Общество с ограниченной ответственностью «МетроКонТ»

УТВЕРЖДАЮ

Директор

ООО «МетроКонТ»

Е.Ю. Трифонов

«10» июля 2020 г.

ИНСТРУКЦИЯ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Резервуары стальные вертикальные цилиндрические с понтоном РВСП-400, РВСП-600

> МЕТОДИКА ПОВЕРКИ МП 0005-2020

Предисловие

1 РАЗРАБОТАНА

ООО «МетроКонТ»

исполнители:

Е.Ю. Трифонов, Ю.А. Трифонов

2 УТВЕРЖДЕНА

ООО «МетроКонТ»

10 июля 2020 г.

3 ВВЕДЕНА ВПЕРВЫЕ

Содержание

	Стр.
1 Область применения	4
2 Нормативные ссылки	4
3 Термины и определения	5
4 Метод поверки	5
5 Операции поверки	6
6 Средства поверки	6
7 Требования безопасности	7
8 Условия поверки	8
9 Подготовка к поверке	8
10 Проведение поверки резервуара	9
10.1 Внешний осмотр	9
10.2 Измерения базовой высоты резервуара	9
10.3 Измерения длины окружности первого пояса	9
10.4 Определение внутренних диаметров поясов резервуара	10
10.5 Измерения высот поясов резервуара	11
10.6 Определение параметров «мертвой» полости резервуара	12
10.6.1 Измерение объема неровностей днища	12
10.6.2 Измерение высоты «мертвой» полости	13
10.6.3 Измерение координаты точки касания днища грузом рулетки	13
10.7 Определение объемов внутренних деталей	14
10.8 Определение параметров плавающего покрытия	14
11 Обработка результатов измерений и составление градуировочной таблицы	14
11.1 Обработка результатов измерений	14
11.2 Составление градуировочной таблицы резервуара	14
12 Оформление результатов поверки	15
Приложение А	17
Приложение Б	23
Приложение В	27
Приложение Г	
Приложение Д	30
БИБЛИОГРАФИЯ	40

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений

Резервуары стальные вертикальные цилиндрические с понтоном РВСП-400, РВСП-600. Методика поверки МП 0005-2020

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая инструкция распространяется на резервуары стальные вертикальные цилиндрические с понтоном (далее — резервуары) номинальной вместимостью 400 м³, 600 м³ (РВСП-400 №№ 1, 2, РВСП-600 №№ 1-1, 2-1) расположенные по адресу: Саратовская область, Краснокутский район, Лебедевское МО 5855 м на северо-восток от ориентира центр с. Карпенка, УКПГ «Карпенская», ООО «Диалл Альянс» и предназначенные для измерения объема нефти и нефтепродуктов, а также для их приема, хранения и отпуска и устанавливает методику геометрическим методом их первичной, периодической поверки.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей инстр	укции использованы ссылки на следующие стандарты:
FOCT 12.0.004-2015	Система стандартов безопасности труда. Организация
	обучения безопасности труда. Общие положения
FOCT 12.1.005-88	Система стандартов безопасности труда. Общие санитарногигиенические требования к воздуху рабочей зоны
	тигиенические треоования к воздуху расочей зоны
FOCT 12.4.087-84	Система стандартов безопасности труда. Строительство.
	Каски строительные. Технические условия
ΓOCT 12.4.137-2001	Обувь специальная с верхом из кожи для защиты от нефти,
	нефтепродуктов, кислот, щелочей, нетоксичной и
	взрывоопасной пыли. Технические условия
ГОСТ 7502-98	Рулетки измерительные металлические. Технические условия
ГОСТ 13837-79	Динамометры общего назначения. Технические условия
ΓΟCT 12.4.310-2016	Система стандартов безопасности труда. Одежда
	специальная для защиты работающих от воздействия нефти,
	нефтепродуктов. Технические требования

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В настоящей инструкции применяют следующие термины с соответствующими определениями:

- 3.1 резервуар стальной вертикальный цилиндрический с понтоном: вертикально расположенный стальной сосуд, наружная поверхность которого покрыта слоем теплоизоляции, со стационарной крышей и понтоном с индивидуальной градуировочной таблицей.
- 3.2 **градуировочная таблица:** Зависимость вместимости от уровня наполнения резервуара при нормированном значении температуры, равной 20 °C.

Таблицу прилагают к свидетельству о поверке резервуара и применяют для определения объема нефти и нефтепродукта в нем.

- 3.3 **градуировка:** Операция поверки по установлению зависимости вместимости резервуара от уровня его наполнения, с целью составления градуировочной таблицы.
- 3.4 **вместительность резервуара:** Внутренний объем резервуара с учетом объема внутренних деталей, который может быть наполнен нефтью и нефтепродуктом до определенного уровня.
- 3.5 **номинальная вместимость резервуара:** Вместимость резервуара, соответствующая предельному уровню наполнения его, установленная нормативным документом для конкретного типа резервуара.
- 3.6 **действительная (фактическая) полная вместимость резервуара:** Вместимость резервуара, соответствующая предельному уровню его наполнения, установленная при его поверке.
- 3.7 **посантиметровая вместимость резервуара:** Вместимость резервуара, соответствующая уровню налитых в него доз жидкости, приходящихся на 1 см высоты наполнения.
- 3.8 **коэффициент вместимости:** Вместимость, приходящаяся на 1 мм высоты наполнения.
- 3.9 точка касания днища грузом рулетки: Точка на днище резервуара, которой касается груз измерительной рулетки при измерении базовой высоты резервуара и уровня нефти и нефтепродукта в резервуаре.
- 3.10 **базовая высота резервуара**: Расстояние по вертикале от точки касания днища грузом рулетки до верхнего края измерительного люка или до риски направляющей планки измерительного люка (при наличии)
- 3.11 **предельный уровень:** Предельный уровень определения посантиметровой вместимости резервуара при его поверке, соответствующий суммарной высоте нижней части резервуара и стенки резервуара
- 3.12 **геометрический метод поверки:** Метод поверки, заключающийся в определении вместимости резервуара по результатам измерений его геометрических параметров.

4 МЕТОД ПОВЕРКИ

Поверку резервуара проводят геометрическим методом.

- 4.1 При поверке резервуара вместимость первого пояса резервуара определяют по результатам измерений наружного диаметра и высоты первого пояса. Для определения вместимости первого пояса наружную теплоизоляцию демонтируют до уровня первого пояса.
- 4.2 Вместимость вышестоящих поясов определяют по результатам измерений внутренних радиусов и высот поясов.
- 4.3 Поверку резервуара проводят юридические лица и индивидуальные предприниматели (далее организация) аккредитованные в соответствующем порядке на право проведения поверки.
 - 4.4 Устанавливают следующие виды поверок резервуара:
- первичную после завершения строительства резервуара или капитального ремонта и его гидравлических испытаний перед вводом его в эксплуатацию;
 - периодическую по истечении срока интервала между поверками;
- внеочередную поверку проводят при изменении значений базовой высоты резервуара более чем на 0,1 % по результатам ежегодных её измерений.
 - 4.5 Интервал между поверками 5 лет.

5 ОПЕРАЦИИ ПОВЕРКИ

5.1 При проведении поверки резервуара должны быть выполнены операции, указанные в таблице 1

Таблица 1

Nº ⊓/⊓	Наименование операции	Номер пункта Инструкции
1	Внешний осмотр	10.1
2	Измерение базовой высоты	10.2
3	Измерения длины окружности первого пояса	10.3
4	Определение внутренних диаметров поясов резервуара	10.4
5	Измерения высот поясов резервуара	10.5
6	Определение параметров «мертвой» полости резервуара	10.6
7	Определение объемов внутренних деталей	10.7
8	Определение параметров плавающего покрытия	10.8

6 СРЕДСТВА ПОВЕРКИ

- 6.1.1 При поверке резервуара применяют следующие основные и вспомогательные средства поверки:
- 6.1.1.1 Рулетку измерительную 2-го класса точности с диапазоном измерений от 0 до 50 м по ГОСТ 7502-98.
- 6.1.1.2 Рулетку измерительную 2-го класса точности с грузом диапазоном измерений от 0 до 30 м по ГОСТ 7502-98.
 - 6.1.1.3 Тахеометр электронный Nikon NPR-332 по [1].
 - 6.1.2 Вспомогательные средства поверки:
 - Анализатор-течеискатель типа АНТ-3М по [2].
 - Динамометр с диапазоном измерений 0-100 Н по ГОСТ 13837-79
- Мел, шпатель, щетки (металлические), микрокалькулятор, веха телескопическая с призменным отражателем.

- 6.1.3 Рабочие эталоны должны быть аттестованы в установленном порядке, средства измерений поверены в установленном порядке.
- 6.1.4 Допускается применение других, вновь разработанных или находящихся в эксплуатации эталонов и средств измерений, удовлетворяющих по точности и пределам измерений требованиям настоящей инструкции.
- 6.2.1 Пределы допускаемой погрешности измерений параметров резервуара приведены в таблице 2.

Таблица 2

Наименование измеряемого параметра	Пределы допустимой погрешности измерений параметров резервуара
Диаметр резервуара, мм	±2
Высота пояса, мм	± 3
Измерение расстояний, мм	± 2
Температура стенки резервуара, °С	± 3
Объем внутренних деталей, м ³	± (0,025-0,30)

6.2.2 При соблюдении указанных в таблице 2 пределов допускаемой погрешности измерений, относительная погрешность определения вместимости резервуара не превышает: ± 0,20 %.

