ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РАСХОДОМЕТРИИ – ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО УНИТАРНОГО ПРЕДПРИЯТИЯ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ им.Д.И.МЕНДЕЛЕЕВА»

ВНИИР – филиал ФГУП «ВНИИМ им.Д.И.Менделеева»

Заместитель пиректора по развитию

рст А.С. Тайбинский

иминентирования

октября

октября

2000 г.

Государственная система обеспечения единства измерений

УСТАНОВКА ПОВЕРОЧНАЯ ПЕРЕДВИЖНАЯ НА БАЗЕ УЛЬТРАЗВУКОВОГО ПРЕОБРАЗОВАТЕЛЯ РАСХОДА ГКС-1 «ДРУЖБА»

Методика поверки

MΠ 1147-1-2020

Начальник НАО-1

Р.А. Корнеев

Тел. отдела: +7(843) 272-12-02

Казань

Настоящий документ распространяется на установку поверочную передвижную на базе ультразвукового преобразователя расхода ГКС-1 «Дружба» с заводским номером 1235 (далее – установка) предназначена для измерений, воспроизведения, хранения и передачи единиц объемного и массового расхода жидкости, объема и массы жидкости в потоке, и устанавливает методику и последовательность ее первичной и периодической поверок.

Интервал между поверками – 1 год.

1 Операции поверки

- 1.1 При проведении поверки расчетным методом выполняют следующие операции:
- внешний осмотр (пункт 6.1);
- подтверждение соответствия программного обеспечения средства измерений (пункт 6.2);
- опробование (пункт 6.3);
- определение метрологических характеристик (пункт 6.4.1).
- 1.2 При проведении поверки проливным методом выполняют следующие операции:
- внешний осмотр (пункт 6.1);
- подтверждение соответствия программного обеспечения средства измерений (пункт 6.2);
- опробование (пункт 6.3);
- определение метрологических характеристик (пункт 6.4.2).
- 1.3 Метод поверки (расчетный или проливной) определяется владельцем установки, на основании письменного заявления, оформленного в произвольной форме.

2 Средства поверки

- 2.1 Рабочий эталон единиц объемного расхода и объема жидкости в потоке 1-го разряда согласно ГПС (часть 2), утвержденной приказом Росстандарта от 07.02.2018 № 256, с пределами допускаемой относительной погрешности ±0,06 % (далее эталон) по пункту 6.4.2.
- 2.2 Периодическую поверку установки, предназначенную для измерений (воспроизведения) нескольких величин или имеющих несколько поддиапазонов измерений, но используемую для измерений (воспроизведения) меньшего числа величин или на меньшем числе поддиапазонов измерений, допускается проводить на основании письменного заявления владельца установки, оформленного в произвольной форме.
- 2.3 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

3 Требования безопасности

- 3.1 При проведении поверки соблюдают требования:
- правил эксплуатации электроустановок потребителей;
- правил техники безопасности при эксплуатации электроустановок потребителей;
- правил безопасности при эксплуатации средств поверки и установки, приведенных в их эксплуатационных документах.
- 3.2 К проведению поверки допускают лиц, изучивших настоящий документ, эксплуатационные документы на установку и средства поверки, а также прошедшие инструктаж по технике безопасности.

4 Условия поверки

- 4.1 По пункту 6.4.1 требования к условиям поверки отсутствуют, так как реализован расчетный метод определения метрологических характеристик.
 - 4.2 По пункту 6.4.2 соблюдают следующие условия поверки:

Измеряемая среда – топливо дизельное ЕВРО по ГОСТ 32511-2013 (ЕН590:2009) с параметрами:

- температура, °С

от -5 до +40

– давление, МПа, не более

6,3

Окружающая среда – воздух с параметрами:

- температура, °С

 (20 ± 10)

- относительная влажность, %

от 30 до 80

– атмосферное давление, кПа

от 84 до 107

4.3 Средства измерений температуры, давления, плотности измеряемой среды, комплекс измерительно-вычислительный ИМЦ-07, входящие в состав установки, должны иметь действующие свидетельства о поверке.

