УТВЕРЖДАЮ Генеральный директор ООО «Автопрогресс—М» А.С. Никитин «21» июля 2020 г.

Государственная система обеспечения единства измерений

Аппаратура геодезическая спутниковая Leica GMX910, Leica iCG30

МЕТОДИКА ПОВЕРКИ

МП АПМ 39-20

Настоящая методика поверки распространяется на аппаратуру геодезическую спутниковую Leica GMX910, Leica iCG30, производства «Leica Geosystems AG», Швейцария, (далее – аппаратуру) и устанавливает методику ее первичной и периодической поверки.

Интервал между поверками – 1 год.

1 Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1 – Операции поверки

тисянци г оперидни перерин				
	№ пункта	Проведение операций при		
Наименование операции	документа	первичной	периодической	
	по поверке	поверке	поверке	
Внешний осмотр	7.1	Да	Да	
Опробование	7.2	Да	Да	
Определение метрологических характеристик	7.3			
Определение абсолютной погрешности и средней квадратической погрешности измерений длины базиса в режиме «Статика»	7.3.1	Да	Да*	
Определение абсолютной погрешности и средней квадратической погрешности измерений длины базиса в режиме «Кинематика в реальном времени (RTK)»	7.3.2	Да	Да*	
Определение абсолютной погрешности и средней квадратической погрешности измерений в режиме «Дифференциальные кодовые измерения (DGPS)»	7.3.4	Да	Да*	

^{*} В случае применения аппаратуры для работ, не требующих использования всех режимов измерений при периодической поверке по письменному заявлению владельца СИ допускается поверка аппаратуры по сокращенному числу режимов измерений с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки

2 Средства поверки

При проведении поверки должны применяться эталоны и вспомогательные средства поверки, приведенные в таблице 2.

Таблина 2 – Средства поверки

гаолица 2 — Средства по		
№ пункта документа	Наименование эталонов, вспомогательных средств поверки и их	
по поверке	основные метрологические и технические характеристики	
7.1	Эталоны не применяются	
. 7.2	Уталоны не применяются	
7.3.1	Рабочий эталон 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. №2831 - фазовый светодальномер (тахеометр)	
	Вспомогательные средства поверки:	
7.3.2	Средство фазовых измерений приращения координат по сигналам ГНСС в диапазоне от 1 до 30 км с погрешностью измерений приращений координат не более: в режиме «Статика»: - в плане (3+0,5·10 ⁻⁶ ·D) мм - по высоте (5+0,5·10 ⁻⁶ ·D) мм в режиме «Кинематика в реальном времени (RTK)»:	
7.3.3	- в плане (8+1·10 ⁻⁶ ·D) мм - по высоте (15+1·10 ⁻⁶ ·D) мм в режиме Дифференциальные кодовые измерения (DGPS): - в плане (250+1·10 ⁻⁶ ·D) мм - по высоте (250+1·10 ⁻⁶ ·D) мм, где D — измеряемое расстояние в мм.	

Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью, удовлетворяющей требованиям настоящей методики поверки.

3 Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационную документацию на приборы и средства поверки, и аттестованные в качестве поверителя средств измерений в установленном порядке.

4 Требования безопасности

При проведении поверки должны соблюдаться требования по технике безопасности согласно эксплуатационной документации на приборы и поверочное оборудование, правила по технике безопасности, которые действуют на месте проведения поверки, а также правила по технике безопасности при производстве топографо-геодезических работ ПТБ-88. (Утверждены коллегией ГУГК при СМ СССР 09.02.1989 г., № 2/21).

5 Условия поверки

При проведении поверки должны соблюдаться следующие условия измерений:

- температура окружающей среды, °С

от -40 до +65.

6 Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- проверить наличие действующих свидетельств о поверке на эталонные средства измерений;
- аппаратуру и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией.
- аппаратура должна быть установлена на специальных основаниях (фундаментах) или штативах, не подвергающихся механическим (вибрация, деформация, сдвиги) и температурным воздействиям.

7 Проведение поверки

7.1 Внешний осмотр

При внешнем осмотре должно быть установлено соответствие аппаратуры следующим требованиям:

- отсутствие механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики аппаратуры;
- наличие маркировки и комплектности, необходимой для проведения измерений, согласно требованиям эксплуатационной документации на аппаратуру.

Если хотя бы одно из перечисленных требований не выполняется, прибор признают непригодным к применению, дальнейшие операции поверки не производят.