7 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 7.1 Измерения параметров при поверке резервуара проводит группа лиц (не менее двух человек), включая не менее одного специалиста, прошедшего курсы повышения квалификации, и других лиц (при необходимости).
- 7.2 К поверке резервуара допускают лиц, изучивших настоящую инструкцию, техническую документацию на резервуар и его конструкцию и прошедших инструктаж по безопасности труда в соответствии с ГОСТ 12.0.004-2015.
- 7.3 Лица, проводящие работы, используют спецодежду по ГОСТ 12.4.310-2016, спецобувь по ГОСТ 12.4.137-2001, строительную каску по ГОСТ 12.4.087-84.
- 7.4 Предельно допустимая концентрация (ПДК) вредных паров и газов в воздухе, измеренная газоанализатором вблизи и внутри резервуара на высоте 2000 мм, не должна превышать 300 мг/м 3 по ГОСТ 12.1.005-88.
- 7.5 Измерения параметров резервуара во время грозы **категорически запрещены.**
 - 7.6 Перед началом поверки резервуара проверяют исправность:
 - лестниц с поручнями и подножками;
 - помостов с ограждениями.
- 7.7 В процессе измерений параметров резервуара обеспечивают двух или трехкратный обмен воздуха внутри резервуара. При этом анализ воздуха на содержание вредных паров и газов проводят через каждый час.
- 7.8 Продолжительность работы внутри резервуара не более 4-х часов, после каждой четырехчасовой работы перерыв на один час.

8 УСЛОВИЯ ПОВЕРКИ

- 8.1 При поверке соблюдают следующие условия:
- 8.1.1 Измерения параметров резервуара проводят изнутри его.
- 8.1.2 Для проведения измерений параметров резервуара его освобождают от остатков нефти и нефтепродукта, зачищают, пропаривают (при необходимости), промывают и вентилируют.
- 8.1.3 Температура окружающего воздуха и воздуха внутри резервуара от минус 10°C до плюс 35°C.
- 8.1.4 При проведении периодической поверки допускается использовать результаты измерений вместимости «мертвой» полости, полученные ранее, и вносить их в таблицу Б.7 приложения Б, если изменение базовой высоты резервуара по сравнению с результатами её измерений в предыдущей поверке составляет не более 0,1 %.

9 ПОДГОТОВКА К ПОВЕРКЕ

- 9.1 При подготовке к поверке проводят следующие работы:
- 9.1.1 Изучают техническую документацию на резервуар, рабочие эталоны и вспомогательные средства поверки.
- 9.1.2 Подготавливают их согласно технической документации на них, утвержденной в установленном порядке.
- 9.1.3 Штатив тахеометра приводят в рабочее положение, устанавливают на него тахеометр, проводят необходимые операции к подготовки к работе, в соответствии с руководством по эксплуатации. Для удобства выполнения измерений рекомендуемая высота установки: 1650 1750 мм от днища резервуара до визирной линии тахеометра.
 - 9.1.4 Проводят высотную привязку установки тахеометра, для этого:
- а) опускают измерительную рулетку с грузом через измерительный люк до точки касания днища грузом рулетки и фиксируют её мелом;
- б) устанавливают тахеометр в области центра резервуара, при этом место установки выбирают с учетом стабильного позиционирования прибора (отсутствие хлопуна);
- в) тахеометр горизонтируют, с помощью триггеров в соответствии с его технической документацией. Выбирают режим измерений тахеометра HD-h-HZ. Величину горизонтального угла устанавливают $Hz = 0^0 00^{'}00^{''}$;
- г) направляют визир оптической трубы тахеометра (далее визир тахеометра) по нормали к цилиндрической стенке резервуара в место пересечения днища и стенки (точка А рисунок А.3, Приложение А);
- д) измеряют расстояние h_A и вводят с обратным знаком в меню настроек тахеометра как высоту установки инструмента (рисунок А.3, Приложение A);
- е) повторно снимая показания h_A , проверяем правильность ввода данных. На меню дисплея отображения данных должны быть координаты: $Hz = 0^0 00^{'}00^{''}$; h = 0.
- 9.1.5 В программном обеспечении тахеометра формируют файл записи данных измерений.

10 ПРОВЕДЕНИЕ ПОВЕРКИ РЕЗЕРВУАРА

10.1 Внешний осмотр

- 10.1.1 При внешнем осмотре резервуара проверяют:
- состояние конструкции и внутренних деталей резервуара технической документации на него (паспорту, технологической карте на резервуар);
 - наличие необходимой арматуры и оборудования;
 - исправность лестниц и перил;
 - состояние днища резервуара (отсутствие бугров, ям);
 - чистоту внутренней поверхности резервуара;
- отсутствие деформации стенок резервуара, препятствующих проведению измерений параметров резервуара.
- 10.1.2 По результатам внешнего осмотра устанавливают возможность применения геометрического метода поверки резервуара.

10.2 Измерения базовой высоты резервуара

10.2.1 Базовую высоту резервуара H_6 измеряют измерительной рулеткой с грузом не менее двух раз. Расхождение между результатами двух измерений не должно превышать 2 мм (рисунок А.2, Приложение A).

В точке касания днища грузом рулетки проводят мелом отметку на днище резервуара.

- 10.2.2 Результаты измерений базовой высоты H_{6} с указанием места отсчета вносят в протокол, форма которого приведена в приложении Б (таблица Б.3).
- 10.2.3 Базовую высоту измеряют ежегодно. Ежегодные измерения базовой высоты резервуара проводит комиссия, назначенная приказом руководителя предприятия владельца резервуара, в состав которой должен быть включен специалист, прошедший курсы повышения квалификации по поверке и калибровке резервуаров.

При ежегодных измерениях базовой высоты резервуара резервуар может быть наполнен до произвольного уровня.

Результат измерений базовой высоты резервуара не должен отличаться от ее значения, указанного в протоколе поверки резервуара, более чем на 0,1 %.

Если это условие не выполняется, то проводят повторное измерение базовой высоты при уровне наполнения резервуара, отличающимся от его уровня наполнения, указанного в протоколе поверки резервуара, не более чем на 500 мм.

Результаты измерений базовой высоты оформляют актом, форма которого приведена в приложении В.

При изменении базовой высоты по сравнению с ее значением, установленным при поверке резервуара, более чем на 0,1 % устанавливают причину и устраняют ее. При отсутствии возможности устранения причины проводят внеочередную поверку резервуара.

10.3 Измерения длины окружности первого пояса

10.3.1 Длину окружности первого пояса $L_{\rm H}$, мм, измеряют на высоте равной 3/4 высоты первого пояса.

- 10.3.2 Проводят разметку горизонтальной плоскости, для чего на высоте, равной 3/4 высоты первого пояса через каждые 5 м наносят горизонтальные отметки на стенке резервуара.
 - 10.3.3 Укладывают рулетку по нанесенной разметке.
- 10.3.4 Начало отсчета длины окружности выбирают на образующей №0 и отмечают двумя взаимно перпендикулярными штрихами.
- 10.3.5 Начало ленты рулетки укладывают нижней кромкой по горизонтальному штриху и начальную отметку шкалы рулетки совмещают вертикальным штрихом начала отсчета.
- 10.3.6 При выполнении измерений лента рулетки должна быть натянута, плотно прилегать к стенке резервуара, не перекручиваться и лежать нижней кромкой на горизонтальных штрихах.
- 10.3.7 Натяжение рулетки контролируют при помощи динамометра усилием (100 \pm 10) Н.
- 10.3.8 После создания необходимого натяжения против конечной отметки шкалы рулетки на стене резервуара отмечают вертикальный штрих, а по нижней кромке ленты горизонтальный.
- 10.3.9 При измерениях контролируют, чтобы начало шкалы рулетки совпало с конечным штрихом предыдущей укладки.
 - 10.3.11 Длину окружности $L_{\rm H}$, мм, измеряют не менее двух раз.
- 10.3.12 Начальную точку второго измерения смещают по горизонтали от начала первого не менее чем на 500 мм.
- 10.3.13 Относительное расхождение между результатами двух измерений длины окружности $\delta L_{\rm H}$, %, рассчитываемое по формуле

$$\delta L_{\rm H} = 2 \cdot \frac{L_{\rm H1} - L_{\rm H2}}{L_{\rm H1} + L_{\rm H2}} \cdot 100 \tag{1}$$

должно находиться в пределах ± 0,01 %.

- 10.3.14 При расхождении, превышающем указанным в 10.3.13 измерения следует повторять до получения двух последовательных измерений, удовлетворяющих условию 10.3.13.
- 10.3.15 Результаты двух измерений величины $L_{\rm H}$, удовлетворяющих условию 10.3.13, вносят в протокол.

10.4 Определение внутренних диаметров поясов резервуара

10.4.1 Определение внутренних диаметров поясов проводят с применением тахеометра по 5.2.1.4. Внутренне диаметры поясов резервуара D_i определяют по результатам измерений радиусов на 12 образующих в каждом поясе резервуара. Для резервуаров с понтон определяют внутренние диаметры начиная со второго пояса (рисунок A.5, Приложение A)

Тахеометр устанавливают в режим измерений «SD-Hz-Vz».

Измерение резервуара проводят в нижнем и верхнем сечениях.

Нижнее и верхнее сечения находятся в плоскости отходящих от сварного шва на величину равную 1/5 высоты пояса (рисунок А.4, Приложение А).