5 Подготовка к поверке

- 5.1 При подготовке к поверке выполняют следующие работы:
- проверка выполнения условий раздела 2, 3 и 4 настоящего документа;
- подготовка к работе установки и средств поверки, согласно их эксплуатационных документов;
- проверка герметичности соединений и узлов гидравлической системы рабочим давлением.

6 Проведение поверки

6.1 Внешний осмотр

При внешнем осмотре устанавливают соответствие установки следующим требованиям:

- комплектность и маркировка установки должны соответствовать эксплуатационным документам;
- на установке не должно быть внешних механических повреждений, влияющих на ее работоспособность.

Результат внешнего осмотра считают положительным, если на установке отсутствуют механические повреждения и дефекты, препятствующие ее применению, комплектность установки соответствует эксплуатационным документам, надписи и обозначения на установке четкие и соответствуют эксплуатационным документам, или отрицательным, если на установке присутствуют механические повреждения и дефекты, препятствующие ее применению, комплектность установки не соответствует эксплуатационным документам, надписи и обозначения на установке не четкие и не соответствуют эксплуатационным документам. При отрицательном результате выполнение дальнейших операций по поверке прекращают.

6.2 Подтверждение соответствия программного обеспечения (ПО)

При проведении поверки выполняют операцию подтверждения соответствия ПО заявленным идентификационным данным.

Подготовка к проведению подтверждения соответствия:

- запустить программное обеспечение установки.

Определение идентификационных данных ПО:

- выбрать в контекстном меню программы установки пункт «О программе»;
- активизировать данный пункт меню.

На мониторе должны отобразиться идентификационные данные ПО.

Результат подтверждения соответствия программного обеспечения считают положительным, если полученные идентификационные данные программного обеспечения установки (идентификационное наименование программного обеспечения, номер версии (идентификационный номер программного обеспечения) и цифровой идентификатор ПО соответствуют идентификационным данным, указанным в разделе «Программное обеспечение» описания типа на установку, или отрицательным, если полученные идентификационные данные программного обеспечения установки (идентификационное наименование программного обеспечения) и цифровой идентификатор ПО не соответствуют идентификационным данным, указанным в разделе «Программное обеспечение» описания типа на установку. При отрицательном результате выполнение дальнейших операций по поверке прекращают.

6.3 Опробование

При опробовании определяют работоспособность установки и ее составных частей в соответствии с их эксплуатационными документами. При этом, изменяя расход жидкости, убеждаются по показаниям установки в изменении значений расхода жидкости.

Результат считают положительным, если при увеличении и уменьшении расхода показания установки изменяются соответствующим образом (увеличиваются и уменьшаются), а зафиксированные значения расходов соответствуют значениям, указанным в эксплуатационных документах, или отрицательным, если при увеличении и уменьшении расхода показания установки не изменяются соответствующим образом (увеличиваются и уменьшаются), а зафиксированные значения расходов не соответствуют значениям, указанным в эксплуатационных документах. При отрицательном результате выполнение дальнейших операций по поверке прекращают.

6.4 Определение метрологических характеристик

- 6.4.1 Определение метрологических характеристик расчетным методом
- 6.4.1.1 Определение относительной погрешности (доверительных границ суммарной погрешности) установки при измерении (воспроизведении единицы) объема жидкости в потоке

Относительную погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) объема жидкости в потоке $\delta(V)$, %, вычисляют по формуле

$$\delta(V) = 1, 1 \cdot \sqrt{\delta_{\Im P}^2 + \delta_{\Upsilon K}^2}, \tag{1}$$

где $\delta_{\text{ЭР}}$ — наибольшее значение относительной погрешности преобразователя расхода жидкости ультразвукового DFX-MM, % (берут из свидетельства о поверке (протокола поверки));

 $\delta_{\rm ЧК}$ — наибольшее значение относительной погрешности комплекса измерительновычислительного ИМЦ-07 при измерении количества импульсов, % (берут из свидетельства о поверке (протокола поверки)).

Результат вычислений округляют до третьего знака после запятой.

