	128		±0,077			0,152		
-50	±0,	236		±0,088			0,169		
-60	±0,			±0,121			±0,247		
-70	±1,			$\pm 0,229$		1	0,562		
-80	±4,	852		$\pm 0,575$		±	1,557		
-90	±10	,537		$\pm 1,597$		±	4,138		

- св. 3,0 до 10,0 ГГц включ.

- cв. 10,0 до 18,0 ГГц

36

36

Продолжение табл	тицы 3							
Наименование		Значение						
характеристики								
Значение модуля	Пределы допускаемой абсолютной погрешности измерений фазы							
коэффициента		1	коэфф	ициента	передачи, град	дус		
передачи, дБ	от 0,1до 1	0 МГц вкли	0Ч.	св. 0,01	до 3 ГГц вклк	οч.	св. 3 до 9 Г	Гц включ.
10	±	1,674			±1,446		±1,9	52
0	±	0,587			$\pm 0,359$		± 0.86	65
-10		0,640		:	±0,411		± 0.90	09
-20	±	0,665		:	$\pm 0,434$		± 0.91	32
-30	土	0,703		10	$\pm 0,460$		$\pm 0,9$	59
-40	±	0,843		:	±0,498		$\pm 1,0$	00
-50		1,570			$\pm 0,574$		$\pm 1,1$	18
-60		4,390			$\pm 0,792$		$\pm 1,6$	42
-70		3,734			±1,521		± 3.83	27
-80		18,431			±3,920		±11,3	
-90		80,000			11,635		±37,6	
Значение модуля			ой або		погрешности	изм	ерений амг	ІЛИТУДЫ
коэффициента					а отражения, д		1	•
отражения	от 0.1 до	10 МГц вкл	-	_	до 3 ГГц вкли		св. 3 до 9	ГГц включ.
0		0,0051	10 11		±0,0066		±0,0	
0,1		0,0058		±0,0074			± 0.0	
0,2),0065		±0,0083			±0,0	
0,4		0,0082		± 0.0105			±0,0	
0,6		0,0102		±0,0132			±0,02	
0,8		0,0123		±0,0163			±0,02	
1		0,0143			±0,0195		±0,0	
Значение модуля			аемой		ной погрешно	сти		
коэффициента	преде	7.7			отражения, гра			1
отражения	от 0.1ло	10 МГц вкл			до 3 ГГц вкли	-		ГГц включ.
0,1		3,405	110 1.	ов. 0,01	±4,324		±8,1	
0,2		1,965			±2,466		±4,4	
0,4	1	1,287			$\pm 1,607$		±2,7	
0,6		1,076			±1,360		$\pm 2,2$	
0,8		0,950			±1,233		±2,0	
1		0,822			$\pm 1,120$		±1,8	
Исправления			TEMLI	(с исполь	зованием кал	ибра		
Tempusiemin	ме хириктер), 3,5 mm	эзораннем кал	пор	obo moro na	оори
	Направ-		асование	Согласова-	Коз	эффициент	Коэффи-	
		ленность,	ист	очника,	ние	0'	гражение,	циент пе-
		дБ		дБ	нагрузки,		дБ	редачи,
Частотный диа	пазон:	DV - 175			дБ			дБ
- от 0,1 до 10,0 M		42		37	42	:	±0,003	±0,136
- св. 0,01 до 3,0 Г		38		31	38		$\pm 0,004$	±0,100
20 1005	777	26		••	2.6			0.000

28

28

 $\pm 0,208$

 $\pm 0,328$

 $\pm 0,008$

 $\pm 0,008$

36

36

Продолжение таблицы 3								
Наименование		Значен	ие					
характеристики								
Значение	Пределы допускаем	иой абсолютной пог	решности измерен	ний амплитуды				
модуля		коэффициента по	ередачи, дБ					
коэффициента	от 0,1 до 10 МГц	св. 0,01 до 3 ГГц	св. 3 до 10 ГГц	св. 10 до 18 ГГц				
передачи, дБ	включ.	включ.	включ.	включ.				
10	±0,211	±0,180	±0,292	±0,411				
0	±0,148	$\pm 0,117$	±0,229	±0,350				
-10	$\pm 0,157$	$\pm 0,123$	$\pm 0,234$	±0,354				
-20	±0,161	$\pm 0,127$	$\pm 0,237$	$\pm 0,357$				
-30	±0,166	$\pm 0,131$	±0,241	$\pm 0,362$				
-40	±0,182	$\pm 0,136$	$\pm 0,247$	$\pm 0,373$				
-50	±0,270	$\pm 0,147$	$\pm 0,262$	$\pm 0,437$				
-60	±0,656	$\pm 0,178$	$\pm 0,324$	$\pm 0,798$				
-70	±1,856	$\pm 0,280$	$\pm 0,610$	$\pm 2,081$				
-80	±4,854	$\pm 0,618$	$\pm 1,583$	±5,303				
-90	$\pm 10,538$	±1,631	±4,153	±11,254				
Значение	Пределы допусн	саемой абсолютной	погрешности изме	рений фазы				
модуля		коэффициента пер	едачи, градус					
коэффициента	от 0,1 до 10 МГц	св. 0,01 до 3 ГГц	св. 3 до 10 ГГц	св. 10 до 18 ГГц				
передачи, дБ	включ.	включ.	включ.	включ.				
10	±2,074	±1,862	±2,620	±3,441				
0	±0,987	$\pm 0,775$	±1,533	±2,353				
-10	±1,036	$\pm 0,811$	±1,556	±2,377				
-20	±1,060	$\pm 0,833$	±1,577	±2,398				
-30	±1,094	$\pm 0,859$	±1,603	±2,428				
-40	±1,201	$\pm 0,896$	$\pm 1,643$	±2,507				
-50	±1,803	$\pm 0,970$	±1,744	±2,951				
-60	±4,494	±1,175	±2,172	±5,517				
-70	±13,784	$\pm 1,865$	±4,163	$\pm 15,705$				
-80	±48,477	±4,219	±11,532	±57,297				
-90	±180,000	±11,913	±37,802	$\pm 180,000$				
Значение	Пределы допускае	мой абсолютной по	грешности измерен	ний амплитуды				
модуля		коэффициента от	ражения, дБ					
коэффициента	от 0,1 до 10 МГц	св. 0,01 до 3 ГГц	св. 3 до 10 ГГц	св. 10 до 18 ГГц				
отражения	включ.	включ.	включ.	включ.				
0	±0,0080	±0,0129	±0,0164	±0,0164				
0,1	±0,0087	±0,0138	$\pm 0,0175$	±0,0175				
0,2	$\pm 0,0097$	±0,0152	$\pm 0,0193$	$\pm 0,0193$				
0,4	±0,0122	±0,0196	±0,0250	±0,0250				
0,6	$\pm 0,0155$	±0,0259	±0,0335	±0,0335				
0,8	$\pm 0,0195$	±0,0340	$\pm 0,0445$	±0,0445				
1	±0,0240	±0,0439	±0,0581	±0,0581				

Dest-

Наименование	Значение								
характеристики									
Значение	Пределы допу	Пределы допускаемой абсолютной погрешности измерений фазы							
модуля		коэффициента отражения, градус							
коэффициента	от 0,1 до 10 МГц	св. 0,01 до 3 ГГц	св. 3 до 10 ГГц	св. 10 до 18 ГГц					
отражения	включ.	включ.	включ.	включ.					
0,1	±5,110	$\pm 8,030$	$\pm 10,176 \pm$	$\pm 10,176$					
0,2	±2,867	$\pm 4,461$	±5,635	±5,635					
0,4	±1,849	$\pm 2,910$	$\pm 3,690$	$\pm 3,690$					
0,6	±1,579	$\pm 2,573$	±3,297	±3,297					
0,8	±1,464	$\pm 2,508$	±3,260	±3,260					
1	±1,375	$\pm 2,515$	±3,328	$\pm 3,328$					

После калибровки, при температуре окружающего воздуха (23 ± 5) 0 C, отклонении от температуры калибровки ±1 0 C;