- 10.4.2 Измерение радиусов поясов резервуара проводят в следующей последовательности (рисунок А.5, Приложение А).
- 10.4.2.2 Направляют сетку нитей визира тахеометра на стенку резервуара в нижнем сечении 2-го пояса и измеряют: наклонное расстояние $I_{0\rm H}^2$, мм; вертикальный угол $V_{0\rm H}^2$, угл. сек.
- 10.4.2.3 Направляют сетку нитей визира тахеометра на стенку резервуара в верхнем сечении 2-го пояса и измеряют: наклонное расстояние $I_{0\mathrm{B}}^2$, мм; вертикальный угол $V_{0\mathrm{B}}^2$, угл. сек.
- 10.4.2.4 Проводят аналогичные операции по 10.4.2.2, 10.4.2.3 и измеряют : наклонные расстояние $I_{0\mathrm{B}}^i$, мм; вертикальных углы $V_{0\mathrm{B}}^i$, угл. сек.

Примечание — В обозначениях $I_{0\mathrm{B}}^i$ и $V_{0\mathrm{B}}^i$ верхний индекс указывает номер текущего пояса, в нижнем индексе — цифра соответствует номеру образующей (0, 1, ... N), буква «н» и «в» соответствует плоскости (сечению) измерений (нижнее и верхнее соответственно).

- 10.4.2.5 Поворачивают алидаду тахеометра в горизонтальной плоскости против часовой стрелке на угол 30° (рисунок А.6, Приложение А). Фиксируют значение горизонтального угла ϕ_{1H}^1 , угл. сек. первой образующей.
- 10.4.2.6 Проведя аналогичные операции по 10.4.2.1 10.4.2.4 измеряют $I_{1 H(B)}^i$, мм; вертикальные углы $V_{1 H(B)}^i$.
- 10.4.2.7 Поворачивают алидаду тахеометра на угол 60° . Фиксируют значение горизонтального угла ϕ^1_{2H} , угл. сек. второй образующей и проводят операции по 10.4.2.1 10.4.2.6.
 - 10.4.2.8 Проводят аналогичные операции на остальных образующих.
- 10.4.2.9 Результаты измерений вносят в протокол, форма которого приведена в приложении Б (таблицы Б.4, Б.4.1).

10.5 Измерения высот поясов резервуара

Высоту і-го пояса резервуара h_i измеряют на нулевой и противоположной N/2 образующей резервуара (рисунок А.7, Приложение А), при помощи тахеометра. в следующей последовательности.

- 10.5.1 Устанавливают на тахеометра режим измерений «HD-h-Hz».
- 10.5.2 Высоту первого пояса h_1 измеряют с применением рулетки измерительной с грузом, как расстояние по вертикали вдоль стенки резервуара от точки касания днища грузом рулетки до середины сварного шва первого и второго пояса.

Измерение проводят не менее двух раз. Расхождение между результатами измерений должно быть не менее 2 мм. Вычисляют среднее арифметическое значение и округляют его до целого миллиметра по правилам округления

- 10.5.3 Направляют сетку нитей визира тахеометра на середину сварного шва соединения верхней границы 1-го пояса и нижней границы 2-го пояса. Измеряют расстояние высоту превышения, как расстояние по вертикали th_1 , мм.
- 10.5.4 Проводя аналогичные процедуры по 10.5.3 измеряют расстояния $th_2 \dots th_k$, мм, вышестоящих поясов.
- 10.5.5 Результаты измерений вносят в протокол. форма которого приведена в приложении Б (таблица Б.5).

10.6 Определение параметров «мертвой» полости резервуара

При определении параметров «мертвой» полости резервуара проводят измерения:

- 1) объема неровностей днища;
- 2) высоты «мертвой» полости;
- 3) координаты точки касания днища грузом рулетки.

10.6.1 Измерение объема неровностей днища

Определение объема неровностей днища $\left(\Delta V_{\rm дH}\right)_0$ проводят с применением тахеометра, вехи с призменным отражателем и измерительной рулетки путем измерения высот превышения рейки в точках пересечения концентрических окружностей днища (I, II,...,VIII) и 8 радиусов днища (рисунок А.9, Приложение A).

Измерения проводят в следующей последовательности.

10.6.1.1 Проводят высотную привязку тахеометра к точке касания днища грузом рулетки днища грузом рулетки.

Тахеометр приводят в отражательный режим измерений «HD-h-Hz».

Устанавливают веху с призменным отражателем в точку касания днища грузом рулетки, контролируя вертикальное положение по круговому уровню вехи.

Наводят сетку нитей визира в центр призменного отражателя и измеряют высоту превышения h_0 , мм, (рисунок А.8, Приложение А) и вводят с обратным знаком в меню настроек тахеометра как высоту установки инструмента.

Повторно снимая показания h_0 , проверяем правильность ввода данных. На меню дисплея отображения данных должны быть координаты: $Hz = 0^0 00^{'}00^{''}$; h = 0.

- 10.6.1.2 Формируют координаты отсчета (места установки вехи) на первом радиусе, для чего укладывают рулетку на днище резервуара, при этом начало отсчета совмещают с точкой установки станции, а второй конец совмещают с отметкой 1-ой образующей на стенке резервуара (рисунок А.9, Приложение А).
- 10.6.1.3 Устанавливают веху в точку $b_{1.1}$ (пересечение 1-й окружности на 1-й образующей), координаты отсчета приведены в таблице 3, контролируя вертикальное положение по круговому уровню вехи. Наводят сетку нитей визира в центр призменного отражателя и измеряют высоту превышения $b_{1.1}$, мм, (рисунок A.10, Приложение A).

Последовательно устанавливая в остальных точках отсчета измеряют высоты превышения $b_{2,1},...,b_{8,1}^{-1}$, мм.

Таблица 3

-		Отсче	ет по шкал	е ленты	рулетки, і	им, на ра	диусе	
Тип	1	- 11	111	IV	V	VI	VII	VIII
РВСП-400, РВСП-600	0,35R	0,5R	0,61R	0,71R	0,79R	0,86R	0,93R	стенка

- 10.6.1.4 Поворачивают алидаду тахеометра на 45° против часовой стрелки и укладывают ленту рулетки на 2-й радиус днища, совмещая начало отсчета (точка $b_{2.1}$), а второй конец совмещают с отметкой 2-ой образующей на стенке резервуара (рисунок A.9). Проводят измерения высот превышения $b_{2.2}, \ldots, b_{8.2}$ на втором радиусе аналогично.
- 10.6.1.5 Проводя аналогичные процедуры по 10.6.1.2-10.6.1.4 измеряют высоты превышений точек отсчета на остальных образующих.
- 10.6.1.6 Результаты измерений вносят в протокол поверки форма которого приведена в приложении Б (таблица Б.6).

10.6.2 Измерение высоты «мертвой» полости

Измерение высоты «мертвой» полости резервуара проводят с применением тахеометра в следующей последовательности.

Устанавливают веху с призменным отражателем на плоскость среза приемнораздаточного устройства. Направляют сетку нитей визира на центр призмы и измеряют расстояние $th_{\rm mn}$, мм, как высоту превышения (рисунок А.11, Приложение А). Измерения проводят 2 раза, расхождение между результатами измерений должно быть не более 1 мм.

Результаты измерений вносят в протокол поверки форма которого приведена в приложении Б (таблица Б.7).

10.6.3 Измерение координаты точки касания днища грузом рулетки

Координату точки касания днища грузом рулетки измеряют тахеометром в следующей последовательности.

Устанавливают веху в точку касания днища грузом рулетки, контролируя вертикальное положение по круговому уровню вехи. Наводят сетку нитей визира в центр призменного отражателя и измеряют горизонтальный угол ϕ_0 , $^{\circ}$, и контролируют высоту h_0 , мм. В соответствии с пунктом 10.5.1.1 её значение должно быть равно нулю.

Результаты измерений вносят в протокол поверки форма которого приведена в приложении Б (таблица Б.8).

 $^{^1}$ В обозначении точки отсчета $b_{1.1}...b_{8.1}$ – первый индекс указывает номер радиуса концентрической окружности днища, второй – номер радиуса днища (образующей)

10.7 Определение объемов внутренних деталей

Объемы внутренних деталей, находящихся в резервуаре, определяют по данным проектной документации на резервуар.

Внутренняя деталь, которая влияет на вместимость резервуара является люк-лаз и центральная труба.

Данные объемов и расположения внутренних деталей носят в протокол поверки форма которого приведена в приложении Б (таблица Б.9).

10.8 Определение параметров плавающего покрытия

- 10.8.1 Массу $m_{\rm n}$, диаметр плавающего покрытия $D_{\rm n}$, отверстий в плавающем покрытии $D_{\rm 1}, D_{\rm 2},...,D_{\rm n}$, нижнее и верхнее положение плавающего покрытия $h_{\rm n}^{\rm H}, h_{\rm n}^{\rm B}$, параметры опор плавающего покрытия принимают по исполнительной документации.
- 10.8.2 Значения величин плавающего покрытия вносят в протокол, форма которого приведена в приложении Б (таблица Б.11).

11 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И СОСТАВЛЕНИЕ ГРАДУИРОВОЧНОЙ ТАБЛИЦЫ

11.1 Обработка результатов измерений

11.1.1 Обработку результатов измерений при поверке проводят в соответствии с приложением В.