Результат считают положительным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) объема жидкости в потоке не превышает $\pm 0,11$ %, или отрицательным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) объема жидкости в потоке превышает $\pm 0,11$ %. При отрицательном результате выполнение дальнейших операций по поверке прекращают.

6.4.1.2 Определение относительной погрешности (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) объемного расхода жидкости

Относительную погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) объемного расхода жидкости $\delta(Q_V)$,% вычисляют по формуле

$$\delta(Q_V) = 1, 1 \cdot \sqrt{\delta_{\mathfrak{R}}^2 + \delta_{VK}^2 + \delta_{TB}^2},$$
 (2)

где $\delta_{\text{ТВ}}$ — наибольшее значение относительной погрешности канала измерения времени (периода импульсного сигнала) комплекса измерительно-вычислительного ИМЦ-07, %, (берут из свидетельства о поверке (протокола поверки));

Результат вычислений округляют до третьего знака после запятой.

Результат считают положительным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) объемного расхода жидкости не превышает $\pm 0,11$ %, или отрицательным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) объемного расхода жидкости в потоке превышает $\pm 0,11$ %. При отрицательном результате выполнение дальнейших операций по поверке прекращают.

6.4.1.3 Определение относительной погрешности (доверительных границ суммарной погрешности) установки при измерении (воспроизведении единицы) массы жидкости в потоке

Относительную погрешность (доверительные границы суммарной погрешности) при измерении (воспроизведении единицы) массы жидкости в потоке $\delta(M)$, %, вычисляют по формуле

$$\delta(M) = 1, 1 \cdot \sqrt{\delta_{\Im P}^2 + \delta_{\text{UK}}^2 + \delta_{\Pi J I}^2}, \tag{3}$$

где $\delta_{\Pi\Pi}$ — значение приведенной погрешности преобразователя плотности и расхода CDM модели CDM100P при измерении плотности жидкости, %, рассчитанное по формуле

$$\delta_{\Pi\Pi} = \frac{\Delta_{\Pi\Pi}}{\rho_{\text{many}}} \cdot 100. \tag{4}$$

где $\Delta_{\Pi\Pi}$ — наибольшее значение абсолютной погрешности преобразователя плотности и расхода CDM модели CDM100P, кг/м³ (берут из свидетельства о поверке (протокола поверки));

Результат вычислений округляют до третьего знака после запятой.

Результат считают положительным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) массы жидкости в потоке не превышает $\pm 0,12$ %, или отрицательным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) массы жидкости в потоке превышает $\pm 0,12$ %. При отрицательном результате выполнение дальнейших операций по поверке прекращают.

6.4.1.4 Определение относительной погрешности (доверительных границ суммарной погрешности) установки при измерении (воспроизведении единицы) массового расхода жидкости

Относительную погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) массового расхода жидкости $\delta(Q_M)$, % вычисляют по формуле

$$\delta(Q_{M}) = 1, 1 \cdot \sqrt{\delta_{\Im P}^{2} + \delta_{\mathsf{TK}}^{2} + \delta_{\mathsf{TB}}^{2} + \delta_{\mathsf{TDI}}^{2}}, \tag{5}$$

Результат вычислений округляют до третьего знака после запятой.

Результат считают положительным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) массового расхода жидкости не превышает $\pm 0,12$ %, или отрицательным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) массового расхода жидкости превышает $\pm 0,12$ %. При отрицательном результате выполнение дальнейших операций по поверке прекращают.

6.4.2 Определение метрологических характеристик проливным методом

6.4.2.1 Определение относительной погрешности (доверительных границ суммарной погрешности) установки при измерении (воспроизведении единицы) объема жидкости в потоке

Отклонение показания установки от показания эталона при передаче единицы объема жидкости в потоке в j-ой точке расхода при i-ом измерении $\delta(V)_{ii}$, % вычисляют по формуле

$$\delta(V)_{ji} = \left(\frac{V_{ji} - V_{\Im Tji}}{V_{\Im Tji}}\right) \cdot 100,\tag{6}$$

где V – объем жидкости в потоке по показаниям установки дм³;

 $V_{\rm 3T}$ – объем жидкости в потоке по показаниям эталона дм³;

i – индекс измерения;

j – индекс точки расхода.

