

127106, Москва, Нововладыкинский проезд, д. 8, стр. 4 тел./факс (495)926-71-85 E-mail: <u>post@actimaster.ru</u> <u>http://www.actimaster.ru</u>

УТВЕРЖДАЮ

Генеральный директор АО «АКТИ-Мастер» TBO В.В. Федулов АКТИ-Мастер 22 жиюля 2020 г. CTI-Master' TOCKE

Государственная система обеспечения единства измерений

Генераторы сигналов произвольной формы серии AWG70000В

Методика поверки AWG70000B/MII-2020

Заместитель руководителя метрологической лаборатории

АШЕ- А.П. Лисогор

Москва 2020 Настоящая методика поверки распространяется на генераторы сигналов произвольной формы серии AWG70000В модификаций AWG70001В и AWG70002В (далее – генераторы), изготавливаемые компанией "Tektronix, Inc.", США, и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Наименование операции	Номер пункта	Проведение операции при поверке	
	методики	первичной	периодической
Внешний осмотр и подготовка к поверке	6	да	да
Опробование	7.1	да	да
Идентификация	7.1.1	да	да
Внутренняя диагностика	7.1.2	да	да
Автоподстройка	7.1.3	да	да
Функциональное тестирование	7.1.4	да	да
Определение погрешности частоты опорного генератора	7.2.1	да	да
Определение погрешности установки амплитуды напряжения на аналоговых выходах	7.2.2	да	да
Определение погрешности установки уровней напряжения на выходах "Marker Output"	7.2.3	да	да

Таблица 1 – Операции поверки

1.2 По письменному запросу пользователя допускается провести операции поверки для отдельных измерительных каналов генератора.

При этом в свидетельстве о поверке должны быть указаны соответствующие каналы.

2 СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуется применять средства поверки, указанные в таблице 2.

Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых генераторов с требуемой точностью.

2.2 Средства поверки должны быть исправны, поверены и иметь документы о поверке.

	a car a la cara a	
Наименование средства поверки	Номер пункта методики	Рекомендуемый тип средства поверки, регистрационный номер реестра, примечания
Осциллограф	7.1.4	Осциллограф цифровой DPO7254C; регистрационный номер 53104-13
Анализатор сигналов СВЧ	7.1.4	Анализатор спектра в реальном масштабе времени RSA5115B; регистрационный номер 59499-14
Генератор сигналов прямоугольной формы	7.1.4	Генератор сигналов произвольной формы AFG3252C; регистрационный номер 53102-13
Частотомер	7.2.1	Частотомер универсальный Tektronix FCA3000; регистрационный номер 51532-12
Стандарт частоты	7.2.1	Стандарт частоты рубидиевый FS 725; регистрационный номер 31222-06
Вольтметр постоянного напряжения	7.2.2, 7.2.3	Мультиметр Keithley 2000; регистрационный номер 75241-19
Нагрузка проходная BNC(m-f) 50 Ом	7.2.2, 7.2.3	Вспомогательное средство поверки (подготовка к измерениям по пункту 6.2.4)

Таблица 2 – Средства поверки

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области радиотехнических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

4.2 Во избежание несчастного случая и для предупреждения повреждения генератора необходимо обеспечить выполнение следующих требований:

- подсоединение генератора к сети должно производиться с помощью сетевого кабеля из комплекта генератора;

- заземление генератора и средств поверки должно производиться посредством заземляющих контактов сетевых кабелей;

- присоединения генератора и оборудования следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах);

- запрещается подавать на вход генератора сигнал с уровнем, превышающим максимально допускаемое значение;

- запрещается работать с генератором при снятых крышках или панелях;

- запрещается работать с генератором в условиях температуры и влажности, выходящих за пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;

- запрещается работать с генератором в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ±3) °С;
- относительная влажность воздуха от 30 до 70 %;
- атмосферное давление от 84 до 106.7 кПа.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра проверяются:

- чистота и исправность разъемов, отсутствие механических повреждений корпуса и ослабления крепления элементов генератора;

- сохранность органов управления, четкость фиксации их положений;

- правильность маркировки и комплектность генератора.