Таблица 4 - Метрологические характеристики анализаторов Е5071С

Наименование характеристики	Значение
Частотный диапазон, МГц:	
– опция 240/440	от 0,009 до 4500
– опция 260/460	от 0,009 до 6500
– опция 280/480	от 0,009 до 8500
– опция 235/435	от 0,1 до 3000
– опция 245/445	от 0,1 до 4500
– опция 265/465	от 0,1 до 6500
– опция 285/485	от 0,1 до 8500
- опция 2D5/4D5	от 0,3 до 14000
– опция 2К5/4К5	от 0,3 до 20000
Разрешающая способность установки частоты	1 Гц
Пределы относительной погрешности установки частоты:	
- стандартное исполнение (опция UNQ)	$\pm 7.10^{-6}$
- опция 1Е5	±5·10 ⁻⁸
Динамический диапазон ¹⁾ ,	дБ,
опции 230/235/240/245/260/265/280/285/430/435	/440/445/460/465/480/485
при $\Pi \Psi = 3 \ \kappa \Gamma \mu^2$ в частотном диапазоне:	
– от 9 кГц до 300 кГц включ.	72
– св. 300 кГц до 10 МГц включ.	82
– св. 10 МГц до 6 ГГц включ.	98
– св. 6 ГГц до 8,5 ГГц включ.	92
при ПЧ = 10 Гц в частотном диапазоне:	
– от 9 кГц до 300 кГц включ.	97
- св. 300 кГц до 10 МГц включ.	107
– св. 10 МГц до 6 ГГц включ.	123
- св. 6 до 8,5 ГГц включ.	117

²⁾ ПЧ – промежуточная частота;

³⁾ дБм – мощность сигнала в дБ относительно1 мВт;

⁴⁾ дБм/Гц – мощность на несущей частоте;

⁵⁾ СКЗ – среднее квадратическое значение;

⁶⁾ Определяются при полосе фильтра $\Pi \Psi = 10~\Gamma \mu$, при температуре окружающего воздуха (23 ± 5) °C, отклонении от температуры калибровки ± 1 °C.

Наименование характеристики	Значение
Динамический диапазон, дБ, (опци	ии 2D5/2K5/4D5/4K5)
при ПЧ = 3 кГц в частотном диапазоне	
– от 300 кГц до 1 МГц включ.	70
– cв. 1 до 10 MГц включ.	82
– св. 10 до 100 МГц включ.	95
– св. 100 МГц до 6 ГГц включ.	98
– cв. 6,0 до 8,5 ГГц включ.	92
– св. 8,5 до 10,5 ГГц включ.	80
- св. 10,5 до 15,0 ГГц включ.	75
- св. 15,0 до 20,0 ГГц включ.	71
при ПЧ = 10 Гц в частотном диапазоне	
– от 300 кГц до 1 МГц включ.	95
– cв. 1 до 10 MГц включ.	107
– св. 10 до 100 МГц включ.	120
– св. 100 МГц до 6 ГГц включ.	123
– cв. 6,0 до 8,0 ГГц включ.	117
- св. 8,0 до 8,5 ГГц включ.	117
- св. 8,5 до 10,5 ГГц включ.	105
- cв. 10,5 до 15,0 ГГц включ.	100
- св. 15,0 до 20,0 ГГц включ.	96

Пределы допускаемой абсолютной погрешности измерений амплитуды (фазы) в динамическом диапазоне при опорном уровне минус $10~\mathrm{дБm}^3$, опции 230/235/240/245/260/265/280/285/430/435/440/445/460/465/480/485

Уровень входной	Амплитуда, дБ	Фаза, градус
мощности, дБм		
10	±0,207	±5,034
0	±0,042	±0,301
-10	±0,024	±0,160
-20	±0,035	±0,228
-30	±0,045	±0,297
-40	±0,067	±0,439
-50	±0,091	±0,602
-60	±0,125	±0,828
-70	±0,189	±1,256
-80	±0,345	±2,319
-90	±0,781	±5,399
-100	±1,998	$\pm 14,986$

Auf

Іродолжение табли	цы 4			
Наиме	нование характеристики	Значение		
Пределы дог	тускаемой абсолютной погрешности	измерений амплитуды (фазы) в		
динамическом	диапазоне при опорном уровне минус	с 10 дБм, опции 2D5/2K5/4D5/4K5		
Уровень входной	Амплитуда, дБ	Фаза, градус		
мощности, дБм				
10	±2,486	$\pm 20,565$		
0	$\pm 0,086$	±2,211		
-10	±0,024	$\pm 0,160$		
-20	$\pm 0,036$	$\pm 0,227$		
-30	$\pm 0,046$	$\pm 0,\!296$		
-40	$\pm 0,068$	$\pm 0,438$		
-50	±0,092	$\pm 0,601$		
-60	±0,126	$\pm 0,827$		
-70	$\pm 0,189$	±1,255		
-80	$\pm 0,346$	±2,318		
-90	$\pm 0,782$	$\pm 5,398$		
-100	±1,999	$\pm 14,985$		
	Диапазон установки выходной м			
	30/235/240/245/260/265/280/285/430/4			
– от 9 кГц до 5 ГГ		от -55 до 10		
св. 5 до 6 ГГц вк		от -55 до 9		
– cв. 6 до 7 ГГц вк		от -55 до 8		
<u>- св. 7 до 8,5 ГГц 1</u>		от -55 до 7		
	н установки выходной мощности, дБ			
– от 300 кГц до 1 l		от -85 до 8		
– cв. 1 МГц до 6 Г		от -85 до 10		
св. 6 до 8 ГГц вк		от -85 до 9		
– cв. 8 до 10,5 ГГп		от -85 до 7		
– св. 10,5 до 15 ГГ		от -85 до 3		
св. 15 до 20 ГГц		от -85 до 0		
	собность установки мощности, дБ	0,05		
	опускаемой относительной погрешн	ости установки мощности, дБ		
	40/245/260/265/280/285/430/435/440/			
445/460/465/480/4		10.65		
-	игнала 0 дБм на частоте 50 МГц	±0,65		
- остальной часто	этный диапазон	±1,00		
Опции 2D5/2K5/4	D5/4K5:			
-	сигнала минус 5 дБм на частоте			
50 МГц		±0,65		
- от 300 кГц до 1 l	МГц включ.	+2,0; -6,0		
– cв. 1 до 5 МГц в	ключ.	±2,0		
- св. 5 МГц до 8,5	ГГц включ.	±1,0		
- св. 8,5 до 20 ГГ	ц включ.	±2,5		

Продолжение таблицы 4	
Наименование характеристики	Значение
Пределы допускаемой относительной погрешности нелине	ейности установки мощности, дБ
Опции 230/235/240/245/260/265/280/285/430/435/440/	
445/460/465/480/485:	
– от 9 кГц до 5 ГГц включ. (в диапазоне мощности от	
минус 20 до 10 дБм)	$\pm 0,75$
– св. 5 до 6 ГГц включ. (в диапазоне мощности от минус	
20 до 9 дБм)	$\pm 0,75$
– св. 6 до 7 ГГц включ. (в диапазоне мощности от минус	
20 до 10 дБм)	± 0.75
– св. 7 до 8,5 ГГц включ. (в диапазоне мощности от минус	
20 до 10 дБм)	$\pm 0,75$
Опции 2D5/2K5/4D5/4K5 (в диапазоне мощности от минус	
20 до 10 дБм):	
– от 300 кГц до 1 МГц включ.	$\pm 0,75$
– св. 1 МГц до 6 ГГц включ.	± 0.75
– св. 6 до 8 ГГц включ.	$\pm 0,75$
св. 8 до 10,5 ГГц включ.	$\pm 0,75$
св. 10,5 до 15 ГГц включ.	$\pm 0,75$
- св. 15 до 20 ГГц включ.	±0,75
Максимально допустимый уровень переменной (ВЧ) со-	
ставляющей сигнала на входе измерительного порта, дБм	25
Максимально допустимый уровень постоянной составля-	
ющей сигнала на входе измерительного порта, В	±35
Перекрёстные помехи, дБ, не	менее
Опции 230/235/240/245/260/265/280/285/430/435/440/	
445/460/465/480/485:	
– от 9 до 300 кГц включ.	-100
св. 300 кГц до 10 МГц включ.	-110
– св. 10 МГц до 3 ГГц включ.	-120
– св. 3 до 6 ГГц включ.	-110
- св. 6,0 до 8,5 ГГц включ.	-100
Опции 2D5/2K5/4D5/4K5:	
– от 300 кГц до 1 МГц включ.	-68
- св. 1 до 5 МГц включ.	-70
- св. 5 до 10 МГц включ.	-100
– cв. 10 до 45 МГц включ.	-110
– св. 45 МГц до 4 ГГц включ.	-118
св. 4 до 6 ГГц включ.	-123
- cв. 6,0 до 8,5 ГГц включ.	-120
– cв. 8,5 до 15,0 ГГц включ.	-112
- св. 15,0 до 20,0 ГГц включ.	-106