11.2 Составление градуировочной таблицы резервуара

11.2.1 Градуировочную таблицу составляют начиная с уровня $H_{\rm mn}$, соответствующего высоте «мертвой» полости $h_{\rm mn}$, до предельного уровня $H_{\rm np}$, вычисляя посантиметровую вместимость резервуара i-го пояса $V(H)_i$, м³, по формуле

$$V(H)_{i} = V(H)_{i-1} + \frac{\pi D_{i}^{2}}{4 \cdot 10^{8}} (H - H_{i-1}), \tag{2}$$

где $V(H)_{i-1}$ – посантиметровая вместимость резервуара, соответствующая уровню H_{i-1} , м 3 ;

H – уровень жидкости, соответствующий, отсчитываемый от точки касания днища грузом рулетки, см;

 H_{i-1} – уровень жидкости, соответствующий суммарной высоте поясов, см;

 D_i – внутренний диаметр *i*-го пояса, вычисляемый по формуле (Д.1), мм.

11.2.2 Предельный уровень $H_{\rm np}$, см, до которого составляют градуировочную таблицу, вычисляют по формуле

$$H_{\rm np} = \frac{\eta}{\sqrt{1+\eta^2}} \left[H_6 \frac{\eta}{\sqrt{1+\eta^2}} + \frac{1}{\eta} \sum_{i=1}^n h_i + r_0 \cos \varphi \right], \tag{3}$$

где n – номер пояса, выбираемый из ряда: 2, 3,..., n;

 h_i – высота і-го пояса, мм;

 r_0 – радиус расположения точки касания днища грузом рулетки, мм;

- 11.2.3 Посантиметровую вместимость 1-го пояса $V(H)_1$, м³, вычисляют по формуле (Д.8).
- 11.2.4 В пределах каждого пояса вычисляют коэффициент вместимости, равный вместимости, приходящейся на 1 мм высоты наполнения.
- 11.2.5 Градуировочную таблицу «мертвой» полости составляют, начиная от исходной точки до уровня $H_{\scriptscriptstyle{
 m MII}}$, соответствующий высоте «мертвой» полости.
- 11.2.6 При составлении градуировочной таблицы значения вместимости округляют до 1 дм³.
- 11.2.7 Значения посантиметровой вместимости, указанные в градуировочной таблице, соответствуют температуре 20 °C.
- 11.2.8 Результаты расчетов вносят в журнал, форма которого приведена в приложении Г.
- 11.2.9 Обработка результатов измерений может быть проведена ручным способом или с использованием разработанного и аттестованного в установленном порядке программного обеспечения.
- 11.2.10 Результаты измерений должны быть оформлены протоколом поверки, форма которого приведена в приложении Б, который является исходным документом для расчета градуировочной таблицы.

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 12.1 Результаты поверки резервуара оформляют свидетельством о поверке.
- 12.2 К свидетельству о поверке прикладывают:
- а) градуировочную таблицу;
- б) протокол поверки (оригинал прикладывают к первому экземпляру градуировочной таблицы);
- 12.3 Форма титульного листа градуировочной таблицы и форма градуировочной таблицы приведены в приложении Г. Форма акта ежегодных измерений базовой высоты резервуара приведена в приложении В.

Протокол поверки подписывает поверитель.

Титульный лист и последнюю страницу градуировочной таблицы подписывает поверитель.

12.4 Градуировочную таблицу утверждает руководитель организации, аккредитованной в соответствии с законодательством Российской Федерации об

аккредитации в национальной системе аккредитации на проведение поверки данного типа средств измерений.

ПРИЛОЖЕНИЕ А

Рисунок А.1 – Веха телескопическая с призменным отражателем

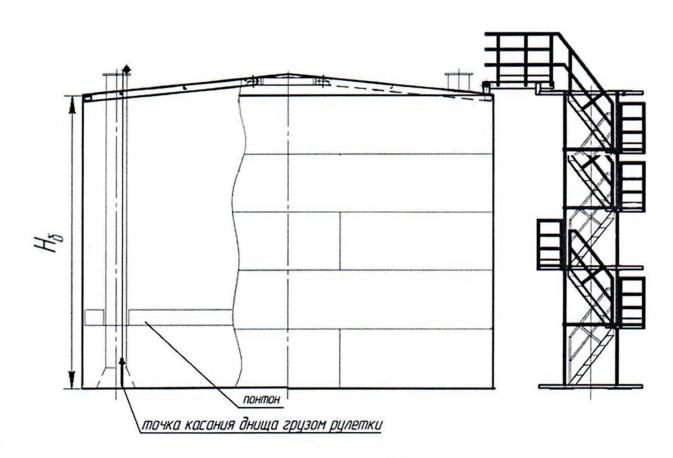


Рисунок А.2 - Схема измерений базовой высоты

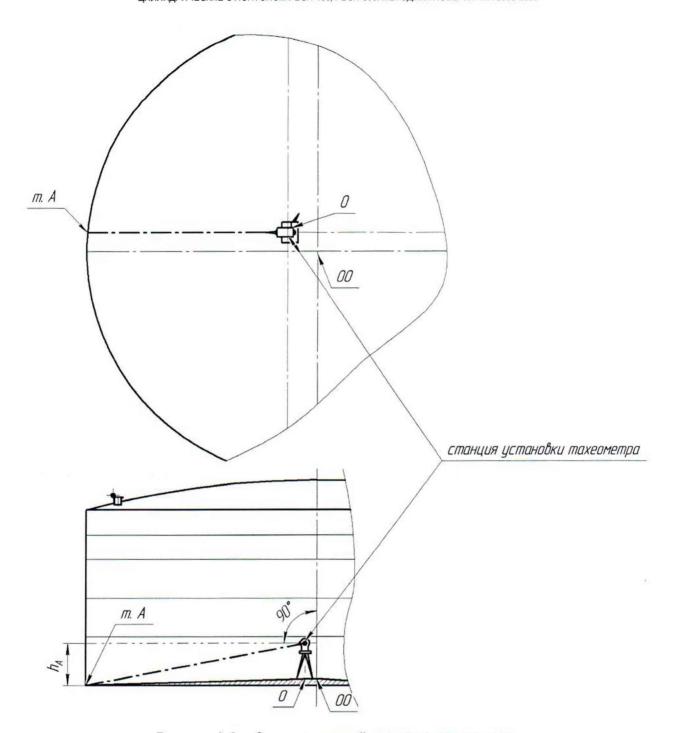


Рисунок А.3 – Схема высотной привязки тахеометра

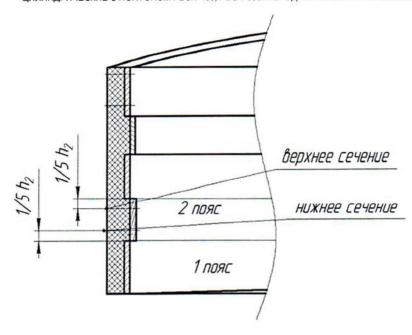


Рисунок A.4 – Схема расположений плоскостей измерений (сечений) внутренних радиусов резервуара