6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого генератора, его направляют в сервисный центр для ремонта.

6.2 Подготовка к поверке

6.2.1 Перед началом работы следует изучить руководство по эксплуатации генератора, а также руководства по эксплуатации применяемых средств поверки.

6.2.2 Подсоединить генератор и средства поверки к сети электропитания 220 В; 50 Гц. Включить питание генератора и средств поверки.

6.2.3 Перед началом выполнения операций средства поверки и генератор должны быть выдержаны во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева генератора 20 минут.

6.2.4 Выполнить предварительное определение действительного значения сопротивления проходной нагрузки BNC(m-f) с помощью мультиметра, используя адаптер BNC(f)-banana(m,m).

Если действительное значение сопротивления R находится в пределах (50 \pm 0,2) Ом, то отклонением этого значения от 50 Ω можно пренебречь.

Если действительное значение сопротивления R выходит за пределы (50 ±0,2) Ом, то при измерении напряжения мультиметром следует вводить поправочный коэффициент

$K_{\rm R} = ({\rm R} + 50)/2{\rm R}$

Значения напряжения, отсчитанные на мультиметре, следует умножать на этот поправочный коэффициент.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

Общие указания по проведению поверки

В процессе выполнения операций результаты заносятся в протокол поверки.

Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах настоящего раздела документа.

Если заказчиком поверки (пользователем) не установлены требования по записи действительных числовых значений метрологических характеристик, допускается в таблицах протокола поверки привести качественные результаты соответствия метрологических характеристик допускаемым значениям.

При получении отрицательных результатов по какой-либо операции необходимо повторить операцию. При повторном отрицательном результате генератор следует направить в сервисный центр для проведения регулировки или ремонта.

ПРИМЕЧАНИЕ: В тексте методики поверки наименования органов управления и пунктов меню указаны точно так, как они отображаются на панелях и дисплее генератора, они даны в кавычках.

AWG70000B/MII-2020	Методика поверки	стр. 4 из 16

7.1 Опробование

7.1.1 Идентификация

7.1.1.1 Войти в меню "Utilities → About my AWG".

При этом должна появиться панель "About Tektronix AWG", в которой отображаются обозначение модели (Model), серийный номер (Serial Number), номер версии программного обеспечения (Software Version), и наличие установленных опций (Installed Licenses).

Записать результаты идентификации генератора в таблицу 7.1.1.

Таблица 7.1.1 – Идентификация

Содержание проверки	Результат проверки	Критерий проверки
обозначение модели и серийный номер		модель и серийный номер отображаются правильно
номер версии программного обеспечения		номер версии должен быть не ниже v7.1.0170.0
установленные опции		наличие опции АС

7.1.2 Внутренняя диагностика

7.1.2.1 Убедиться в том, что к каналам генератора ничего не подсоединено. Войти в меню "Utilities → Diag & Cal", выбрать "Diagnostics & Calibration, Diagnostics".

7.1.2.2 Убедиться в том, что в диалоговом окне выбраны все пункты диагностики. Если выбраны не все пункты, кликнуть на клавише "Select All Tests".

7.1.2.3 Кликнуть на клавише "Start".

Внутренняя диагностика занимает несколько минут.

После завершения диагностики в диалоговом окне должны отобразиться результаты проверки (PASS/FAIL).

Записать результат диагностики в таблицу 7.2.2.

7.1.2.4 Кликнуть на клавише "Close".

Таблица 7.2.2 – Внутренняя диагностика

Содержание проверки	Результат проверки	Критерий проверки
диагностика функций		результат PASS
генератора		по всем пунктам

7.1.3 Автоподстройка

7.1.3.1 Убедиться в том, что к каналам генератора ничего не подсоединено. Войти в меню "Utilities \rightarrow Diag & Cal", выбрать "Diagnostics & Calibration, Calibration".