Среднее арифметическое отклонения показаний установки от показания эталона при передаче единицы объема жидкости в потоке в j-ой точке расхода $\overline{\delta(V)}_i$, %, вычисляют по формуле

$$\overline{\delta(V)}_{j} = \frac{1}{n} \sum_{i=1}^{n} \delta(V)_{ji}, \tag{7}$$

где n — количество измерений.

Среднее квадратическое отклонение среднего арифметического (СКО) установки при передаче единицы объема жидкости в потоке в j-ой точке расхода $S(V)_i$, %, вычисляют по формуле

$$S(V)_{j} = \sqrt{\frac{\sum_{i=1}^{n} \left(\delta(V)_{ji} - \overline{\delta(V)_{j}}\right)^{2}}{n \cdot (n-1)}},$$
(8)

СКО установки при воспроизведении единицы объема жидкости в потоке S(V), %, вычисляют по формуле

$$S(V) = \sqrt{S(V)_{\text{9T}}^2 + S(V)_{j \text{ max}}^2},$$
 (9)

где $S(V)_{\text{эт}}$ – СКО эталона при воспроизведении единицы объема жидкости в потоке, % (берут из паспорта на эталон или из свидетельства о поверке (протокола поверки));

тах - индекс наибольшего из значений.

Неисключенная систематическая погрешность (далее – НСП) установки при воспроизведении единицы объема жидкости в потоке $\Theta(V)$, %, вычисляют по формуле

$$\Theta(V) = \pm 1.1 \sqrt{\left(\frac{\Theta(V)_{\Im T}}{1.1}\right)^2 + \overline{\delta(V)_{j \max}^2 + \delta_{\mathsf{qK}}^2}},$$
(10)

где $\Theta(V)_{\mathfrak{IT}}$ – НСП эталона при воспроизведении единицы объема жидкости в потоке, %, (берут из паспорта на эталон или из свидетельства о поверке (протокола поверки));

СКО НСП установки при воспроизведении единицы объема жидкости в потоке $S_{\Theta}(V)$, %, вычисляют по формуле

$$S_{\Theta}(V) = \frac{\Theta(V)}{1,1\sqrt{3}},\tag{11}$$

Суммарное СКО установки при воспроизведении единицы объема жидкости в потоке $S_{\Sigma}(V)$, %, вычисляют по формуле

$$S_{\Sigma}(V) = \sqrt{S(V)^2 + S_{\Theta}(V)^2},$$
 (12)

Коэффициент, определяемый доверительной вероятностью P (P=0,95) и отношением случайных погрешностей и НСП, $K_{\Sigma}(V)$, вычисляют по формуле

$$K_{\Sigma}(V) = \frac{t_{0.95} \cdot S(V) + \Theta(V)}{S(V) + S_{\Theta}(V)},\tag{13}$$

где $t_{0,95}$ — коэффициент Стьюдента при P=0,95 и количестве измерений n.

Относительную погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) объема жидкости в потоке $\delta_{\Sigma}(V)$, %, вычисляют по формуле

$$\delta_{\Sigma}(V) = \pm K_{\Sigma}(V) \cdot S_{\Sigma}(V), \tag{14}$$

Результат считают положительным, если значения относительной погрешности (доверительных границ суммарной погрешности) установки при измерении (воспроизведении) объема жидкости в потоке не превышают $\pm 0,11$ %, или отрицательным, если значения относительной погрешности (доверительных границ суммарной погрешности) установки при измерении (воспроизведении единицы) объема жидкости в потоке превышают $\pm 0,11$ %. При отрицательном результате выполнение дальнейших операций по поверке прекращают.

6.4.2.2 Определение относительной погрешности (доверительных границ суммарной погрешности) установки при измерении (воспроизведении единицы) объемного расхода жидкости.

Определение метрологических характеристик установки проводят в пяти равноудаленных точках расхода, включая наименьшую и наибольшую точку расхода.