7.2 Опробование

- 7.2.1 При опробовании должно быть установлено соответствие аппаратуры следующим требованиям:
- отсутствие качки и смещений неподвижно соединенных деталей и элементов аппаратуры;
 - правильность взаимодействия с комплектом принадлежностей;
 - работоспособность всех функциональных режимов.

7.2.2 Для идентификации номера версии и наименования ПО провести следующие процедуры:

Для ВПО (встроенного программного обеспечения) модификации Leica GMX910:

- в ПО «Leica GNSS Spider» зайти в «Local Site Server», далее во вкладку «Site», далее выбрать пункт «Sensor comm 1», в столбце «Firmware Version» отображается версия встроенного программного обеспечения GMX910.

Для ВПО (встроенного программного обеспечения) модификации Leica iCG30:

- соединить приёмник iCG30 и контроллер Leica CC80, запустить ПО «Leica ICON Site», в окне «Установки» выбрать пункт «Устройства», далее выбрать профиль приёмника iCG30, нажать стрелку вправо, далее выбрать пункт «Загрузка ПО», в котором контролировать версию встроенного программного обеспечения iCG30.

Для ПО «Leica ICON Site»:

- запустить программу, зайти в меню «Система», далее выбрать «О программе»;
- в окне справа отображается наименование и версия ПО.

Для ПО «Leica Geo Office»:

- запустить программу, зайти в меню «Справка», далее выбрать «О программе»;
- в появившемся окне программы отображается наименование и версия ПО.

Для ПО «Leica Infinity»:

- запустить программу, зайти в меню «Help & Support», далее выбрать «About Leica Infinity»;
 - в появившемся окне программы отображается наименование и версия ПО.

Для ПО «Leica GNSS Spider»:

- запустить программу, зайти в меню «Help», далее выбрать «About»;
- в появившемся окне программы отображается наименование и версия ПО.

Номер версии и наименование программного обеспечения должны соответствовать данным, приведенным в таблице 2.

Таблица 2

Идентификационное наименование ПО	ВПО (для модификац		Leica ICON Site	Leica Geo Office	Leica Infinity	Leica GNSS
	ии Leica GMX910)	ции Leica iCG30)			, and the second	Spider
Номер версии (идентификационный номер ПО), не ниже	7.403	7.05	5.7.0	8.40	3.3.1	7.5.1

Если хотя бы одно из перечисленных требований не выполняется, прибор признают непригодным к применению, дальнейшие операции поверки не производят.

7.3 Определение метрологических характеристик

7.3.1 Определение абсолютной погрешности и средней квадратической погрешности измерений длины базиса в режиме «Статика»

Абсолютная и средняя квадратическая погрешности измерений длины базиса в режиме «Статика» определяются путем многократных измерений (не менее 5) двух интервалов эталонного базисного комплекса или двух контрольных длин базиса, определённых фазовым светодальномером (тахеометром), 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. №2831 и действительные значения которых расположены в диапазоне от 0 до 30 км.

Установить аппаратуру над центрами пунктов базиса и привести спутниковые антенны к горизонтальной плоскости.

В качестве базовой станции использовать средство фазовых измерений приращения координат по сигналам ГНСС в диапазоне от 0 до 30 км с погрешностью измерений приращений координат в режиме «Статика» не более:

- в плане $(3+0,5\cdot10^{-6}\cdot D)$ мм;
- по высоте $(5+0,5\cdot10^{-6}\cdot D)$ мм,

где D – измеряемое расстояние в мм.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со спутников.

Провести измерения на поверяемой аппаратуре при условиях, указанных в таблице 4 настоящей программы.

Выключить аппаратуру согласно требованиям руководства по эксплуатации.

При использовании контрольных длин базиса, ещё раз измерить эталонным дальномером их значения. Результат измерений не должен отличаться от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную эталонному дальномеру. В случае если измеренная длина отличается от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, необходимо повторить съёмку аппаратурой заново.

Провести обработку данных с использованием штатного ПО к аппаратуре.

Абсолютная погрешность измерений каждой длины базиса (при доверительной вероятности 0,95) определяется как сумма систематической и случайной погрешностей по формуле:

$$\Delta L_j = (rac{\sum_{i=1}^n L_{j_i}}{n_j} - L_{j_0}) \pm 2\sqrt{rac{\sum_{i=1}^n (L_{j_i} - rac{\sum_{i=1}^n L_{j_i}}{n_j})^2}{n_j - 1}},$$
 где

 ΔL_j — погрешность измерений j длины базиса в плане/по высоте, мм;

 $L_{j_0}\,$ — эталонное значение j длины базиса в плане/по высоте, мм;

 L_{j_i} — измеренное поверяемой аппаратурой значение j длины базиса i измерением в плане/по высоте, мм;

 n_j — число измерений j длины базиса.