7.1.3.2 Кликнуть на клавише "Start".

После завершения автоподстройки в диалоговом окне должны отобразиться результаты проверки (PASS/FAIL).

Убедиться в том, что результат PASS отображается для всех пунктов диалогового окна.

7.1.3.3 Кликнуть на клавише "Close".

Записать результат автоподстройки в таблицу 7.1.3.

стр. 5 из 16

Таблица 7.1.3 – Автоподстройка

Содержание проверки	Результат проверки	Критерий проверки
автоподстройка каналов		результат PASS
генератора		для всех пунктов

7.1.4 Функциональное тестирование

7.1.4.1 Выполнить сброс настроек к заводским, кликнув на клавише "Reset to Default Setup". Нажать на клавише "All Outputs On/Off" для отключения всех выходов генератора.

7.1.4.2 Используя адаптеры SMA(f)-BNC(m), соединить кабелями SMA(m-m) аналоговые выходы на передней панели генератора:

- прямой выход канала CH1(+) с входом CH1 осциллографа;

- прямой выход M1(+) канала CH1 с входом CH2 осциллографа;

- прямой выход M2(+)канала CH1 с входом CH3 осциллографа.

ВНИМАНИЕ: На инверсные выходы канала CH1(–) с маркерными инверсными выходами M1(–) и M2(–) установить согласованные нагрузки (терминаторы) SMA(m) 50 Ом.

7.1.4.3 Активировать каналы CH1, CH2, CH3 на осциллографе, и выполнить установки:

- "Input coupling": DC;

- "Input impedance": 50 Ом;

- "Vertical scale": 200 мВ/дел (СН1), 1 В/дел (СН2 и СН3);
- "Chanel position": 2 дел (СН1), -1 дел (СН2), -3 дел (СН3);
- "Horizontal scale": 20 нс/дел;

- "Trigger source": CH1; "Trigger level": 0 мВ; "Trigger slope": Positive; "Trigger mode": Auto.

7.1.4.4 В поле "Waveform list", загрузить шаблон сигнала "PV_Square.wfmx" из директории "C:\Program Files\Tektronix\AWG70000\Samples\PV".

7.1.4.5 Кликнуть "Setup → Channel". Во вкладке "Output Settings" установить "Channel: 1", "Channel: On", "Resolution (Bits) : 8+2 Mkrs".

7.1.4.6 Нажать на клавише "All Outputs On/Off" для активации выходов.

7.1.4.7 Нажать на клавише "Play/Stop".

Наблюдаемые на дисплее осциллографа сигналы должны соответствовать сигналам, показанным на рисунке 7.1.4.1. Для удобства можно воспользоваться функцией "Autoset" осциллографа.

Записать результат проверки в таблицу 7.1.4.

7.1.4.8 Нажать на клавишах "Play/Stop", "All Outputs On/Off" для деактивации канала.

7.1.4.9 При тестировании AWG70002В выполнить действия по пунктам 7.1.4.2, 7.1.4.5 – 7.1.4.8 для канала CH2 с маркерными выходами M1 и M2 генератора (заменяя номер канала в соответствующих пунктах).

7.1.4.10 Отсоединить все адаптеры и кабели от оборудования.

Рисунок 7.1.4.1 – Форма сигналов "PV_Square.wfmx" на аналоговых и маркерных выходах

7.1.4.11 Выполнить сброс настроек к заводским, кликнув на клавише "Reset to Default Setup". Нажать на клавише "All Outputs On/Off" для отключения всех выходов генератора.

7.1.4.12 Используя адаптеры SMA(f)-BNC(m), соединить кабелями SMA(m-m) аналоговые выходы:

- прямой выход CH1(+) на передней панели генератора с входом CH1 осциллографа;

- выход CH1 внешнего генератора сигналов с входом Trigger A на задней панели генератора.