Количество измерений в каждой точке расхода должно быть не менее семи. Расход устанавливается с допуском ± 5 %, время измерения в каждой точке расхода не менее 30 секунд.

Отклонение показания установки от показаний эталона при передаче единицы объемного расхода жидкости в j-ой точке расхода, при i-ом измерении $\delta(Q_{V})_{ii}$, %, вычисляют по формуле

$$\delta(Q_V)_{ji} = \left(\frac{Q_{V_{ji}} - Q_{V_{\Im T ji}}}{Q_{V_{\Im T ji}}}\right) \cdot 100, \tag{15}$$

где $Q_{\nu_{\mu}}$ — объемный расход жидкости по показаниям эталона, м³/ч;

 $Q_{V_{31}}$ – объемный расход жидкости по показаниям эталона, м 3 /ч.

Среднее арифметическое отклонение показания установки от показания эталона при передаче единицы объемного расхода жидкости в j-ой точке расхода, %, определяют по формуле

$$\overline{\delta(Q_V)}_j = \frac{1}{n} \sum_{i=1}^n \delta(Q_V)_{ji}, \tag{16}$$

СКО установки при передаче единицы объемного расхода жидкости в j-ой точке расхода $S(Q_{\nu})_{i}$, %, вычисляют по формуле

$$S(Q_V)_j = \sqrt{\frac{\sum_{i=1}^n \left(\delta(Q_V)_{ji} - \overline{\delta(Q_V)_j}\right)^2}{n \cdot (n-1)}},$$
(17)

СКО установки при воспроизведении единицы объемного расхода жидкости $S(Q_{\nu})$, %, вычисляют по формуле

$$S(Q_V) = \sqrt{S(Q_V)_{3T}^2 + S(Q_V)_{j \text{ max}}^2},$$
 (18)

где $S(Q_{\nu})_{3\Gamma}$ — СКО эталона при воспроизведении объемного расхода жидкости, % (берут из паспорта на эталон или из свидетельства о поверке (протокола поверки));

 $S(Q_{V})_{j \, \text{max}}$ — наибольшее значение СКО установки при измерении объемного расхода жидкости, полученное в точках расхода, %.

НСП установки при передаче единицы объемного расхода жидкости в j-ой точке, $\Theta(Q_V)$, %, вычисляют по формуле

$$\Theta(Q_V) = \pm 1, 1 \sqrt{\left(\frac{\Theta(Q_V)_{\Im T}}{1, 1}\right)^2 + \overline{\delta(V)_{j \max}^2 + \delta_{\text{qK}}^2}},$$
(19)

СКО НСП установки при воспроизведении единицы объемного расхода жидкости $S_{\Theta}(Q_{\nu})$, %, вычисляют по формуле

$$S_{\Theta}(Q_{V}) = \frac{\Theta(Q_{V})}{1,1\sqrt{3}},\tag{20}$$

Суммарное СКО установки при воспроизведении единицы объемного расхода жидкости $S_{\Sigma}(Q_{V})$, %, вычисляют по формуле

$$S_{\Sigma}(Q_V) = \sqrt{S(Q_V)^2 + S_{\Theta}(Q_V)^2},$$
 (21)

Коэффициент, определяемый доверительной вероятностью P (P=0,95) и отношением случайных погрешностей и $K_{\Sigma}(Q_{\nu})$ НСП, вычисляют по формуле

$$K_{\Sigma}(Q_{V}) = \frac{t_{0.95} \cdot S(Q_{V}) + \Theta(Q_{V})}{S(Q_{V}) + S_{\Theta}(Q_{V})}.$$
(22)

Относительную погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) объемного расхода жидкости $\delta_{\Sigma}(Q_{\nu})$, %, вычисляют по формуле

$$\delta_{\Sigma}(Q_{V}) = \pm K_{\Sigma}(Q_{V}) \cdot S_{\Sigma}(Q_{V}), \tag{23}$$

Результат считают положительным, если значения относительной погрешности (доверительных границ суммарной погрешности) установки при измерении (воспроизведении единицы) объемного расхода жидкости в потоке не превышает $\pm 0,11$ %, или отрицательным, если значения относительной погрешности (доверительных границ суммарной погрешности) установки при измерении (воспроизведении) объемного расхода жидкости в потоке превышают $\pm 0,11$ %. При отрицательном результате выполнение дальнейших операций по поверке прекращают.