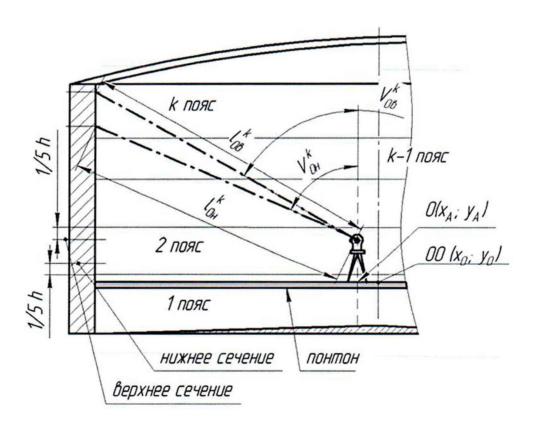


Рисунок А.5 – Схема измерений радиусов поясов резервуара

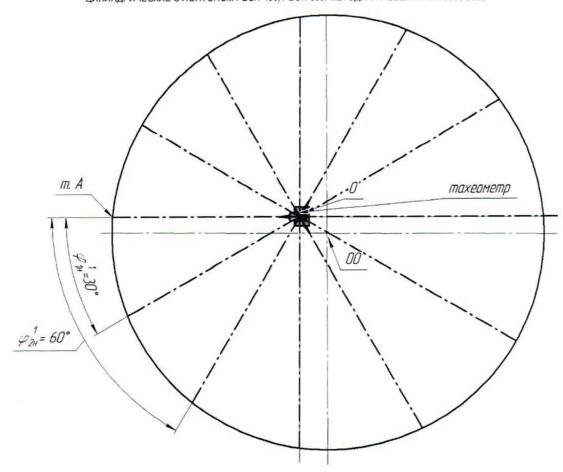


Рисунок А.6 - Схема образующих резервуара

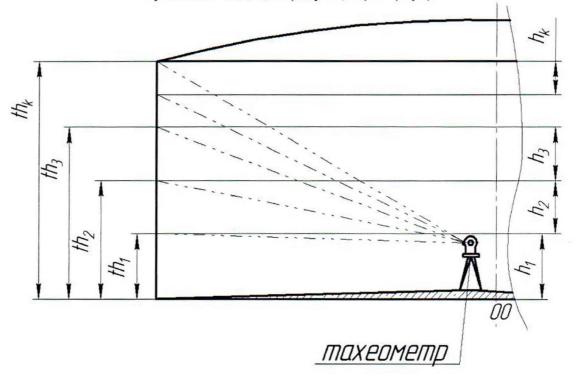


Рисунок А.7 – Схема измерений высоты поясов

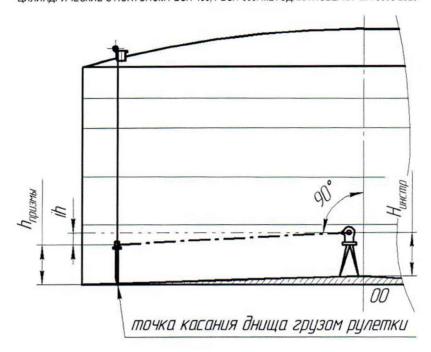


Рисунок А.8 – Схема измерений высотной привязки тахеометра

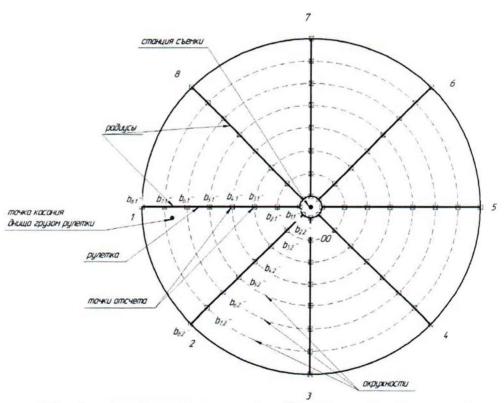


Рисунок А.9 – Координаты отсчета (место установки вехи) неровностей днища

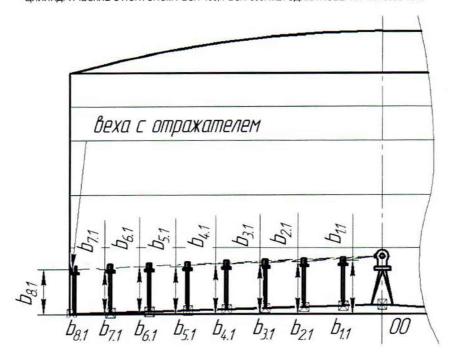


Рисунок А.10 - Схема измерений высот превышения неровностей днища

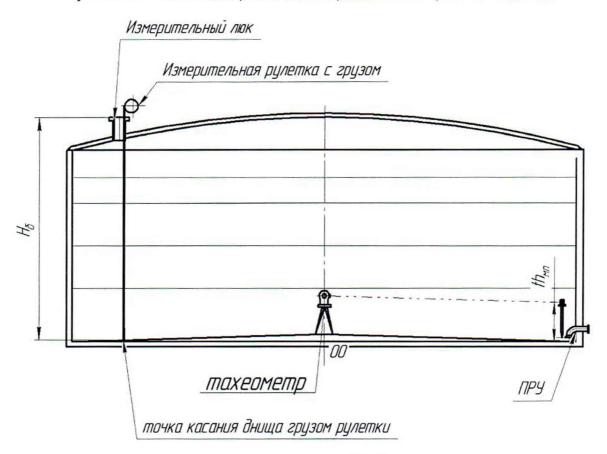


Рисунок А.11 – Схема измерения высоты (превышения) «мертвой» полости

ПРИЛОЖЕНИЕ Б

(обязательное) Форма протокола поверки резервуара

ПРОТОКОЛ

поверки резервуара геометрическим методом

Таблица Б.1 – Общие данные

Дата			Основание для проведения поверки	
число	месяц	год		
1	2	3	4	
			Первичная, периодическая, внеочередная	

Продолжение таблицы Б.1

6

Окончание таблицы Б.1

	Резервуар	
Тип	Номер	Погрешность определения вместимости резервуара, %
7	8	9

Таблица Б.2 – Условия проведения измерений

Температура воздуха внутри резервуара, °С	Загазованность, мг/м ³

Таблица Б.3 – Базовая высота резервуара

В миллиметрах

Точка измерения базовой высоты H_6	Номер измерения			
Точка измерения оазовой высоты 776	1	2		
Риска измерительного люка				
Верхний срез измерительного люка				

Таблица Б.4 – Измерение внутренних радиусов

оясов	резер	вуара									В мил	ілимет	pax
Номер					3	начени	_{ie} I ⁱ _{N H}	на обра	азующе	ей			
пояса	ca	1	2	3	4	5	6	7	8	9	10	11	12
II	Н												
	В												
III	Н												
III B	В												
IV	Н												
IV	В												
V	Н												
V	В												

Таблица Б.4.1 – Параметры образующих

Параметр				Номер об	разующей		
		1	2	3	4	5	6
ФΝ , угл.	сек.						
V_N ,	н						
угл. сек	В						

продолжение таблицы 4.1

Поточно				Номер об	разующей		
Параме	пр	7	8	9	10	11	12
^Ф N , угл. сек.	н	1					
V _{N , угл.} сек	В						

Таблица Б.5 – Высота превышения поясов

Номер		Высота пр	евышения пояс	$\cos th_{i, MM}$	
образующей	1	11	III	IV	V
0					
N/2-1					

Таблица Б.6 – Измерение неровностей днища

В миллиметрах

№ радиуса	Высот	га превыш	ения в точ	ке <i>b_{i.j}</i> отс	счет на ког	нцентриче	ской окруж	кности
(образую щей)	1	II	111	IV	V	VI	VII	VIII
1					_			
2								
3								
4								
5								
6						_		
7								
8								

Таблица Б.7 – Параметры «мертвой» полости

№ измерения	Высота (превышения) «мертвой» полости $\mathit{th}_{M\Pi}$, мм	Вместимость $V_{ m M\Pi}$, м 3
1	2	3
1		
2		

Примечание — Графу 3 заполняют только при принятии вместимости «мертвой» полости по 7.1.4

Таблица Б.8 – Координата точки измерений уровня

жидкости и базовой высоты резервуара

	Номер измерения		
Параметр	1	2	
Угол ^Ф 0 (градус, минута, секунда)			
Высота превышения h_0 , мм			

Таблица Б.9 – Внутренние детали цилиндрической формы

Высота от	Расстояние от	
Нижняя граница <i>h</i> ^в д	Верхняя граница <i>h</i> ^в д	стенки первого пояса /д, мм
		Высота от днища, мм Нижняя граница $h^{\scriptscriptstyle B}{}_{\scriptscriptstyle A}$ Верхняя граница $h^{\scriptscriptstyle B}{}_{\scriptscriptstyle A}$

Таблица Б.10 – Длина окружности первого пояса

Номер измерения	Длина окружности $L_{\rm H}$, мм	Поправка на обход накладок $\sum \Delta I_{\text{обх.}}$, мм	Число укладок ленты <i>n</i> , шт.
1	2	3	4
1			
2			

Таблица Б.11 — Параметры понтона

Мас <mark>с</mark> а <i>М</i> п , к	Диаметр поплавка Г <i>О</i> п , мм	Суммарная длина поплавков / _п , мм	Диамет	гр отверс	тия, мм	and the same of th	нища при крайнем поплавков, мм
			D ₁	D ₂		нижнем h_{Π}^{H}	верхнем h_{Π}^{B}
1	2	3	4	5	6	7	8

Должности	Подписи	Инициалы, фамили
The second secon		randia in the same

ПРИЛОЖЕНИЕ В

(рекомендуемое) Форма акта измерений базовой высоты резервуара

УТВЕРЖДАЮ

Руководитель предприятия - владельца резервуара (директор, гл. инженер)

AKT

изм	ерений базовой от «»				
Составлен в том, что комиссия, н					-
	, в сос	таве пред	седателя		
предприятия - владельца резервуара					
	и чле	нов:			_
инициалы, фамилия			инициалы	, фамилии	
провела контрольные измер	ения базовой	высоты	резервуара	стального	вертикального
цилиндрического с понтоном РВС	:П №				
при температуре окружающего во					
Измерения проведены рулеткой т	ипа	Nº		со сроком	
действия поверки до «»					
делетый неверки де «					
Результаты измерений представл	ены в таблице	1.			
Таблица 1				В миллиме	трах
Базовая высот					
Среднее арифметическое значение результатов двух	Значение ба установленно	ое при пов	верке	Уровень ж в резер	
измерений (<i>H</i> _б) _к	резерву	yapa (<i>H</i> ₅) _⊓ 2		3	
Относительное изменение базово $\delta_6 = \frac{(H_6)_k - (H_6)_n}{(H_6)_n} \cdot 100$, где з	вначения велич	ин $(H_{6})_{\kappa}$,	$\left(H_{\rm G}\right)_{\rm II}$, приве		
Вывод – требуется (не требуется)	внеочередная	поверки р	езервуара.		
		Пре	дседатель ком	ииссии	
		по	дпись	инициалы, фамил	пия
		Чле	ны комиссии:		
		-	подпись	инициалы, фами	плия
		n	одпись	инициалы, фами	лия

ПРИЛОЖЕНИЕ Г

Форма титульного листа градуировочной таблицы и форма градуировочной таблицы

Г.1 Форма титульного листа градуировочной таблицы¹

УТВЕРЖДАЮ

«___» ______20__г.

ГРАДУИРОВОЧНАЯ ТАБЛИЦА на резервуар стальной вертикальный цилиндрический с понтоном

РВСП	Nº	
Организация		
Погрешность определе	ения вместимости: ± 0,20 %	
Срок очере,	дной поверки	
		Поверитель
		подпись

должность, инициалы, фамилия

¹ Форма градуировочной таблицы не подлежит изменению

Г.2 Форма градуировочной таблицы резервуара

Организация	
Резервуар №	

Г.2.1 Форма градуировочной таблицы резервуара

Таблица Г.1 – Посантиметровая вместимость нижней части резервуара

Уровень наполнения, см	Вместимость, м ³	Уровень наполнения, см	Вместимость, м3
H _{M.n}			
H _{M.n} + 1			
H _{M.n} + 2			
•			
,			

Таблица Г.2 — Средняя вместимость в пределах вместимости пояса, приходящейся на 1 см высоты наполнения

Уровень наполнения, мм	Вместимость, м ³	Уровень наполнения, мм	Вместимость, м ³	Уровень наполнения, мм	Вместимость, м ³
1		4		7	
2		5		8	
3		6		9	

ПРИЛОЖЕНИЕ Д

Обработка результатов измерений

Д.1 Вычисление диаметра и высоты первого пояса

При проведении наружных измерений внутренний диаметр первого пояса определяют по результатам вычисления длины окружности с учетом толщины стенки.