7.1.4.13 Активировать канал СН1 на осциллографе, и выполнить установки:

- "Input coupling": DC;

- "Input impedance": 50 Ом;

- "Vertical scale": 200 мВ/дел;

- "Horizontal scale": 20 нс/дел;

- "Trigger source": CH1; "Trigger level": 100 мВ.

7.1.4.14 Выполнить установки на внешнем генераторе:

- "Waveform": Square;

- "Frequency": 1 кГц;

- "Ouput impedance": 50 Ом;

- "Output Voltage": 5 Вп-п и активировать канал СН1.

7.1.4.15 В поле "Waveform list", загрузить шаблон сигнала "PV_Square.wfmx" из директории "C:\Program Files\Tektronix\AWG70000\Samples\PV".

Установить "Run mode: Triggered", "Trigger:A".

7.1.4.16 Кликнуть "Setup → Trigger". Для "Trigger A/B" установить "Level": 1 B, "Polarity: Rising", "Impedance": 50 Ом.

7.1.4.17 Кликнуть "Setup \rightarrow Channel". Во вкладке "Output Settings" установить "Channel: On".

AWG70000B/MII-2020	Методика поверки	стр. 7 из 16
--------------------	------------------	--------------

7.1.4.18 Нажать на клавише "All Outputs On/Off" для активации выходов.

7.1.4.19 Нажать на клавише "Play/Stop".

Сигнал, показанный в рабочей области генератора на вкладке "Home", должен отображаться на дисплее осциллографа.

Записать результат проверки в таблицу 7.1.4.

7.1.4.20 Выход CH1 внешнего генератора сигналов соединить с входом Trigger В на задней панели генератора. Кликнуть на клавише "Home", установить "Trigger:B". Сигнал, показанный в рабочей области генератора на вкладке "Home", должен отображаться на дисплее осциллографа. Записать результат проверки в таблицу 7.1.4.

7.1.4.21 Нажать на клавише "All Outputs On/Off" для деактивации канала.

7.1.4.22 Отсоединить все адаптеры и кабели от оборудования. Для AWG70001B без опции "AC" и AWG70002B перейти к разделу 7.2.

7.1.4.23 Для AWG70001B с опцией "AC" выполнить сброс настроек к заводским, кликнув на клавише "Reset to Default Setup". Нажать на клавише "All Outputs On/Off" для отключения всех выходов генератора.

7.1.4.24 Используя адаптер SMA(f)-N(m), соединить кабелем SMA(m-m) выход AC генератора с входом RF Input анализатора спектра.

7.1.4.25 Сформировать на генераторе синусоидальные сигналы с частотой 1, 11, 14 ГГц следующим образом (окно дисплея показано на рисунке 7.1.4.2):

- кликнуть на вкладке "Waveform Plug-ins", выбрать из списка "Basic Waveform";

- кликнуть на клавише "Reset Plug-in";

- ввести параметры "Function: Sine", "Frequency": 1 ГГц;

- кликнуть на ярлыке "Compile Settings" для открытия диалогового окна, в поле "Name" ввести "Waveform_1 GHz";

v	Vaveform Plug-ins				
Plug-in: Basic W	aveform 🔻)	Compile	Compile settings)	Reset Plug-in
Waveform_1		Comp	pile waveform		
Function	Sine 👻		Amplitude	500 mVpp	
Auto Calculate	Cycle +		Offset	0V	
Frequency	1 GHz		High	250 mV	
Length	4.8 kSamples		Low	-250 mV	
Sample Rate	2.5 GS/s		🜌 Use full C	JAC range	
Cycles	19200				

Рисунок 7.1.4.2 – Окно Waveform Plug-ins

- закрыть диалоговое окно "Compile Settings", затем кликнуть на клавише "Compile";

- ввести параметр "Frequency": 11 ГГц;

- кликнуть на ярлыке "Compile Settings" для открытия диалогового окна, в поле "Name" ввести "Waveform_11 GHz";

- закрыть диалоговое окно "Compile Settings", затем кликнуть на клавише "Compile";

- ввести параметр "Frequency": 14 ГГц;

- кликнуть на ярлыке "Compile Settings" для открытия диалогового окна, в поле "Name" ввести "Waveform_14 GHz";

- закрыть диалоговое окно "Compile Settings", затем кликнуть на клавише "Compile".