Средняя квадратическая погрешность измерений длины базиса определяется по формуле:

$$m = \sqrt{\frac{\sum_{i=1}^{n}(L_i - L_0)^2}{n}},$$
 где

m – средняя квадратическая погрешность измерений длины базиса.

Значения абсолютной (при доверительной вероятности 0,95) и средней квадратической погрешностей измерений для каждой длины базиса в режиме «Статика» не должны превышать значений, приведенных в Приложении А к настоящей методике поверки.

Абсолютная погрешность измерений длины базиса, длина которого находится в диапазоне от 3 до 30 км для больших длин допускается определять в режиме «Статика» по приращению координат замкнутой фигуры (треугольника), длины сторон которой находятся в диапазоне от 3 до 30 км, в соответствии с п. 6.4. МИ 2408-97 «Аппаратура пользователей космических навигационных систем геодезическая. Методика поверки».

Следует последовательно устанавливать аппаратуру на пунктах, образующих треугольник и согласно руководству по эксплуатации выполнить измерения и вычислить приращения координат между пунктами.

Сумма приращений координат (невязка координат) не должна превышать значений, вычисленных по формуле:

$$W_{X,Y,Z} = \sqrt{(\Delta_{1_{X,Y,Z}})^2 + (\Delta_{2_{X,Y,Z}})^2 + (\Delta_{3_{X,Y,Z}})^2},$$

где $W_{X,Y,Z}$ - невязка координат в плане/по высоте, мм;

 $\Delta_{i_{X,Y,Z}}$ - допустимые значения погрешности приращений координат для і стороны треугольника в плане/по высоте, мм, приведенных в Приложении A к настоящей методике поверки.

7.3.2 Определение абсолютной погрешности и средней квадратической погрешности измерений длины базиса в режиме «Кинематика в реальном времени (RTK)»

Абсолютная и средняя квадратическая погрешности измерений длины базиса в режиме «Кинематика в реальном времени (RTK)» определяются путем многократных измерений (не менее 10) интервала эталонного базисного комплекса или контрольной длины базиса, определённой фазовым светодальномером (тахеометром), 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. №2831 и действительное значение которого расположено в диапазоне от 0 до 30 км.

Установить аппаратуру над центрами пунктов базиса и привести спутниковые антенны к горизонтальной плоскости.

В качестве базовой станции использовать средство фазовых измерений приращения координат по сигналам ГНСС в диапазоне от 0 до 30 км с погрешностью измерений приращений координат в режиме «Кинематика в реальном времени (RTK)» не более:

- в плане (8+1·10⁻⁶·D) мм;
- по высоте (15+1·10⁻⁶·D) мм,

где D – измеряемое расстояние в мм.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со спутников.

Провести измерения на поверяемой аппаратуре при условиях, указанных в таблице 4 настоящей программы.

Выключить аппаратуру согласно требованиям руководства по эксплуатации.

При использовании контрольной длины базиса, ещё раз измерить эталонным дальномером её значения. Результат измерений не должен отличаться от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную эталонному дальномеру. В случае если измеренная длина отличается от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, необходимо повторить съёмку аппаратурой заново.

Провести обработку данных с использованием штатного ПО к аппаратуре.

Абсолютная погрешность измерений длины базиса (при доверительной вероятности 0,95) определяется как сумма систематической и случайной погрешностей по формуле:

$$arDelta L_j = (rac{\sum_{i=1}^n L_{j_i}}{n_j} - L_{j_0}) \pm 2\sqrt{rac{\sum_{i=1}^n (L_{j_i} - rac{\sum_{i=1}^n L_{j_i}}{n_j})^2}{n_j - 1}},$$
 где

 ΔL_{i} – погрешность измерений j длины базиса в плане/по высоте, мм;

 L_{j_0} — эталонное значение j длины базиса в плане/по высоте, мм;

 L_{j_i} — измеренное поверяемой аппаратурой значение j длины базиса i измерением в плане/по высоте, мм;

 n_j — число измерений j длины базиса.

Средняя квадратическая погрешность измерений длины базиса определяется по формуле:

$$m = \sqrt{rac{\sum_{i=1}^{n}(L_i - L_0)^2}{n}},$$
где

т – средняя квадратическая погрешность измерений длины базиса.