Продолжение таблицы 4	
Наименование характеристики	Значение
Уровень собственных шумов, дБм	μ/Γ ц ⁴⁾ , не более
Опции 230/235/240/245/260/265/280/285/430/435/440/	
445/460/465/480/485:	
– от 9 до 300 кГц включ.	-97
– св. 300 кГц до 10 МГц включ.	-107
– св. 10 МГц до 5 ГГц включ.	-123
– св. 5 до 6 ГГц включ.	-124
– св. 6 до 7 ГГц включ.	-119
– св. 7 до 8 ГГц включ.	-120
св. 8 до 8,5 ГГц включ.	-120
Опции 2D5/2K5/4D5/4K5:	
– от 300 кГц до 1 МГц включ.	-97
- св.1 до 10 МГц включ.	-107
св. 10 до 100 МГц включ.	-120
– св. 100 МГц до 6 ГГц включ.	-123
– св. 6 до 8 ГГц включ.	-118
св. 8 до 8,5 ГГц включ.	-120
св. 8,5 до 10,5 ГГц включ.	-108
св. 10,5 до 15 ГГц включ.	-107
св. 15 до 20 ГГц включ.	-106
Шумы трассы (амплитуда), дБ, С	
Опции 230/235/240/245/260/265/280/285/430/435/440/	
445/460/465/480/485:	
$-$ от 9 до 30 к Γ ц включ. (Π Ч = 3 к Γ ц)	0,004
- cв. 30 до 100 кГц включ. (ПЧ = 3 кГц)	0,003
- cв. 100 кГц до 10 МГц включ. (ПЧ = 3 кГц)	0,003
- cв. 10 МГц до 4,38 ГГц включ. (ПЧ = 70 кГц)	0,004
- св. 4,38 до 5 ГГц включ. (ПЧ = 70 кГц)	0,006
- св. 5 до 6 ГГц включ. (ПЧ = 70 кГц)	0,006
- св. 6 до 7 ГГц включ. (ПЧ = 70 кГц)	0,006
- св. 7 до 8,5 ГГц включ. (ПЧ = 70 кГц)	0,006
D. 7 AC C.S. I. I. DIGHO I. (II I 70 KI IL)	0,000
Опции 2D5/2K5/4D5/4K5:	
$-$ от 300 к Γ ц до 1 М Γ ц включ. (Π Ч = 3 к Γ ц)	0,006
- 01 300 кг ц до 1 мг ц включ. (ПЧ – 3 кг ц) - св. 1 до 10 МГц включ. (ПЧ = 3 кГц)	0,000
- св. г до то ки ц включ. (ПЧ – 3 кг ц) - от 10 МГц до 4,38 ГГц включ. (ПЧ = 70 кГц)	0,003
- от 4,38 до 8,5 ГГц включ. (ПЧ = 70 кГц)	0,004
- 01 4,38 до 8,3 11 ц включ. (ПЧ - 70 кГ ц) - от 8,5 до 13,137 ГГц включ. (ПЧ = 70 кГц)	0,000
- от 13,137 до 17 ГГц включ. (ПЧ = 70 кГц)	0,009
	1.50
- от 17 до 20 ГГц включ. (ПЧ = 70 кГц)	0,023

Наименование характеристики	Значение
Шумы трассы (фаза), градус,	СКЗ, не более
Опции 230/235/240/245/260/265/280/285/430/435/	
440/445/460/465/480/485:	
$-$ от 9 до 30 к Γ ц включ. (Π Ч = 3 к Γ ц)	
- св. 30 до 100 кГц включ. (ПЧ = 3 кГц)	0,035
св. 100 кГц до 10 МГц включ. (ПЧ = 3 кГц)	0,020
- св. 0,01 до 4,38 ГГц включ. (ПЧ = 70 кГц)	0,035
- св. 4,38 до 5,00 ГГц включ. (ПЧ = 70 кГц)	0,050
- св. 5 до 6 ГГц включ. (ПЧ = 70 кГц)	0,050
- св. 6 до 7 ГГц включ. (ПЧ = 70 кГц)	0,050
- св. 7 до 8,5 ГГц включ. (ПЧ = 70 кГц)	0,050
Опции 2D5/2K5/4D5/4K5:	
$-$ от 300 к Γ ц до 1 М Γ ц включ. (Π Ч = 3 к Γ ц)	0,040
- cв. 1 до 10 МГц включ. (ПЧ = 3 кГц)	0,020
- cв. 10 МГц до 4,38 ГГц включ. (ПЧ = 70 кГц)	0,035
- св. 4,38 до 8,5 ГГц включ. (ПЧ = 70 кГц)	0,050
- cв. 8,5 до 13,137 ГГц включ. (ПЧ = 70 кГц)	0,064
- св. 13,137 до 17 ГГц включ. (ПЧ = 70 кГц)	0,095
- св. 17 до 20 ГГц включ. (ПЧ = 70 кГц)	0,165

Неисправленные характеристики, дБ, опции 230/235/240/245/260/265/ 280/285/430/435/ 440/445/460/465/480/485 (коррекция пользователем - выкл., системная коррекция - вкл.)

(коррскции	(коррекция пользователем - выкл., системная коррекция - вкл.)								
	Направ-	Согласова-	Согласова-	Отклонение	Отклонение				
	ленность,	ние источ-	ние	модуля коэф-	модуля коэф-				
	дБ	ника, дБ	нагрузки, дБ	фициента от-	фициента пе-				
Частотный диапазон:				ражения, дБ	редачи, дБ				
– от 9 до 300 кГц включ.	20	20	12	±1,5	±1,5				
св. 300 кГц до 3 ГГц									
включ.	25	25	17	$\pm 1,0$	±1,0				
– св. 3 до 6 ГГц включ.	20	20	12	$\pm 1,0$	±1,0				
св. 6 до 8,5 ГГц включ.	15	15	10	$\pm 1,0$	±1,0				

Неисправленные характеристики, дБ, опции 2D5/2K5/4D5/4K5 (коррекция пользователем - выкл., системная коррекция - вкл.)