7.1.4.26 Установить на анализаторе спектра: "Reference Level": 0 дБм, "Central Frequency": 1 ГГц, "Span": 165 МГц, "RBW": 10 кГц.

7.1.4.27 Кликнуть на клавише "Home". В поле "Waveform List" выбрать "Waveform 1 GHz".

7.1.4.28 Кликнуть "Setup \rightarrow Channel". Во вкладке "Output Settings" установить "Output Path: AC", "Filter: None", "Channel: On".

7.1.4. 29 Нажать на клавише "Play/Stop".

7.1.4.30. Нажать на клавише "All Outputs Off" для активации выхода генератора.

Наблюдаемый на дисплее анализатора спектра сигнал должен соответствовать сигналу, показанному на рисунке 7.1.4.3.

Записать результат проверки в таблицу 7.1.4.

Рисунок 7.1.4.3 – Форма сигнала "Waveform_1 GHz, No filter".

7.1.4.31 Нажать на клавише "All Outputs On/Off" для деактивации канала.

AWG70000B/MП-2020	Методика поверки	стр. 9 из 16
-------------------	------------------	--------------

7.1.4.32 Установить "Filter: Low Pass".

7.1.4.33 Нажать на клавише "All Outputs Off" для активации выхода генератора.

Наблюдаемый на дисплее анализатора спектра сигнал должен соответствовать сигналу, показанному на рисунке 7.1.4.4.

Записать результат проверки в таблицу 7.1.4.

Рисунок 7.1.4.4 – Форма сигнала "Waveform_1 GHz, Low Pass filter".

7.1.4.34 Нажать на клавише "All Outputs On/Off" для деактивации канала.

7.1.4.35 Кликнуть на клавише "Home". В поле "Waveform List" выбрать "Waveform 11 GHz".

7.1.4.36 Кликнуть "Setup \rightarrow Channel". Во вкладке "Output Settings" установить "Filter: Band Pass", "Range: 10-14.5 GHz".

7.1.4.37 Установить на анализаторе спектра: "Central Frequency": 11 ГГц.

7.1.4.38 Нажать на клавише "All Outputs Off" для активации выхода генератора. Наблюдаемый на дисплее анализатора спектра сигнал должен соответствовать сигналу, показанному на рисунке 7.1.4.5.

Записать результат проверки в таблицу 7.1.4.

AWG70000B/MII-2020	Методика поверки	стр. 10 из 16
--------------------	------------------	---------------

Рисунок 7.1.4.5 – Форма сигнала "Waveform 11 GHz"

7.1.4.39 Нажать на клавише "All Outputs On/Off" для деактивации канала.

7.1.4.40 Кликнуть на клавише "Home". В поле "Waveform List" выбрать "Waveform 14 GHz".

7.1.4.41 Кликнуть "Setup \rightarrow Channel". Во вкладке Output Settings установить "Filter: Band Pass", "Range: 13-18 GHz".

7.1.4.42 Установить на анализаторе спектра: "Central Frequency": 14 GHz.

7.1.4.43 Нажать на клавише "All Outputs Off" для активации выхода генератора. Наблюдаемый на дисплее анализатора спектра сигнал должен соответствовать сигналу, показанному на рисунке 7.1.4.6.

Записать результат проверки в таблицу 7.1.4.

7.1.4.44 Нажать на клавише "All Outputs On/Off" для деактивации канала.

7.1.4.45 Отсоединить кабель и адаптер от оборудования.