Д.1.1 Длину наружной окружности первого пояса $L_{\rm H}$, мм, вычисляют по формуле

$$L_{H} = \frac{L_{H1} + L_{H2}}{2} - \sum_{i=1}^{n_{1}} \Delta I_{\text{obx},i} , \qquad (\text{Д.1})$$

где $L_{\rm H1},~L_{\rm H2}~-$ результаты двух измерений длины окружности первого пояса, мм, значение принимают по таблице Б.9 (графа 2);

 $\Delta J_{\text{обх},i,j}$ – поправка на обход j-й выступающей детали, мм, (графа 3 таблица Б.9) ;

 n_1 – число выступающих деталей, (графа 4 таблица Б.10).

Д.1.2 Длину внутренней окружности первого пояса $L_{\rm вн}$, мм, вычисляют по формуле

$$L_{\rm BH} = L_{\rm H} - 2\pi \cdot (\delta_1 + \delta_{\rm G,K} + \delta_{\rm G,R}), \tag{A.2}$$

где δ_1 – толщина стенки первого пояса, мм;

 $\delta_{\mathsf{c},\kappa},\,\delta_{\mathsf{c},\mathsf{n}}$ – толщина слоя краски и антикоррозионного покрытия, мм.

Д.1.3 Внутренний диаметр D_1 , мм, первого пояса вычисляют по формуле

$$D_1 = \frac{L_{\rm BH}}{\pi},\tag{Д.3}$$

где $L_{\rm BH}$ – длина внутренней окружности, мм, вычисляемая по формулам (Д.2); π = 3.1415926.

Д.2 Определение внутренних диаметров поясов резервуара

Д.2.1 Внутренние диаметры в сечении (нижнее, верхнее) $\emph{i-}$ го пояса резервуара $\emph{D}_\emph{i}$, мм, вычисляют по формуле

$$D_{\mathsf{H}(\mathsf{B})}^{i} = 2 \cdot R_{\mathsf{H}(\mathsf{B})}^{i},\tag{A.4}$$

где $R_{{
m H(B)}}^{i}$ — внутренний радиус в нижнем (верхнем) сечении i-го пояса, мм.

Д.2.2 Для вычисления внутреннего радиуса пояса резервуара проводят измерения следующих параметров:

- наклонного расстояния $I_{N\! ext{H}(B)}^i$ (параметр SD) ;
- вертикального угла $V^i_{\mathsf{NH}(\mathsf{B})}$ (параметр Vz) ;
- горизонтального угла ϕ_N (параметр Hz).

Д.2.3 Положение точки (например, точка A), лежащей на поверхности стенки пояса, определяется тремя координатами декартовой системы координат $\left(x_{H(B)}^i,\ y_{H(B)}^i,\ z_{H(B)}^i\right)$.

Из-за не совпадения начала системы координат измерений (станции съемки) с геометрическим центром резервуара (центром окружности) радиус резервуара определяют с учетом смещения станции съемки от геометрического центра резервуара.

Д.2.4 При направлении визирной линии тахеометра к точке А расстояние от точки $\left(x_{NH(B)}^i,\,y_{NH(B)}^i,\,z_{NH(B)}^i\right)$ до геометрического центра резервуара в плоскости измерений (нижнее/верхнее сечение), в соответствии с [4] вычисляют по формуле

$$\left| \sqrt{\left(x_{NH(B)}^{i} - a_{H(B)}^{i} \right)^{2} + \left(y_{NH(B)}^{i} - b_{H(B)}^{i} \right)^{2}} \right| - R_{H(B)}^{i} = 0 , \qquad (\text{Д.5})$$

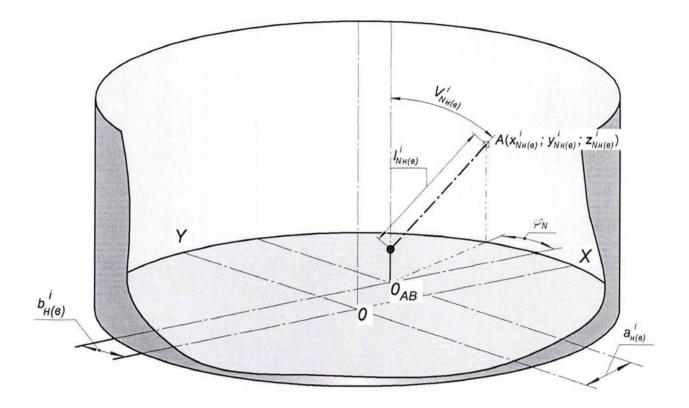
где $\left(X_{\mathsf{NH}(\mathsf{B})}^i \, ; \, y_{\mathsf{NH}(\mathsf{B})}^i \right)$ – координаты точки А в сечении *N*, мм;

 $a_{H(B)}^{i},\ b_{H(B)}^{i}$ — смещение по оси X и Y места установки станции съемки от геометрического центра резервуара, мм.

Величины $\left(X_{\mathsf{NH}(\mathsf{B})}^i \; y_{\mathsf{NH}(\mathsf{B})}^i \right)$ вычисляют по формуле

$$X_{NH(B)}^{i} = I_{NH(B)}^{i} \cdot \cos \varphi_{N} \cdot \cos \left(90 - V_{NH(B)}^{i}\right);$$
 (Д.6)

$$y_{N_{\mathsf{H}(\mathsf{B})}}^{i} = I_{\mathsf{N}_{\mathsf{H}(\mathsf{B})}}^{i} \cdot \sin \varphi_{\mathsf{N}} \cdot \cos \left(90 - V_{\mathsf{N}_{\mathsf{H}(\mathsf{B})}}^{i}\right),$$
 (Д.7)


где $I_{N_{\mathsf{H}(\mathsf{B})}}^i$ – наклонное расстояние, мм;

 $V_{\mathsf{N}\mathsf{H}(\mathsf{B})}^{i}$ – вертикальный угол (зенитный), измеренный в i-ом поясе в нижнем (верхнем) сечении, угл. сек;

 ϕ_{N} – горизонтальный угол N-образующей, угл. сек.

Расстояние $r_{NH(B)}^i$ от точки $\left(X_{NH(B)}^i; y_{NH(B)}^i\right)$ до геометрического центра резервуара в нижнем (верхнем) сечении на N-ой образующей і-го пояса вычисляют по формуле

$$r_{N.H(B)}^{i} = \sqrt{\left(x_{N.H(B)}^{i} - a_{H(B)}^{i}\right)^{2} + \left(y_{N.H(B)}^{i} - b_{H(B)}^{i}\right)^{2}}$$
 (Д.8)

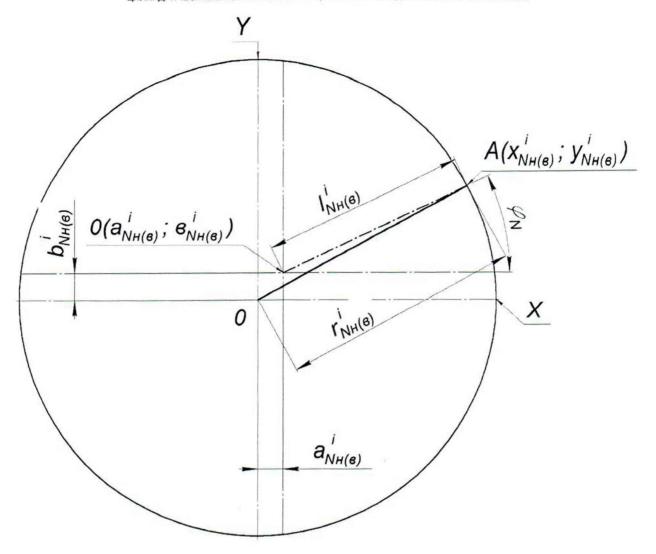


Рисунок Д.2 — Параметры измерений радиуса $r_{NH(B)}^{i}$ i-го пояса при j-ом измерении в нижнем (верхнем) сечении

Д.2.5 Смещение станции съемки от геометрического центра резервуара $a_{{\sf H}({\sf B})}^i,\ b_{{\sf H}({\sf B})}^i$ и расстояние от точек на поверхности пояса до центра окружности $R_{{\sf H}({\sf B})}^i$ в нижнем (верхнем сечении) і-го пояса вычисляют методом наименьших квадратов.