	Направ-	Согласование	Согласова-	Отклонение	Отклонение
	ленность,	источника, дБ	ние	модуля коэф-	модуля ко-
	дБ		нагрузки,	фициента от-	эффициента
Частотный диапазон:			дБ	ражения, дБ	передачи, дБ
– от 300 кГц до 1 МГц					
включ.	20	20	9	±1,0	±1,0
– от 1 МГц до 1 ГГц					
включ.	25	25	17	±1,0	±1,0
– от 1 до 3 ГГц включ.	25	25	15	±1,0	±1,0
– от 3 до 6 ГГц включ.	20	20	11	±1,0	±1,0
– от 6 до 8,5 ГГц включ.	15	15	9	±1,0	±1,0
– от 8,5 до 11 ГГц включ.	15	15	8	±1,0	±1,0
– от 11 до 20 ГГц включ.	15	15	7	±1,0	±1,0

auf-

Іродолжение та		,						
Наименов								
характери	стики характеристики системы ⁶⁾ с использованием калибровочного набора 85032F,							
Исправленные з	характерист	гики с	систем			али	бровочного на	бора 85032F,
				N-тип				
		Нап	рав-	Согласова	- Согласов		Отклонение	Отклонение
			ость, ние источ-			0.2	модуля коэф-	модуля ко-
		Д	Б	ника, дБ	нагрузки	1, d	оициента отра-	
Частотный д					дБ		жения, дБ	передачи, д
– от 9 до 300 к		4	.9	41	49		$\pm 0,011$	±0,027
– от 0,3 до	10 МГц							
включ.		4	.9	41	49		$\pm 0,011$	$\pm 0,015$
– от 10 МГц	до 3 ГГц							
включ.			6	40	46		$\pm 0,021$	$\pm 0,018$
– от 3 до 6 ГГ _І			10	36	40		$\pm 0,032$	$\pm 0,056$
– от 6 до 8,5 Г			8	35	37		$\pm 0,054$	$\pm 0,088$
Значение	Предел	іы доі	пуска		-		ости измерений	і амплитуды
модуля					циента пере			
коэффициента	от 9 до 300) кГц		в. 0,3 до	св. 0,01 д		св. 3 до	св. 6 до 8,5
передачи, дБ	включ	Ι.	10 N	1Гц включ.	3 ГГц вклю	оч.	6 ГГц включ.	ГГц включ
10	±0,07	$6 \pm 0,064$			$\pm 0,067$		±0,106	$\pm 0,144$
0	$\pm 0,05$	8		$\pm 0,047$	$\pm 0,050$		$\pm 0,088$	$\pm 0,126$
-10	±0,06	9		$\pm 0,057$	$\pm 0,060$		±0,098	$\pm 0,135$
-20	±0,08	0		$\pm 0,067$	$\pm 0,070$		±0,108	$\pm 0,145$
-30	$\pm 0,10$	8		$\pm 0,089$	$\pm 0,092$		±0,129	$\pm 0,166$
-40	$\pm 0,17$	8		$\pm 0,120$	$\pm 0,116$		±0,154	$\pm 0,191$
-50	±0,42	8		$\pm 0,194$	$\pm 0,151$		±0,188	$\pm 0,226$
-60	±1,22	2		$\pm 0,449$	$\pm 0,223$		$\pm 0,257$	$\pm 0,300$
-70	±3,36	4		$\pm 1,252$	±0,419)	±0,442	$\pm 0,522$
-80	±7,93	2		$\pm 3,409$	$\pm 1,003$		±0,994	$\pm 1,209$
-90	±15,14	11		±7,999	±2,621		±2,536	±3,101
Значение	Пред	делы ,	допус	каемой абсо	лютной пог	реп	іности измерен	ний фазы
модуля					ента передач		_	
коэффициента				в. 0,3 до	св. 0,01 д		св. 3 до	св. 6 до
передачи, дБ	300 кГц вк		10 N	1Гц включ.	3 ГГц вклн		6 ГГц включ.	
10	±0,52			$\pm 0,449$	±0,471		±0,727	$\pm 0,981$
0	±0,38			$\pm 0,308$	±0,330		±0,586	$\pm 0,840$
-10	±0,45			$\pm 0,375$	±0,396		$\pm 0,647$	$\pm 0,897$
-20	±0,52	-		$\pm 0,445$	±0,465		$\pm 0,715$	$\pm 0,965$
-30	±0,71			$\pm 0,592$	±0,607		$\pm 0,857$	$\pm 1,107$
-40	±1,18			$\pm 0,795$	$\pm 0,770$		±1,020	±1,271
-50	±2,89	1		$\pm 1,295$	±1,004		±1,252	$\pm 1,508$
-60	±8,69			$\pm 3,042$	±1,486		±1,716	±2,016
-70	±28,22			$\pm 8,916$	±2,831		±2,991	±3,547
-80	±180,0			$\pm 28,729$	±7,030		±6,964	$\pm 8,586$
-90	$\pm 180,0$	00	=	$\pm 180,000$	±20,624	4	±19,816	±25,411

Продолжение таб	лицы 4									
Наименование	Значение									
характеристики										
Значение	Предел	Пределы допускаемой абсолютной погрешности измерений амплитуды							Ы	
модуля	коэффициента отражения, дБ									
коэффициента	от 9 до 30	0 кГц	св.	0,3 до	С	в. 0,01 до		св. 3 до	св. 6 до	
отражения	включ	ł.	10 MΓ	ц включ.	3 I	Гц включ	[. (6 ГГц включ.	8,5 ГГц вклн	ΟЧ.
0	±0,00	41	±(0,0041		$\pm 0,0056$		$\pm 0,0106$	$\pm 0,0136$	
0,1	±0,00	50	±(0,0050		$\pm 0,0066$		$\pm 0,0117$	$\pm 0,0151$	
0,2	±0,00	59	± 0	0,0059		$\pm 0,0076$		$\pm 0,0131$	$\pm 0,0169$	
0,4	±0,00	81	±(0,0081		$\pm 0,0102$		$\pm 0,0166$	$\pm 0,0214$	
0,6	± 0.01	10	± 0	0,0110		$\pm 0,0135$		$\pm 0,0214$	$\pm 0,0273$	
0,8	±0,01	45	±(0,0145		$\pm 0,0176$		$\pm 0,0273$	$\pm 0,0346$,
i	±0,01		±(0,0188		$\pm 0,0225$		$\pm 0,0346$	$\pm 0,0434$,
Значение	Пре	делы д	опуск	аемой абс	ОЛН	отной пог	реп	пности измере	ений фазы	
модуля	1					а отражен	-	170		
коэффициента	от 9 д	0		0,3 до		в. 0,01 до	T	св. 3 до	св. 6 до	
отражения	300 кГц в					Гц включ	1.	6 ГГц включ.	12. (4)	юч.
0,1	±2,84			2,845		±3,758	+	±6,735	±8,696	
0,2	±1,67	1		1,679		$\pm 2,177$		$\pm 3,748$	±4,841	
0,4	±1,15			1,157		$\pm 1,458$		$\pm 2,380$	±3,065	
0,6	±1,04			1,046		$\pm 1,436$ $\pm 1,289$		$\pm 2,040$	±2,607	
0,8	±1,03			1,039		$\pm 1,260$		$\pm 1,958$	±2,480	
1	±1,07					$\pm 1,288$	±1,982		$\pm 2,487$	
Исправленные х					пгэ		эпи			C
исправленные х	арактерис	IMKH C	MCTCM.	N-ти		ованием к	ajir	торово того г	асора 05072	Ο,
		Нап	рав-	Согласов	3a-	Согласова	a-	Отклонение	Отклонени	ие
		ленн	ость,	ние исто	ч-	ние		модуля коэф-	модуля коэ	ф-
		Д	Б	ника, д	Б	нагрузки	Ι,	фициента от-	фициента п	ie-
Частотный ди	иапазон:					дБ		ражения, дБ	редачи, д	Б
- от 0.3 до	10 МГц									
включ.		4	45 36		37		$\pm 0,010$		$\pm 0,082$	
– от 10 MГц ;	до 3 ГГц									
включ.		5	52 44		45			$\pm 0,040$	$\pm 0,050$	
– от 3 до 6 ГГц	включ.	4	49 41		41			$\pm 0,060$	$\pm 0,102$	
– от 6 до 8.5 ГГ	Ц	4	15	36		38	$\pm 0,070$ $\pm 0,157$			
Значение	Предел	пы доп	тускае:	мой абсол	ЮТ	ной погрег	ШН	ости измерен	ий амплитуди	Ы
модуля						ента пере,			•	
коэффициента	св. 0	,3 до		св. 0,0	1 д	o c	в	3 до 6 ГГц	св. 6 до 8,5 Г	Тц
передачи, дБ	10 ΜΓι		ч.	3 ГГцв				включ.	включ.	
10	±0	,132		±0,	099			±0,151	±0,212	
0	±0	,114		± 0 ,				$\pm 0,134$	$\pm 0,194$	
-10	1	,123		± 0 ,				± 0.144	$\pm 0,203$	
-20		,134		±0,		1		± 0.154	$\pm 0,213$	
-30	±0,155			±0,		1		±0,175	±0,234	
-40	±0,183			±0,		1		±0,199	$\pm 0,258$	
-50		,247		± 0 ,		1		±0,233	$\pm 0,293$	
-60		,482		$\pm 0,$		1		$\pm 0,301$	$\pm 0,365$	
-70		,269		$\pm 0,$				$\pm 0,483$	$\pm 0,578$	
-80	1	,419		± 1 ,		1		±1,029	$\pm 1,252$	
-90	1	3,004		±2,				±2,563	$\pm 3,132$	
		,		-2,				,000	-5,152	