Рисунок 7.1.4.6 – Форма сигнала "Waveform_14 GHz"

Габлица 7.1.4 –	Функциональное тестирование
-----------------	-----------------------------

Содержание проверки	Результат проверки	Критерий проверки
форма сигнала "PV_Square.wfmx"		
на аналоговых и маркерных		форма сигналов правильная
выходах		
форма сигнала "PV_Square.wfmx"		
на аналоговом выходе с		them to express an energy we
синхронизацией на входы Trigger		форма сигналов правильная
A, Trigger B		
форма сигнала "Waveform_1 GHz"		
на выходе AC ("No filter", "Low		форма сигнала правильная
Pass filter")		
форма сигнала "Waveform_11 GHz"		h
на выходе АС		форма сигнала правильная
форма сигнала "Waveform_14 GHz"		1
на выходе АС		форма сигнала правильная

AWG70000B/MII-2020	Методика поверки	стр. 12 из 16

7.2 Определение метрологических характеристик

7.2.1 Определение погрешности частоты опорного генератора

7.2.1.1 Подготовить к работе стандарт частоты.

7.2.1.2 Соединить кабелем BNC(m,m) выход "10 MHz" стандарта частоты с разъемом "Ref In" частотомера.

7.2.1.3 Используя адаптер SMA(m)-BNC(f), соединить кабелем BNC(m-m) выход "10 MHz Ref Out" на задней панели генератора с разъемом CH1 частотомера.

7.2.1.4 Зафиксировать отсчет частотомера. Он должен находиться в пределах допускаемых значений, указанных в столбцах 1 и 3 таблицы 7.2.1.

7.2.1.5 Отсоединить кабели и адаптер от оборудования.

Таблица 7.2.1 – Частота опорного генератора

Нижний предел допускаемых значений МГп	Измеренное значение	Верхний предел допускаемых значений МГи
1	2	3
10.000 000 – ΔF		10.000 000 + ∆F

 $\Delta F = F \cdot (1 \cdot 10^{-6} + 1 \cdot 10^{-6} \cdot N); F = 10 MГц; N - округленное в большую сторону целое число лет со времени последней заводской калибровки (подстройки)$

7.2.2 Определение погрешности установки амплитуды напряжения на аналоговых выходах

7.2.2.1 Выполнить сброс настроек к заводским, кликнув на клавише "Reset to Default Setup". Нажать на клавише "All Outputs On/Off" для отключения всех выходов генератора.

7.2.2.2 Загрузить в список "Waveform List" шаблоны сигналов: "PV_DC_Plus.wfmx" и "PV_DC_Minus.wfmx". Файлы шаблонов сигналов находятся в директории C:\Program Files\Tektronix\AWG70000\Samples\PV.

7.2.2.3 Используя адаптер SMA(m)-BNC(f), кабель BNC(m-m), проходную нагрузку BNC(f-m) и адаптер BNC(f)-banana(m,m), соединить аналоговый прямой выход CH 1 (+) на передней панели генератора с гнездами HI и LO мультиметра, соблюдая полярность.

Установить на разъем аналогового инверсного выхода СН 1 (–) терминатор SMA(m) из комплекта генератора.

7.2.2.4 Кликнуть "Setup → Channel". Во вкладке "Output Settings" установить "Output Path: Direct", "Channel: 1", "Channel: On".

7.2.2.5 Нажать на клавише "Play/Stop".

7.2.2.6. Нажать на клавише "All Outputs Off" для активации выхода генератора.

7.2.2.7 Установить на генераторе первое значение амплитуды ("Amplitude"), указанное в столбце 1 таблицы 7.2.2.1.

7.2.2.8 Выбрать шаблон "PV_DC_Plus.wfmx" в поле "Waveform List".

7.2.2.9 Зафиксировать измеренное мультиметром значение напряжения (с учетом поправочного коэффициента по пункту 6.2.4) как U₊.

AWG70000B/MII-2020	Методика поверки	стр. 13 из 16
--------------------	------------------	---------------

7.2.2.10 Выбрать шаблон "PV_DC_Minus.wfmx" в поле "Waveform List".

7.2.2.11 Зафиксировать измеренное мультиметром значение напряжения (с учетом поправочного коэффициента по пункту 6.2.4) как U_.