Параметры $a_{{\sf H}({\sf B})}^i,\;b_{{\sf H}({\sf B})}^i,\;R_{{\sf H}({\sf B})}^i$ вычисляют решая систему линейных уравнений

$$a_{H(B)}^{i} = \left[\sum_{j=0}^{N} x_{j.H(B)}^{i} - R_{H(B)}^{i} \sum_{j=0}^{N} \frac{\left(x_{j.H(B)}^{i} - a_{H(B)}^{i}\right)}{r_{j.H(B)}^{i}}\right] \cdot \frac{1}{N};$$
 (Д.9)

$$b_{H(B)}^{i} = \left[\sum_{j=1}^{N} y_{j.H(B)}^{i} - R_{H(B)}^{i} \sum_{j=1}^{N} \frac{\left(y_{j.H(B)}^{i} - b_{H(B)}^{i} \right)}{r_{j.H(B)}^{i}} \right] \cdot \frac{1}{N} ; \qquad (\text{Д}.10)$$

$$R_{H(B)}^{i} = \frac{1}{N} \cdot \sum_{j=1}^{N} r_{j,H(B)}^{i},$$
 (Д.11)

где $r^i_{j,\mathsf{H}(\mathsf{B})}$ – радиус *i*-го пояса на N-ой образующей в нижнем (верхнем) сечении, мм;

N – номер образующей (число измерений), принято равным 12;

 $x_{j,H(B)}^{i}$, $y_{j,H(B)}^{i}$ – координаты точки внутренней поверхности на N-ой образующей в нижнем (верхнем) сечении i-го пояса резервуара, мм.

Радиус $\emph{i-}$ го пояса на N-ой образующей в нижнем (верхнем) сечении $r^\emph{i}_{\emph{j.}\text{H(B)}}$ вычисляют по формуле

$$r_{j,H(B)}^{i} = \sqrt{\left(\chi_{j,H(B)}^{i} - a_{H(B)}^{i}\right)^{2} + \left(\chi_{j,H(B)}^{i} - b_{H(B)}^{i}\right)^{2}},$$
 (Д.12)

Д 2.6 Вычисление величин $a_{\mathsf{H}(\mathtt{B})}^i$, $b_{\mathsf{H}(\mathtt{B})}^i$, $P_{\mathsf{H}(\mathtt{B})}^i$ проводят в следующей последовательности.

Д.2.6.1 Вычисление величин $\mathbf{a}_{\mathsf{H}(\mathsf{B})}^i,\ b_{\mathsf{H}(\mathsf{B})}^i,\ R_{\mathsf{H}(\mathsf{B})}^i,\ \mathsf{B}$ нулевом приближении $\left(a_{\mathsf{0.H}(\mathsf{B})}^i,\ b_{\mathsf{0.H}(\mathsf{B})}^i,\ R_{\mathsf{0.H}(\mathsf{B})}^i\right)$:

- 1) устанавливают значение $a_{0.\mathrm{H}(\mathrm{B})}^i,\ b_{0.\mathrm{H}(\mathrm{B})}^i$ в формуле Ошибка! Источник ссылки не найден. равным нулю.
- 2) вычисляют значения $r^i_{j,\mathrm{H}(\mathrm{B})}$ в соответствии с формулой Ошибка! Источник ссылки не найден.

$$\begin{split} r_{0.0.\text{H(B)}}^i &= \sqrt{\left(x_{0.\text{H(B)}}^i\right)^2 + \left(y_{0.\text{H(B)}}^i\right)^2}\,; \qquad r_{0.1.\text{H(B)}}^i &= \sqrt{\left(x_{1.\text{H(B)}}^i\right)^2 + \left(y_{1.\text{H(B)}}^i\right)^2}\,; \\ r_{0.3.\text{H(B)}}^i &= \sqrt{\left(x_{3.\text{H(B)}}^i\right)^2 + \left(y_{3.\text{H(B)}}^i\right)^2}\,; \, \dots & r_{0.12.\text{H(B)}}^i &= \sqrt{\left(x_{12.\text{H(B)}}^i\right)^2 + \left(y_{12.\text{H(B)}}^i\right)^2}\,; \end{split}$$

Примечание — В обозначении $r_{0.0.\mathrm{H(B)}}^i$ верхний индекс i соответствует номеру пояса, в нижнем индексе: первое число указывает номер приближения, второе число — номер образующей, н(в) нижнее (верхнее) сечение.

3) значение $R^i_{0.0.{
m H(B)}}$ вычисляют по формуле (Д.11):

$$R_{0H(B)}^{i} = \frac{1}{12} \Big(r_{0.0.H(B)}^{i} + r_{0.1.H(B)}^{i} + r_{0.2.H(B)}^{i} + \dots + r_{0.12.H(B)}^{i} \Big);$$

4) вычисляют значения $a_{0.\mathsf{H}(\mathsf{B})}^i,\ b_{0.\mathsf{H}(\mathsf{B})}^i$ в соответствии с формулами (Д.9) и (Д.10) соответственно:

$$a_{0.0\text{H(B)}}^{i} = \frac{x_{0\text{H(B)}}^{i} + x_{1\text{H(B)}}^{i} + \dots + x_{12\text{H(B)}}^{i}}{12} - \frac{x_{0\text{H(B)}}^{i}}{\sqrt{\left(x_{0\text{H(B)}}^{i}\right)^{2} + \left(y_{0\text{H(B)}}^{i}\right)^{2}}} + \frac{x_{1\text{H(B)}}^{i}}{\sqrt{\left(x_{1\text{H(B)}}^{i}\right)^{2} + \left(y_{1\text{H(B)}}^{i}\right)^{2}}} + \frac{x_{12\text{H(B)}}^{i}}{\sqrt{\left(x_{2\text{H(B)}}^{i}\right)^{2} + \left(y_{2\text{H(B)}}^{i}\right)^{2}}} + \dots + \frac{x_{12\text{H(B)}}^{i}}{\sqrt{\left(x_{12\text{H(B)}}^{i}\right)^{2} + \left(y_{12\text{H(B)}}^{i}\right)^{2}}}}\right);$$

$$b_{0.0\text{H(B)}}^{i} = \frac{y_{0\text{H(B)}}^{i} + y_{1\text{H(B)}}^{i} + \dots + y_{12\text{H(B)}}^{i}}{12} - \frac{R_{0\text{H(B)}}^{i}}{12} \left(\frac{y_{0\text{H(B)}}^{i}}{\sqrt{\left(x_{0\text{H(B)}}^{i}\right)^{2} + \left(y_{0\text{H(B)}}^{i}\right)^{2}}} + \frac{y_{1\text{H(B)}}^{i}}{\sqrt{\left(x_{1\text{H(B)}}^{i}\right)^{2} + \left(y_{1\text{H(B)}}^{i}\right)^{2}}} + \frac{y_{12\text{H(B)}}^{i}}{\sqrt{\left(x_{2\text{H(B)}}^{i}\right)^{2} + \left(y_{2\text{H(B)}}^{i}\right)^{2}}} + \dots + \frac{y_{12\text{H(B)}}^{i}}{\sqrt{\left(x_{12\text{H(B)}}^{i}\right)^{2} + \left(y_{12\text{H(B)}}^{i}\right)^{2}}} \right);$$

Д.2.6.2 Вычисление величин $a_{\mathsf{H}(\mathsf{B})}^i,\ b_{\mathsf{H}(\mathsf{B})}^i,\ R_{\mathsf{H}(\mathsf{B})}^i,\ \mathsf{B}$ первом приближении $\left(a_{\mathsf{1.H}(\mathsf{B})}^i,\ b_{\mathsf{1.H}(\mathsf{B})}^i,\ R_{\mathsf{1.H}(\mathsf{B})}^i\right)$:

$$\begin{split} r_{1.0.\text{H(B)}}^{i} &= \sqrt{\left(x_{0.\text{H(B)}}^{i} - a_{0.\text{H(B)}}^{i}\right)^{2} + \left(y_{0.\text{H(B)}}^{i} - b_{0.\text{H(B)}}^{i}\right)^{2}};\\ r_{1.1\text{H(B)}}^{i} &= \sqrt{\left(x_{1.\text{H(B)}}^{i} - a_{0.\text{H(B)}}^{i}\right)^{2} + \left(y_{1.\text{H(B)}}^{i} - b_{0.\text{H(B)}}^{i}\right)^{2}};\\ r_{1.3.\text{H(B)}}^{i} &= \sqrt{\left(x_{3.\text{H(B)}}^{i} - a_{0.\text{H(B)}}^{i}\right)^{2} + \left(y_{3.\text{H(B)}}^{i} - b_{0.\text{H(B)}}^{i}\right)^{2}};\\ \dots\\ r_{1.12.\text{H(B)}}^{i} &= \sqrt{\left(x_{12.\text{H(B)}}^{i} - a_{0.\text{H(B)}}^{i}\right)^{2} + \left(y_{12.\text{H(B)}}^{i} - b_{0.\text{H(B)}}^{i}\right)^{2}};\\ R_{1\text{H(B)}}^{i} &= \frac{1}{12}\left(r_{1.0.\text{H(B)}}^{i} + r_{1.1.\text{H(B)}}^{i} + r_{1.2.\text{H(B)}}^{i} + \dots + r_{1.12.\text{H(B)}}^{i}\right); \end{split}$$

$$\begin{split} a_{1\text{H}(B)}^{i} &= \frac{x_{0\text{H}(B)}^{i} + x_{1\text{H}(B)}^{i} + \ldots + x_{12\text{H}(B)}^{i}}{12} - \\ &- \frac{R_{1\text{H}(B)}^{i}}{12} \left(\frac{x_{0\text{H}(B)}^{i}}{r_{1.0\text{H}(B)}^{i}} + \frac{x_{1\text{H}(B)}^{i}}{r_{1.1\text{H}(B)}^{i}} + \frac{x_{2\text{H}(B)}^{i}}{r_{1.2\text{H}(B)}^{i}} + \ldots + \frac{x_{12\text{H}(B)}^{i}}{r_{1.12\text{H}(B)}^{i}} \right); \\ b_{1\text{H}(B)}^{i} &= \frac{y_{0\text{H}(B)}^{i} + y_{1\text{H}(B)}^{i} + \ldots + y_{12\text{H}(B)}^{i}}{12} - \\ &- \frac{R_{1\text{H}(B)}^{i}}{12} \left(\frac{y_{0\text{H}(B)}^{i} + y_{1\text{H}(B)}^{i}}{r_{1.0\text{H}(B)}^{i}} + \frac{y_{1\text{H}(B)}^{i}}{r_{1.2\text{H}(B)}^{i}} + \frac{y_{2\text{H}(B)}^{i}}{r_{1.2\text{H}(B)}^{i}} + \ldots + \frac{y_{12\text{H}(B)}^{i}}{r_{1.12\text{H}(B)}^{i}} \right); \end{split}$$