– от 6 до 8.5 ГГц

Продолжение таб	лицы 4							
Наименование				Зна	ачение			
характеристики								
Значение	Пределы	допуск		ой абсолют	-		мерег	ний фазы
модуля				ффициента				
коэффициента	св. 0,3 до		св.	0,01 до 3 Г	Гц св.	3 до 6 ГГ	I C	в. 6 до 8,5 ГГц
передачи, дБ	10 МГц вкл			включ.		включ.		включ.
10	$\pm 0,899$			$\pm 0,680$		$\pm 1,029$		$\pm 1,436$
0	$\pm 0,759$	1		$\pm 0,539$		$\pm 0,889$		$\pm 1,296$
-10	$\pm 0,818$	1		$\pm 0,606$		$\pm 0,954$		$\pm 1,355$
-20	$\pm 0,886$			$\pm 0,675$		$\pm 1,023$		$\pm 1,423$
-30	$\pm 1,032$			$\pm 0,817$		$\pm 1,165$		$\pm 1,565$
-40	$\pm 1,221$			$\pm 0,980$		$\pm 1,328$		$\pm 1,729$
-50	$\pm 1,654$			$\pm 1,213$		$\pm 1,559$		$\pm 1,963$
-60	$\pm 3,270$			$\pm 1,688$		$\pm 2,018$		$\pm 2,457$
-70	$\pm 9,050$			$\pm 3,018$		$\pm 3,276$		$\pm 3,941$
-80	$\pm 28,834$	1		$\pm 7,199$		$\pm 7,226$		$\pm 8,921$
-90	$\pm 180,00$	0		$\pm 20,792$		$\pm 20,074$		$\pm 25,734$
Значение	Пределы д	опускае	мой	абсолютно	ой погрешн	юсти изме	рени	й амплитуды
модуля	-		К	оэффициен	та отраже	ния, дБ		
коэффициента	св. 0,3 до	0	св.	0,01 до 3 Г	Тц св.	3 до 6 ГГ	цС	в. 6 до 8,5 ГГц
отражения	10 МГц вкл			включ.		включ.		включ.
0	±0,0062			$\pm 0,0031$		±0,0041		±0,0066
0,1	± 0.008			$\pm 0,0042$		$\pm 0,0055$		$\pm 0,0083$
0,2	± 0.0103	3		± 0.0054		$\pm 0,0070$		$\pm 0,0102$
0,4	±0,0154	4		± 0.0080		$\pm 0,0104$		$\pm 0,0149$
0,6	±0,021	217		± 0.0110		$\pm 0,0144$		$\pm 0,0207$
0,8	±0,0293	3		± 0.0145		$\pm 0,0190$		$\pm 0,0279$
1	±0,038	1		$\pm 0,0185$		$\pm 0,0244$		± 0.0364
Значение			каем	юй абсолют	гной погре	шности из	мере	ний фазы
модуля	1	., .		ффициента	_		1	1
коэффициента	св. 0,3 до 10	св. (до 3 ГГц	св. 3 до		св.	6 до 8,5 ГГц
отражения	МГц включ.			іюч.	вклі			включ.
0,1	±4,669			2,428		170		±4,773
0,2	±2,945			,544		004		$\pm 2,925$
0,4	±2,205			,141		482		$\pm 2,128$
0,6	±2,074			,049		370		$\pm 1,981$
0,8	±2,097			,038		364		$\pm 1,999$
1	±2,183			,059		400		$\pm 2,083$
Исправленные >		и систем					ого н	
Trempassiennisie ?	арактерпетик	· cheren	IDI	3,5 мм	barrion Ras	порово по	01011	исери от от т.
		Напра	D_	Согласо-	Согласо-	Отклоне	-иие	Отклонение
Частотный,	лиапазон.	леннос		вание ис-	вание	модуля к		модуля коэф-
Tuo To TIIBIN ,	AIIMIMJOII.	дБ	, 10,	точника,	нагрузки,	фициент		фициента пе-
		дЪ		дБ	дБ	ражения		редачи, дБ
– от 9 до 300 кI	II BKIIIOU	46		43	46	±0,00		±0,026
– от 9.3 до 10 M		46		43	46	± 0.00		±0,026 ±0,015
– от 10 МГц до		40		7.7	70		,,,	
– от 3 до 6 ГГц		44		40	44	±0,00	7	±0,020
от 6 до 8 5 ГГ		20		27	20	±0,00		±0,020

38

38

37

36

38

38

 $\pm 0,009$

 $\pm 0,010$

 $\pm 0,058$

 $\pm 0,079$

Продолжение таб	Тродолжение таблицы 4							
Наименование			Значение					
характеристики								
Значение	Пределы дог	пускаемой абсол	-		ий амплитуды			
модуля			ициента переда					
коэффициента	от 9 до 300 кГц	св. 0,3 до	св. 0,01 до	св. 3 до	св. 6 до 8,5 ГГц			
передачи, дБ	включ.	10 МГц включ.	3 ГГц включ.	6 ГГц включ.	включ.			
10	$\pm 0,070$	$\pm 0,058$	$\pm 0,066$	$\pm 0,105$	$\pm 0,129$			
0	$\pm 0,052$	$\pm 0,041$	$\pm 0,049$	$\pm 0,087$	$\pm 0,111$			
-10	$\pm 0,062$	$\pm 0,051$	$\pm 0,059$	$\pm 0,097$	$\pm 0,120$			
-20	$\pm 0,074$	$\pm 0,061$	$\pm 0,069$	$\pm 0,107$	$\pm 0,130$			
-30	$\pm 0,102$	$\pm 0,083$	$\pm 0,090$	$\pm 0,128$	$\pm 0,152$			
-40	$\pm 0,174$	$\pm 0,114$	$\pm 0,115$	$\pm 0,152$	$\pm 0,176$			
-50	$\pm 0,426$	$\pm 0,190$	$\pm 0,150$	$\pm 0,187$	±0,211			
-60	±1,221	$\pm 0,447$	$\pm 0,221$	±0,255	$\pm 0,287$			
-70	$\pm 3,363$	±1,250	$\pm 0,418$	$\pm 0,441$	$\pm 0,510$			
-80	±7,931	$\pm 3,408$	$\pm 1,002$	$\pm 0,993$	$\pm 1,200$			
-90	±15,141	$\pm 15,141$ $\pm 7,999$ $\pm 2,620$ $\pm 2,535$ $\pm 3,095$						
Значение	Пределы	допускаемой або	солютной погре	ешности измер	ений фазы			
модуля		коэффиц	иента передачи	і, градус				
коэффициента	от 9 до 300 кГц	св. 0,3 до	св. 0,01 до	св. 3 до	св. 6 до 8,5 ГГц			
передачи, дБ	включ.	10 МГц включ.	3 ГГц включ.	6 ГГц включ.	включ.			
10	±0,485	±0,409	$\pm 0,462$	±0,721	$\pm 0,879$			
0	$\pm 0,344$	$\pm 0,268$	$\pm 0,321$	$\pm 0,580$	±0,739			
-10	±0,412	$\pm 0,334$	$\pm 0,386$	$\pm 0,639$	$\pm 0,797$			
-20	$\pm 0,487$	$\pm 0,404$	$\pm 0,455$	$\pm 0,708$	$\pm 0,865$			
-30	$\pm 0,678$	$\pm 0,552$	$\pm 0,597$	$\pm 0,850$	$\pm 1,007$			
-40	±1,159	$\pm 0,758$	$\pm 0,761$	±1,013	±1,171			
-50	±2,882	±1,265	$\pm 0,995$	±1,244	±1,409			
-60	$\pm 8,685$	±3,023	$\pm 1,477$	±1,709	±1,921			
-70	±28,220	±8,905	$\pm 2,823$	±2,984	±3,463			
-80	$\pm 180,000$	±28,719	$\pm 7,022$	±6,958	±8,515			
-90	±180,000	$\pm 180,000$	±20,617	±19,810	±25,342			
Значение	Пределы до	пускаемой абсол	тютной погреш	ности измерен	ий амплитуды			
модуля		коэфф	ициента отраже	ения, дБ				
коэффициента	от 9 до 300 кГц		св. 0,01 до	св. 3 до 6 ГГц	св. 6 до			
отражения	включ.	10 МГц включ.	3 ГГц включ.	включ.	8,5 ГГц включ.			
0	±0,0051	±0,0051	±0,0066	±0,0129	±0,0132			
0,1	±0,0058	±0,0058	$\pm 0,0074$	±0,0137	±0,0141			
0,2	±0,0065	±0,0065	$\pm 0,0082$	±0,0147	±0,0152			
0,4	±0,0081	$\pm 0,0081$	±0,0104	±0,0174	±0,0182			
0,6	±0,0102	±0,0102	±0,0132	±0,0211	±0,0224			
0,8	±0,0128	±0,0128	±0,0168	±0,0259	±0,0279			
1	±0,0160	±0,0160	±0,0212	$\pm 0,0318$	±0,0346			