7.2.2.12 Вычислить разностное значение | (U₊ – U₋) |, оно должно укладываться в пределы допускаемых значений, указанные в столбце 3 таблицы 7.2.2.1.

7.2.2.13 Выполнить действия по пунктам 7.2.2.7–7.2.2.12 для остальных значений амплитуды ("Amplitude"), указанных в столбце 1 таблицы 7.2.2.1.

7.2.2.14 Нажать на клавише "All Outputs On/Off" для деактивации канала.

7.2.2.15 Используя адаптер SMA(m)-BNC(f), кабель BNC(m-m), проходную нагрузку BNC(f-m) и адаптер BNC(f)-banana(m,m), соединить аналоговый инверсный выход CH 1 (–) на передней панели генератора с гнездами HI и LO мультиметра, соблюдая полярность.

Установить на разъем аналогового прямого выхода СН 1 (+) терминатор SMA(m) из комплекта генератора.

7.2.2.16 Нажать на клавише "All Outputs On/Off" для активации выходов генератора.

7.2.2.17 Выполнить действия по пунктам 7.2.2.7 – 7.2.2.14 для аналогового инверсного выхода канала CH 1 (–).

7.2.2.18 При поверке генератора AWG70002В выполнить действия по пунктам 7.2.2.3 – 7.2.2.17 для второго канала генератора (заменяя номер канала в соответствующих пунктах).

7.2.1.19 Отсоединить кабель и адаптер от оборудования.

Установленное значение ("Amplitude"), мВ	Измеренное значение	Пределы допускаемых значений, мВ
1	2	3
250	•	244 256
375		367 383
500		489 511

Таблица 7.2.2.1 – Амплитуда напряжения на аналоговых выходах

7.2.3 Определение погрешности установки уровней напряжения на выходах "Marker Output".

7.2.3.1 Выполнить сброс настроек к заводским, кликнув на клавише "Reset to Default Setup". Нажать на клавише "All Outputs On/Off" для отключения всех выходов генератора.

7.2.3.2 Загрузить в список "Waveform List" шаблоны сигналов: "PV_DC_Plus.wfmx" и "PV_DC_Minus.wfmx". Файлы шаблонов сигналов находятся в директории C:\Program Files\Tektronix\AWG70000\Samples\PV.

7.2.3.3 Используя адаптер SMA(m)-BNC(f), кабель BNC(m-m), проходную нагрузку BNC(f-m) и адаптер BNC(f)-banana(m,m), соединить маркерный выход M1(+) с гнездами HI и LO мультиметра, соблюдая полярность.

Установить на разъем маркерного выхода M1(–) терминатор SMA(m) из комплекта генератора.

AWG70000B/MП-2020	Методика поверки	стр. 14 из 16
-------------------	------------------	---------------

7.2.3.4 Кликнуть "Setup \rightarrow Channel". Во вкладке "Output Settings" установить "Output Path: Direct", "Channel: 1", "Channel: On"; "Resolution: 8+2 Mkrs".

7.2.3.5 Нажать на клавише "Play/Stop".

7.2.3.6. Выбрать шаблон "PV_DC_Plus.wfmx" в поле "Waveform List".

7.2.3.7 Нажать на клавише "All Outputs Off" для активации выхода генератора.

7.2.3.8 Кликнуть "Setup → Channel". Во вкладке "Output Settings" установить первое значение верхнего уровня напряжения маркера ("Marker High Level"), указанное в столбце 1 таблицы 7.2.3.1.

7.2.3.9 Выполнить отсчет напряжения на мультиметре. Измеренное значение напряжения (с учетом поправочного коэффициента по пункту 6.2.4) должно укладываться в пределы допускаемых значений, указанных в столбце 3 таблицы 7.2.3.1.

7.2.3.10 Выполнить действия по пунктам 7.2.3.8 – 7.2.3.9 для остальных значений верхнего уровня напряжения ("Marker High Level"), указанных в столбце 1 таблицы 7.2.3.1.