Д.2.6.3 Вычисление величин $a_{\mathsf{H}(\mathsf{B})}^i,\ b_{\mathsf{H}(\mathsf{B})}^i,\ R_{\mathsf{H}(\mathsf{B})}^i,$ во втором приближении $\left(a_{2.\mathsf{H}(\mathsf{B})}^i,\ b_{2.\mathsf{H}(\mathsf{B})}^i,\ R_{2.\mathsf{H}(\mathsf{B})}^i\right)$:

$$\begin{split} r_{2.0.\text{H(B)}}^{j} &= \sqrt{\left(x_{0.\text{H(B)}}^{j} - a_{1.\text{H(B)}}^{j}\right)^{2} + \left(y_{0.\text{H(B)}}^{j} - b_{1.\text{H(B)}}^{j}\right)^{2}}; \\ r_{2.1\text{H(B)}}^{j} &= \sqrt{\left(x_{1.\text{H(B)}}^{j} - a_{1.\text{H(B)}}^{j}\right)^{2} + \left(y_{1.\text{H(B)}}^{j} - b_{1.\text{H(B)}}^{j}\right)^{2}}; \\ r_{2.3.\text{H(B)}}^{j} &= \sqrt{\left(x_{3.\text{H(B)}}^{j} - a_{1.\text{H(B)}}^{j}\right)^{2} + \left(y_{3.\text{H(B)}}^{j} - b_{1.\text{H(B)}}^{j}\right)^{2}}; \\ \dots \\ r_{2.12.\text{H(B)}}^{j} &= \sqrt{\left(x_{12.\text{H(B)}}^{j} - a_{1.\text{H(B)}}^{j}\right)^{2} + \left(y_{12.\text{H(B)}}^{j} - b_{1.\text{H(B)}}^{j}\right)^{2}}; \\ R_{2\text{H(B)}}^{j} &= \frac{1}{12} \left(r_{2.0.\text{H(B)}}^{j} + r_{2.1.\text{H(B)}}^{j} + r_{2.2.\text{H(B)}}^{j} + \dots + r_{2.12.\text{H(B)}}^{j}\right); \\ a_{2\text{H(B)}}^{j} &= \frac{x_{0\text{H(B)}}^{j} + x_{1\text{H(B)}}^{j} + \dots + x_{12\text{H(B)}}^{j}}{12} - \\ -\frac{R_{2\text{H(B)}}^{j}}{12} \left(\frac{x_{0\text{H(B)}}^{j} + y_{1\text{H(B)}}^{j} + \dots + y_{12\text{H(B)}}^{j}}{r_{2.1\text{H(B)}}^{j}} + \dots + \frac{x_{12\text{H(B)}}^{j}}{r_{2.12\text{H(B)}}^{j}} - \\ -\frac{R_{2\text{H(B)}}^{j}}{12} \left(\frac{y_{0\text{H(B)}}^{j} + y_{1\text{H(B)}}^{j} + \dots + y_{12\text{H(B)}}^{j}}{r_{2.1\text{H(B)}}^{j}} + \dots + \frac{y_{12\text{H(B)}}^{j}}{r_{2.12\text{H(B)}}^{j}} \right); \end{split}$$

Д.2.6.4 Операции вычисления прекращают в случае выполнения условия

$$\left| R_{j,H(B)}^i - R_{j-1,H(B)}^i \right| \le 0,001 \, \text{mm} ,$$

где j – номер приближения (0, 1, ...m).

Д.2.7 Внутренний диаметр D^i і-го пояса вычисляют по формуле

$$D^i = R_{\rm H}^i + R_{\rm R}^i, \tag{A.13}$$

где $R_{\rm H}^i,\ R_{\rm B}^i$ – внутренние радиусы в нижнем и верхнем сечении i-го пояса, мм.

Д.2 Измерения высот поясов резервуара

Д.2.1 Высоту i-го пояса резервуара, начиная со второго пояса, как расстояние по вертикали от середины сварного шва i-го и i+1 пояса резервуара, h_i , мм, вычисляют по формуле

$$h_i = th'_{i+1} - th'_i$$

(Д.14)

где th'_i , th''_i — высота превышения і-го пояса, на образующей и противоположной образующей значение которого принимают из таблицы Б.3, мм;

 th_{i+1} — высота превышения вышестоящего i+1-го пояса, значение которого принимают из таблицы Б.5, мм.

Д.3 Вычисление вместимости «мертвой» полости

Д.3.1 Объем неровностей днища $\left(\Delta V_{\mathsf{дH}}\right)_{\mathsf{0}}$ вычисляют по формуле

$$\left(\Delta V_{\text{дH}}\right)_{0} = \frac{\pi D_{1}^{2}}{4 \cdot 10^{9}} \begin{pmatrix} 0,005104f_{1} + 0,02281f_{2} + 0,03863f_{3} + \\ +0,05455f_{4} + 0,07038f_{5} + 0,08513f_{6} + \\ +0,10018f_{7} + 0,11645f_{8} \end{pmatrix}, \quad (\text{Д.15})$$

где $f_1, f_2, ..., f_8$ – превышение высот призмы в точке между концентрическими окружностями неровностей днища, вычисляемые по формуле

$$f_j = \sum_{t=1}^{8} (b_{(j-1)t} - b_{jt}),$$
 (Д.16)

где b_j — высота превышения призмы, установленной по периметру j-й концентрической окружности;

 b_{j-1} – высота превышения призмы, установленной по периметру (j - 1)-й вышележащей концентрической окружности.

$$H_{\mathsf{M}\mathsf{\Pi}} = H_{\mathsf{G}} - t h_{\mathsf{M}\mathsf{\Pi}},\tag{\mathfrak{Q}.17}$$

где H_{6} – базовая высота, её значение принимают из таблицы Б.3, мм;

 $th_{\rm MR}$ – высота превышения среза ПРУ, значение принимают по таблице Б.7 (графа 2), мм.

Д.3.3 Вместимость «мертвой» полости $V_{
m MR}$ вычисляют по формуле

$$V_{\mathsf{M}\mathsf{\Pi}} = V_{\mathsf{M}\mathsf{\Pi}}' - \left(\Delta V_{\mathsf{Q}\mathsf{H}}\right)_{\mathsf{Q}},\tag{Q.18}$$

где $\left(V_{\text{ДH}}\right)_0$ — объем неровностей днища, вычисляемый по формуле (Д.15), м³; $V_{\text{мп}}'$ — вместимость «мертвой» полости в пределах $H_{\text{мп}}$, вычисляемая по формуле

$$V'_{M\Pi} = \frac{\pi D_1^2}{4 \cdot 10^9} \cdot H,\tag{Д.19}$$

где D_1 – внутренний диаметр 1-го пояса, вычисляемый по формуле (Д.3), мм;

 ${\it H}\,$ – уровень жидкости, отсчитываемый от точки касания днища грузом рулетки, мм;

Д.4 Вычисление посантиметровой вместимости 1-го пояса резервуара

 ${\sf Д}$.4.1 Посантиметровую вместимость 1-го пояса от точки касания днища грузом рулетки до уровня H_1 , соответствующий высоте 1-го пояса, вычисляют по формуле

$$V(H)_1 = V_{M\Pi} + \frac{\pi D_1^2}{4 \cdot 10^9} (H - H_{M\Pi}) + \Delta V_{B.D.},$$
 (Д.20)

где $V_{\rm M\Pi}$ – вместимость «мертвой» полости, вычисляемая по формуле (Д.18), м 3 ;

 D_1 – внутренний диаметр 1-го пояса, вычисляемый по формуле (Д.3), мм;

Н – уровень жидкости, отсчитываемый от точки касания днища грузом рулетки, мм;

 $H_{\rm MR}$ – уровень жидкости, соответствующий высоте «мертвой» полости формуле (Д.17), мм.

 $\Delta V_{_{\rm B}}$ _ - объем внутренней детали, м³.

Д.5 Вычисление посантиметровой вместимости і-го пояса резервуара

Посантиметровую вместимость резервуара $\emph{i-}$ го пояса $\emph{V}(\emph{H})_\emph{i}$ вычисляют по формуле

$$V(H)_i = V(H)_{i-1} + \frac{\pi D_i^2}{4 \cdot 10^8} (H - H_{i-1}),$$
 (Д.21)

где $V(H)_{i-1}$ – посантиметровая вместимость резервуара, соответствующая уровню H_{i-1} , \mathbf{M}^3 ;

 H – уровень жидкости, соответствующий, отсчитываемый от точки касания днища грузом рулетки, см;

 H_{i-1} – уровень жидкости, соответствующий суммарной высоте поясов, см;

 D_i – внутренний диаметр i-го пояса, вычисляемый по формуле (Д.13), мм.

БИБЛИОГРАФИЯ

- [1] Тахеометр электронный Nikon NPR-332, Регистрационный номер 39639-08
- [2] ТУ ДКТЦ 41344.1.1.102 Анализатор-течеискатель АНТ-3. Технические условия