-	7					_			4
1	ı	no	ПОП	жен	ue '	ran	пип	ы	4
				<i>/</i> 1(<i>C</i> 11	II C	Iuo.	LILL	$\mathbf{D}_{\mathbf{I}}$	

Наименование	ПЦЫ				-	Значение		
характеристики								
Значение модуля	П	ределы д	опускае	мой абс	ОЛ	ютной погр	ешности измер	рений фазы
коэффициента			•			та отражен		
отражения	от 9	от 9 до св. 0,3 до св. 0,01 до св. 3 до 6 ГГц с					св. 6 до	
	300 κΓι	ц включ. 10 МГц включ. З ГГц включ. включ.		8,5 ГГц включ.				
0,1	±3,321		±3,	±3,320		±4,239	±7,895	±8,084
0,2	±1	,854	± 1 ,	854		$\pm 2,355$	±4,217	±4,346
0,4		,162	± 1 ,	162		$\pm 1,482$	±2,490	±2,606
0,6	±0	,977	± 0 ,	977		$\pm 1,260$	±2,015	±2,142
0,8	±0	,920	± 0 ,	920		$\pm 1,203$	±1,856	±1,998
1		,915		915		$\pm 1,213$	±1,823	±1,984
Исправленные ха	рактери	стики си	истемы ⁶⁾	с испол	ΙЬЗ	ованием ка	либровочного	набора 85093С,
				3,5мм				
		Напра		асовани		Согласова		
		ленност	гь, исто	чника, д	цБ	ние	модуля коэф	
		дБ				нагрузки,	фициента от	
Частотный диаг				-		дБ	ражения, дЕ	передачи, дБ
– от 0.3 до 10) МГц							
включ.	• ==	45		36	37		$\pm 0,100$	±0,086
– от 10 MГц до	3 11 ц	50	11			1.5	10.010	10.045
включ.		52		44		45 42	±0,040	±0,045
– от 3 до 6 ГГц в		50 47		39	34 40		$\pm 0,050$ $\pm 0,070$	±0,094 ±0,143
– от 6 до 8.5 ГГц								
Значение модуля				•			ой погрешност	_
коэффициента пе	редачи,			плитуды коэффицие		св. 3 до 6 ГГц	св. 6 до 8,5 ГГц	
ДВ),3 до 1 включ.		св. 0,01 до 3 ГГц включ.		включ.	включ.
10),131	1	_	0,091	±0,140	±0,192
0),131	-		0,074	±0,140 ±0,122	±0,175
-10		1),122			0,084	$\pm 0,122$ $\pm 0,132$	±0,175
-20		1),133			0,094	$\pm 0,132$ $\pm 0,142$	±0,194
-30),154			0,116	$\pm 0,163$	±0,215
-40),182			0,140	$\pm 0,188$	±0,239
-50),246			0,175	±0,222	±0,274
-60			,481			0,245	$\pm 0,290$	±0,347
-70			,269			0,439	$\pm 0,472$	$\pm 0,562$
-80		±3	3,418		\pm	1,020	$\pm 1,020$	$\pm 1,240$
-90		±8	3,004		±2	2,634	±2,556	±3,123

-			_	4
	non	олжение	Tannulli	4
1	1004	OHMCHIC	таблицы	_

Продолжение табл	ицы 4							
Наименование				Зн	ачение			
характеристики								
Значение	Преде	елы доп		емой абсолю		_	ен	ий фазы
модуля				соэффициент		_		0.7.55
	св. 0,3 до 1		св. (0,01 до 3 ГГц			св. (6 до 8,5 ГГц
передачи, дБ	ВКЛЮ			включ.	ВКЛІ			включ.
10	± 0.89			$\pm 0,628$	±0,			$\pm 1,308$
0	± 0.75			$\pm 0,488$	±0,			$\pm 1,167$
-10	± 0.81	11		$\pm 0,555$	±0,			$\pm 1,225$
-20	± 0.88	30		$\pm 0,624$	±0,	945		$\pm 1,293$
-30	$\pm 1,02$	25		$\pm 0,766$	±1,	087		$\pm 1,435$
-40	$\pm 1,2$	14		$\pm 0,929$	±1,			$\pm 1,599$
-50	$\pm 1,64$	48		$\pm 1,162$	±1,	481		$\pm 1,834$
-60	$\pm 3,26$	56		$\pm 1,639$	±1,	941		$\pm 2,332$
-70	$\pm 9,04$	48		$\pm 2,972$	±3,	203		$\pm 3,828$
-80	$\pm 28,8$	32		$\pm 7,158$	±7,	159		$\pm 8,825$
-90	$\pm 180,0$	000		$\pm 20,751$	±20	,008		$\pm 25,642$
Значение	Предели	ы допус	каем	ой абсолютн	ой погрешно	ости измерен	ний	амплитуды
модуля	•			коэффицие	нта отражен	ия, дБ		
коэффициента	св. 0,3 до 1	0 МГц	св.	0,01 до 3 ГГц			св. (6 до 8,5 ГГц
отражения	вклю			включ.	вклн			включ.
0	±0,00			±0,0028		0035		± 0.0050
0,1	± 0.00			$\pm 0,0039$		0048		± 0.0067
0,2	± 0.00			± 0.0050	±0,0			$\pm 0,0086$
0,4	±0,01			$\pm 0,0075$,	0094		$\pm 0,0135$
0,6	± 0.02			$\pm 0,0104$		0135		$\pm 0,0199$
0,8	$\pm 0,02$			$\pm 0,0137$		0184		$\pm 0,0280$
1	$\pm 0,03$			$\pm 0,0175$)242		± 0.0375
Значение модуля			IVCKA	емой абсолю			эен	
коэффициента				оэффициента	•	-		1
	св 03 до 1	0 ΜΓιι		0,01 до 3 ГГц			CB.	6 до 8,5 ГГц
	включ			включ.	ВКЛИ			включ.
0,1	±4,34			±2,257		725		±3,827
0,2	±2,73			$\pm 1,442$		751		±2,460
0,4	±2,0°			$\pm 1,072$		344		±1,933
0,6	±1,90	1		± 0.989		286		±1,904
0,8	±1,99			± 0.980		318		±2,002
1	±2,0°			$\pm 1,002$		387		±2,152
Исправленные ха			TAMI				1126	
теправленные ха	грактерист	IKH CHC	CMD	3,5мм	ваписи кали	оровочного	nac	ора взозар,
		Напр	ar-	Согласова-	Согласова-	Отклонени	ie.	Отклонение
		ленно		ние источ-	ние	модуля коэ		модуля ко-
		дБ		ника, дБ	нагрузки,	фициента		эффициента
Частотный ди	апазон.	ДВ		ппка, дв	дБ	ражения, д		передачи, дБ
	500 МГц				дь	ражения, д	,D	поредачи, дв
ВКЛЮЧ.	JOO IVII Ц	42		37	42	±0,003		±0,068
- св. 500 МГц	по 2 ГГт	42	•	31	72	10,003		_0,000
– св. 500 IVII ц включ.	до 2 ПЦ	42	,	37	42	±0,003		±0,034
- cв. 2 до 6 ГГц	рипоп	38		31	38	$\pm 0,003$ $\pm 0,004$		$\pm 0,034$ $\pm 0,100$
- cв. 2 до отт ц - св. 6 до 20 ГГп		36		28	36	$\pm 0,004$ $\pm 0,008$		$\pm 0,100$ $\pm 0,208$
- св. о до 2011 п				20		±0,008		10,200