7.2.3.11 Нажать на клавише "All Outputs Off" для деактивации выходов генератора.

Таблица 7.2.3.1	- Верхний уровень	напряжения на м	аркерных выходах
-----------------	-------------------	-----------------	------------------

Установленное значение ("Marker High Level")	Измеренное значение	Пределы допускаемых значений
1	2	3
+1,4 B		+(1,185 1,615) B
0,0 B		±75 мВ
-0,9 B		–(1,065 0,735) B

7.2.3.12 Выбрать шаблон "PV_DC_Minus.wfmx" в поле "Waveform List".

7.2.3.13 Нажать на клавише "All Outputs Off" для активации выходов генератора.

7.2.3.14 Кликнуть "Setup → Channel". Во вкладке "Output Settings" установить первое значение нижнего уровня напряжения ("Marker Low Level"), указанное в столбце 1 таблицы 7.2.3.2.

7.2.3.15 Выполнить отсчет напряжения на мультиметре. Измеренное значение напряжения (с учетом поправочного коэффициента по пункту 6.2.4) должно укладываться в пределы допускаемых значений, указанных в столбце 3 таблицы 7.2.3.2.

7.2.3.16 Выполнить действия по пунктам 7.2.3.14 – 7.2.3.15 для остальных значений нижнего уровня напряжения ("Marker Low Level"), указанных в столбце 1 таблицы 7.2.3.2.

Таблица 7.2.3.2 – Нижний уровень напряжения на маркерных выходах

Установленное значение ("Marker Low Level")	Измеренное значение	Пределы допускаемых значений
1	2	3
+0,9 B		+(0,735 1,065) B
0,0 B		±75 мВ
-1,4 B		-(1,615 1,185) B

7.2.3.17 Нажать на клавише "All Outputs On/Off" для деактивации каналов генератора

AWG70000B/MII-2020	Методика поверки	стр. 15 из 16

7.2.3.18 Используя адаптер SMA(m)-BNC(f), кабель BNC(m-m), проходную нагрузку BNC(f-m) и адаптер BNC(f)-banana(m,m), соединить маркерный выход M1(–) с гнездами HI и LO мультиметра, соблюдая полярность.

Установить на разъем маркерного выхода M1(+) терминатор SMA(m) из комплекта генератора.

7.2.3.19 Выбрать шаблон "PV_DC_Minus.wfmx" в поле "Waveform List".

7.2.3.20 Выполнить пункты 7.2.3.7–7.2.3.11 для определения значений верхнего уровня напряжения ("Marker High Level") маркерного выхода М1(–).

7.2.3.21 Выбрать шаблон "PV_DC_Plus.wfmx" в поле "Waveform List".

7.2.3.22 Выполнить пункты 7.2.3.13 – 7.2.3.17 для определения значений нижнего уровня напряжения ("Marker Low Level") маркерного выхода М1(–).

7.2.3.23 Выполнить пункты 7.2.3.3–7.2.3.22 для определения значений напряжения маркерных выходов М2(+) и М2(–) канала СН1(заменяя номер маркерного выхода в соответствующих пунктах).

7.2.3.24 При поверке генератора AWG70002В выполнить действия по пунктам 7.2.3.1 – 7.2.3.23 для маркерных выходов М1 и М2 канала CH2 генератора (заменяя номер канала в соответствующих пунктах).

7.2.3.25 Отсоединить кабель и адаптер от оборудования.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Результаты поверки представляются в соответствии с действующими правовыми нормативными документами.

При положительных результатах поверки оформляется свидетельство о поверке и наносится знак поверки в соответствии с описанием типа средства измерений.

По завершении операций поверки оформляется протокол поверки в произвольной форме (отдельным документом либо на обратной стороне свидетельства о поверке). В протоколе поверки допускается привести качественные результаты измерений с выводами о соответствии допускаемым значениям без указания измеренных числовых значений величин.

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности к применению средства измерений с указанием причин непригодности.

AWG70000B/MП-2020	Методика поверки	стр. 16 из 16