- 6.4.2.3 Определение относительной погрешности (доверительных границ суммарной погрешности) установки при измерении (воспроизведении единицы) массы жидкости в потоке и массового расхода жидкости
- 6.4.2.3.1 Определение относительной погрешности (доверительных границ суммарной погрешности) установки при измерении (воспроизведении единицы) массы жидкости в потоке

Относительную погрешность (доверительные границы суммарной погрешности) при измерении (воспроизведении единицы) массы жидкости в потоке $\delta_{\scriptscriptstyle M}$, %, вычисляют по формуле

$$\delta_{M} = 1, 1 \cdot \sqrt{\delta_{\text{OPl}}^{2} + \delta_{\text{UK}}^{2} + \delta_{\Pi\Pi}^{2}}, \tag{24}$$

где $\delta_{\rm ЧК}$ — значение относительной погрешности комплекса измерительно-вычислительного ИМЦ-07 при измерении количества импульсов, % (берут из свидетельства о поверке (протокола поверки)).

 $\delta_{\text{ЭР1}}$ — относительная погрешность установки при воспроизведении единицы объема жидкости в потоке, полученная по формуле 10;

 $\delta_{\text{пл}}$ — наибольшее значение приведенной погрешности преобразователя плотности и расхода CDM модели CDM100P при измерении плотности жидкости, %, рассчитанное по формуле

$$\delta_{\Pi\Pi} = \frac{\Delta_{\Pi\Pi}}{\rho_{\text{NSM}}} \cdot 100, \tag{25}$$

где $\Delta_{\text{пл}}$ – наибольшее значение абсолютной погрешности преобразователя плотности и расхода CDM модели CDM100P, кг/м³ (берут из свидетельства о поверке (протокола поверки));

 $\rho_{\text{наим}}$ — наименьшее значение плотности измеряемой среды, кг/м³.

Результаты вычислений округляют до третьего знака после запятой.

Результат считают положительным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) массы жидкости в потоке не превышает $\pm 0,12$ %, или отрицательным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) массы жидкости в потоке превышает $\pm 0,12$ %. При отрицательном результате выполнение дальнейших операций по поверке прекращают.

6.4.2.2.2 Определение относительной погрешности (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) массового расхода жидкости

Относительную погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) массового расхода жидкости $\delta(Q_{M})$, % вычисляют по формуле

$$\delta(Q_M) = 1, 1 \cdot \sqrt{\delta_{\Im P2}^2 + \delta_{VIK}^2 + \delta_{\Pi JI}^2},$$
 (26)

где δ_{3P2} — относительная погрешность установки при воспроизведении единицы объемного расхода жидкости, полученная по формуле 19;

Результаты вычислений округляют до третьего знака после запятой.

Результат считают положительным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) массового расхода жидкости не превышает $\pm 0,12$ %, или отрицательным, если относительная погрешность (доверительные границы суммарной погрешности) установки при измерении (воспроизведении единицы) массового расхода жидкости превышает $\pm 0,12$ %. При отрицательном результате выполнение дальнейших операций по поверке прекращают.

7 Оформление результатов поверки

- 7.1 Результаты поверки, измерений и вычислений вносят в протокол поверки установки произвольной формы.
- 7.2 При положительных результатах поверки установки оформляют свидетельство о поверке в соответствии с формой, утвержденной приказом Минпромторга России № 1815 от

- 02.07.2015, к которому прилагают протокол поверки. Знак поверки наносится на свидетельство о поверке установки, а также на пломбы, установленные на фланцевые соединения преобразователя расхода жидкости ультразвукового DFX-MM, входящего в состав установки (в соответствии с рисунком 2 описания типа).
- 7.3 При отрицательных результатах поверки установку к применению не допускают, выдают извещение о непригодности с указанием причин в соответствии с процедурой, утвержденной приказом Минпромторга России № 1815 от 02.07.2015.