auge-

Іродолжение таблицы 4									
Наименование		Значен	ие						
характеристики									
Значение модуля	Пределы допуск	аемой абсолютной п	огрешности измере	ний амплитуды					
коэффициента		коэффициента	передачи, дБ						
передачи, дБ	св. 0,3 до	св. 0,5 до 2 ГГц	св. 2 до 6 ГГц	св. 6 до 20 ГГц					
	500 МГц включ.	включ.	включ.	включ.					
10	±0,156	±0,122	$\pm 0,192$	$\pm 0,304$					
0	$\pm 0,094$	$\pm 0,060$	$\pm 0,131$	$\pm 0,243$					
-10	$\pm 0,105$	$\pm 0,071$	$\pm 0,139$	$\pm 0,250$					
-20	$\pm 0,116$	$\pm 0,081$	$\pm 0,149$	$\pm 0,259$					
-30	$\pm 0,142$	$\pm 0,103$	$\pm 0,170$	$\pm 0,281$					
-40	$\pm 0,205$	$\pm 0,127$	$\pm 0,195$	$\pm 0,307$					
-50	$\pm 0,442$	$\pm 0,162$	$\pm 0,229$	$\pm 0,365$					
-60	$\pm 1,228$	$\pm 0,233$	$\pm 0,298$	$\pm 0,594$					
-70	$\pm 3,366$	$\pm 0,428$	$\pm 0,\!487$	$\pm 1,434$					
-80	$\pm 7,933$	$\pm 1,011$	$\pm 1,060$	$\pm 3,759$					
-90	$\pm 15,142$	$\pm 2,627$	$\pm 2,665$	$\pm 8,610$					
Значение	Пределы допу	Пределы допускаемой абсолютной погрешности измерений фазы							
модуля		коэффициента передачи, градус							
коэффициента	св. 0,3 до	св. 0,5 до 2 ГГц	св. 2 до 6 ГГц	св. 6 до 20 ГГц					
передачи, дБ	500 МГц включ.	включ.	включ.	включ.					
10	$\pm 2,678$	$\pm 2,451$	$\pm 2,920$	$\pm 3,679$					
0	$\pm 0,626$	$\pm 0,399$	$\pm 0,868$	$\pm 1,626$					
-10	$\pm 0,688$	$\pm 0,461$	$\pm 0,917$	$\pm 1,662$					
-20	$\pm 0,761$	$\pm 0,529$	$\pm 0,984$	$\pm 1,728$					
-30	$\pm 0,938$	$\pm 0,671$	±1,126	$\pm 1,872$					
-40	$\pm 1,361$	$\pm 0,835$	±1,289	$\pm 2,055$					
-50	$\pm 2,990$	$\pm 1,069$	±1,521	$\pm 2,453$					
-60	$\pm 8,735$	$\pm 1,548$	±1,989	±4,050					
-70	±28,251	$\pm 2,888$	±3,297	±10,336					
-80	$\pm 180,000$	$\pm 7,082$	±7,452	±32,789					
-90	$\pm 180,000$	$\pm 20,676$	±21,040	$\pm 180,000$					
Значение	Пределы допуси	каемой абсолютной п	огрешности измере	ний амплитуды					
модуля		коэффициента с	отражения, дБ						
коэффициента	св. 0,3 до	св. 0,5 до 2 ГГц	св. 2 до 6 ГГц	св. 6 до 20 ГГц					
отражения	500 МГц включ.	включ.	включ.	включ.					
0	±0,0081	±0,0081	±0,0129	±0,0164					
0,1	$\pm 0,0088$	$\pm 0,0088$	±0,0138	±0,0175					
0,2	±0,0096	$\pm 0,0096$	$\pm 0,0152$	±0,0193					
0,4	±0,0121	±0,0121	±0,0195	±0,0249					
0,6	±0,0156	$\pm 0,0156$	±0,0260	±0,0335					
0,8	±0,0201	$\pm 0,0201$	$\pm 0,0346$	±0,0451					
1	±0,0256	±0,0256	±0,0455	±0,0597					

-			_	4
11	no	должение	таблицы	4

гродолжение таол	ицы 4					
Наименование	Значение					
характеристики						
Значение модуля	Пределы допу	скаемой абсол	ютной погре	ешности измер	рений фазы	
коэффициента		коэффициен	та отражени:	я, градус		
отражения	св. 0,3 до	св. 0,5 до 2 І	ГГц св.	2 до 6 ГГц	св. 6 до 20 ГГц	
	500 МГц включ.	включ.		включ.	включ.	
0,1	±5,025	±5,024		$\pm 7,943$	$\pm 10,088$	
0,2	$\pm 2,754$	$\pm 2,754$		$\pm 4,347$	$\pm 5,521$	
0,4	$\pm 1,723$	$\pm 1,723$		$\pm 2,784$	$\pm 3,564$	
0,6	$\pm 1,479$	$\pm 1,479$		$\pm 2,473$	$\pm 3,197$	
0,8	$\pm 1,433$	$\pm 1,433$	-	±2,477	$\pm 3,229$	
1	$\pm 1,468$	$\pm 1,468$		$\pm 2,609$	$\pm 3,422$	
Исправленные хар	рактеристики систе	мы ⁶⁾ с использ	ованием кали	ибровочного і	набора N4691D,	
		3,5мм				
	Направлен	н- Согласова-	Согласова-	Отклонени	е Отклонение	

	Направлен-	Согласова-	Согласова-	Отклонение	Отклонение
	ность, дБ	ние источ-	ние	модуля коэф-	модуля ко-
		ника, дБ	нагрузки,	фициента отра-	эффициента
Частотный диапазон:			дБ	жения, дБ	передачи,
					дБ
- от 0,3 до 500 MГц					
включ.	31	29	27	$\pm 0,110$	$\pm 0,355$
- св. 500 МГц до 2 ГГц					
включ.	52	47	47	±0,020	±0,026
св. 2 до 6 ГГц включ.	48	45	43	$\pm 0,030$	$\pm 0,043$
– cв. 6 до 20 ГГц	46	42	39	± 0.040	$\pm 0,103$

Значение модуля	Пределы допускаемой абсолютной погрешности измерений амплитуды								
коэффициента		коэффициента передачи, дБ							
передачи, дБ	св. 0,3 до	св. 0,5 до 2 ГГц	св. 2 до 6 ГГц	св. 6 до 20 ГГц					
	500 МГц включ.	включ.	включ.	включ.					
10	$\pm 0,454$	$\pm 0,113$	±0,133	±0,196					
0	$\pm 0,394$	$\pm 0,051$	$\pm 0,071$	±0,134					
-10	$\pm 0,392$	$\pm 0,063$	$\pm 0,083$	$\pm 0,145$					
-20	$\pm 0,401$	$\pm 0,073$	$\pm 0,093$	±0,155					
-30	$\pm 0,423$	$\pm 0,094$	$\pm 0,114$	±0,177					
-40	$\pm 0,461$	$\pm 0,119$	±0,139	±0,206					
-50	$\pm 0,616$	$\pm 0,154$	$\pm 0,173$	±0,274					
-60	±1,304	$\pm 0,225$	±0,244	±0,533					
-70	$\pm 3,394$	±0,421	±0,438	±1,403					
-80	±7,942	±1,005	±1,019	±3,745					
-9 0	±15,145	±2,623	±2,634	±8,603					

Auf

Продолжение табл	ицы 4							
Наименование		Значен	ие					
характеристики								
Значение	Пределы допускаемой абсолютной погрешности измерений фазы							
модуля		коэффициента передачи, градус						
коэффициента	св. 0,3 до	св. 0,5 до 2 ГГц	св. 2 до 6 ГГц	св. 6 до 20 ГГц				
передачи, дБ	500 МГц включ.	включ.	включ.	включ.				
10	±4,715	$\pm 2,391$	$\pm 2,524$	±2,944				
0	±2,660	$\pm 0,339$	$\pm 0,473$	±0,892				
-10	±2,636	$\pm 0,405$	$\pm 0,539$	±0,957				
-20	±2,697	$\pm 0,474$	$\pm 0,608$	±1,026				
-30	±2,850	$\pm 0,617$	$\pm 0,750$	±1,171				
-40	±3,119	$\pm 0,780$	$\pm 0,913$	±1,364				
-50	±4,208	$\pm 1,014$	$\pm 1,147$	±1,827				
-60	±9,321	$\pm 1,495$	$\pm 1,624$	±3,621				
-70	±28,554	$\pm 2,840$	$\pm 2,958$	±10,097				
-80	±180,000	$\pm 7,038$	$\pm 7,145$	±32,614				
-90	$\pm 180,000$	$\pm 20,632$	$\pm 20,738$	$\pm 180,000$				
Значение	Пределы допускаемой абсолютной погрешности измерений амплитуды							
модуля	коэффициента отражения, дБ							
коэффициента	св. 0,3 до	св. 0,5 до 2 ГГц	св. 2 до 6 ГГц	св. 6 до 20 ГГц				
отражения	500 МГц включ.	включ.	включ.	включ.				
0	±0,0283	$\pm 0,0026$	$\pm 0,0043$	$\pm 0,0056$				
0,1	±0,0305	$\pm 0,0034$	$\pm 0,0053$	$\pm 0,0068$				
0,2	±0,0332	$\pm 0,0042$	$\pm 0,0063$	$\pm 0,0080$				
0,4	$\pm 0,0407$	$\pm 0,0059$	$\pm 0,0084$	$\pm 0,0108$				
0,6	±0,0509	$\pm 0,0078$	$\pm 0,0109$	$\pm 0,0141$				
0,8	±0,0639	$\pm 0,0100$	$\pm 0,0138$	$\pm 0,0181$				
1	±0,0796	±0,0125	±0,0171	±0,0226				
Значение	Пределы допу	ускаемой абсолютной	й погрешности изме	рений фазы				
модуля		коэффициента отр	ажения, градус					
коэффициента	св. 0,3 до	св. 0,5 до 2 ГГц	св. 2 до 6 ГГц	св. 6 до 20				
отражения	500 МГц включ.	включ.	включ.	ГГц включ.				
0,1	±17,729	±1,963	±3,028	±3,871				
0,2	±9,550	±1,198	$\pm 1,788$	±2,278				
0,4	±5,832	±0,835	$\pm 1,199$	±1,536				
0,6	±4,861	±0,739	$\pm 1,039$	±1,343				
0,8	±4,576	±0,713	$\pm 0,987$	±1,291				
1	±4,566	±0,715	$\pm 0,981$	±1,296				

После калибровки, при температуре окружающего воздуха (23 \pm 5) 0 C, отклонении от температуры калибровки ± 1 0 C;

ПЧ – промежуточная частота;

³⁾ дБм – мощность сигнала в дБ относительно 1 мВт;

⁴⁾ дБм/Гц – мощность на несущей частоте;

⁵⁾ СКЗ – среднее квадратическое значение;

⁶⁾ Определяются при полосе фильра $\Pi \Psi = 10 \Gamma \mu$, при температуре окружающего воздуха (23 ± 5) ⁰C, отклонении от температуры калибровки ± 1 ⁰C.

Таблица 5 – Основные технические характеристики

Наименование характеристики	Значение		
Условия эксплуатации:			
– температура окружающего воздуха, °C	от 18 до 28		
– относительная влажность окружающего воздуха, %	от 20 до 80		
– атмосферное давление, кПа	от 84 до 106		
Габаритные размеры, мм, не более:			
– ширина	432		
– высота	222		
– глубина	277		
Масса, кг, не более	22,4		
Напряжение питающей сети переменного тока частотой			
(50±1) Γ _{II} , B	от 198 до 264		
Потребляемая мощность, В·А, не более	300		

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом (в верхнем правом углу) и на переднюю панель в виде наклейки.

Комплектность средства измерений

Таблица 6 – Комплектность анализаторов

	Количество
E5063A или E5071C	1* шт.
	1 шт.
651-20-027 MΠ	1 шт.
-	

Поверка

осуществляется по документу 651-20-027 МП «ГСИ. Анализаторы электрических цепей векторные E5063A, E5071C. Методика поверки», утверждённым Φ ГУП «ВНИИ Φ ТРИ» 12 марта 2020 г.

Основные средства поверки:

- частотомер электронно-счётный 53152A регистрационный номер 61967-15 в Федеральном информационном фонде;
- блок измерительный ваттметров N1914A, регистрационный номер 57386-14 в Федеральном информационном фонде;
- преобразователь мощности Е9304A, регистрационный номер 57387-14 в Федеральном информационном фонде;
- преобразователь измерительный термоэлектрический ваттметров поглощаемой мощности N8482A, регистрационный номер 58375-14 в Федеральном информационном фонде;
- аттенюаторы коаксиальные ступенчатые программируемые 8494G, 8496G, регистрационный номер 61111-15 в Федеральном информационном фонде;
- анализатор цепей векторный N5230C, регистрационный номер 37229-08 в Федеральном информационном фонде;
- наборы мер коэффициентов передачи и отражения 85032F, 85055A, 85052B, 85053B, регистрационный номер 53567-13 в Федеральном информационном фонде.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых анализаторов с требуемой точностью.

Знак поверки наносится в свидетельство о поверке в виде оттиска поверительного клейма или наклейки.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к анализаторам электрических цепей векторным E5063A, E5071C

Техническая документация изготовителя.

Изготовитель

Компания «Keysight Technologies Malaysia Sdn. Bhd.», Малайзия

Адрес: Bayan Lepas Free Industrial Zone, 11900, Bayan Lepas, Penang, Malaysia

Телефон (факс): + 1800-888 848; +1800-801 664

Web-сайт: http://www.keysight.com

E-mail: tm_ap@keysight.com

Заявитель

Общество с ограниченной ответственностью «Кейсайт Текнолоджиз»

(ООО «Кейсайт Текнолоджиз») ИНН 7705556495

Адрес: 113054, г. Москва, Космодамианская наб., 52, стр. 3

Телефон (факс): +7 495 797 3900; +7 495 797 3901

Web-сайт: http://www.keysight.com E-mail: tmo russia@keysight.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» ($\Phi\Gamma$ УП «ВНИИ Φ ТРИ»)

Адрес: 141570, Московская обл., Солнечногорский р-н, г. Солнечногорск, рабочий поселок Менделеево, промзона ВНИИФТРИ

Телефон (факс): +7 (495) 526-63-00 Web-сайт: http://www.vniiftri.ru

E-mail: office@vniiftri.ru

Аттестат аккредитации ФГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 11.05.2018 в реестре Росаккредитации.

Заместитель				
Руководителя Федерального				
агентства по техническому				А.В. Кулешов
регулированию и метрологии				
	М.п.	~	>>	2020 г.

Ruff