Значения абсолютной (при доверительной вероятности 0,95) и средней квадратической погрешностей измерений длины базиса в режиме «Кинематика в реальном времени (RTK)» не должно превышать значения, приведенного в Приложении А к настоящей методике поверки.

7.3.3 Определение абсолютной погрешности и средней квадратической погрешности измерений длины базиса в режиме «Дифференциальные кодовые измерения (DGPS)»

Абсолютная и средняя квадратическая погрешности измерений длины базиса в режиме «Дифференциальные кодовые измерения (DGPS)» определяются путем многократных измерений (не менее 10) интервала эталонного базисного комплекса или контрольной длины базиса, определённой фазовым светодальномером (тахеометром), 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. №2831 и действительное значение которого расположено в диапазоне от 0 до 30 км.

Установить аппаратуру над центрами пунктов базиса и привести спутниковые антенны к горизонтальной плоскости.

В качестве базовой станции использовать средство фазовых измерений приращения координат по сигналам ГНСС в диапазоне от 0 до 30 км с погрешностью измерений приращений координат в режиме «Дифференциальные кодовые измерения (DGPS)» не более:

- в плане $(250+1\cdot10^{-6}\cdot D)$ мм;
- по высоте $(250+1\cdot10^{-6}\cdot D)$ мм,

где D – измеряемое расстояние в мм.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со спутников.

Провести измерения на поверяемой аппаратуре при условиях, указанных в таблице 4 настоящей программы.

Выключить аппаратуру согласно требованиям руководства по эксплуатации.

Ещё раз измерить эталонным тахеометром длину базиса. Результат измерений не должен отличаться от значения L_0 , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную эталонному тахеометру. В случае если измеренная длина базиса отличается от значения L_0 , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную эталонному тахеометру, повторить съёмку аппаратурой заново.

Провести обработку данных с использованием штатного ПО к аппаратуре.

Абсолютная погрешность измерений длины базиса (при доверительной вероятности 0,95) определяется как сумма систематической и случайной погрешностей по формуле:

$$\Delta L_j = (rac{\sum_{i=1}^n L_{j_i}}{n_j} - L_{j_0}) \pm 2\sqrt{rac{\sum_{i=1}^n (L_{j_i} - rac{\sum_{i=1}^n L_{j_i}}{n_j})^2}{n_j - 1}},$$
 где

 ΔL_{i} — погрешность измерений j длины базиса в плане/по высоте, мм;

 L_{j_0} — эталонное значение j длины базиса в плане/по высоте, мм;

 L_{ji} — измеренное поверяемой аппаратурой значение j длины базиса i измерением в плане/по высоте, мм;

 n_i – число измерений j длины базиса.

Средняя квадратическая погрешность измерений длины базиса определяется по формуле:

$$m = \sqrt{rac{\sum_{i=1}^{n}(L_i - L_0)^2}{n}},$$
 где

m — средняя квадратическая погрешность измерений длины базиса. Значения абсолютной (при доверительной вероятности 0,95) и средней квадратической погрешностей измерений длины базиса в режиме «Дифференциальные кодовые измерения (DGPS)» не должны превышать значений, указанных в Приложении А к настоящей методике поверки.

8 Оформление результатов поверки

- 8.1. Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 7 настоящей методики поверки с указанием числовых значений результатов измерений и их оценки по сравнению с допускаемыми значениями.
- 8.2. При положительных результатах поверки аппаратура признается годной к применению и оформляют свидетельство о поверке установленной формы. Знак поверки наносится на свидетельство о поверке в виде наклейки и (или) поверительного клейма.
- 8.3. При отрицательных результатах поверки аппаратура признается непригодной к применению и оформляют извещение о непригодности установленной формы с указанием основных причин.

Руководитель отдела ООО «Автопрогресс – М»

К.А. Ревин

Приложение А (Обязательное)

Метрологические характеристики

Таблица А.1 Метрологические характеристики

Наименование характеристики	Значение	
	Leica GMX910	Leica iCG30
Диапазон измерений длины базиса, м	от 0 до	30 000
Границы допускаемой абсолютной		
погрешности измерений длины базиса (при		
доверительной вероятности 0,95), мм:		
- в режиме «Статика»:		
- в плане	$\pm 2 \cdot (3,0+0,5\cdot 10^{-6}\cdot D)$	_
- по высоте	$\pm 2 \cdot (5,0+0,5\cdot 10^{-6}\cdot D),$	_
- в режиме «Кинематика в реальном времени (RTK)»:		
- в плане	$\pm 2 \cdot (8 + 1 \cdot 10^{-6} \cdot D)$	$\pm 2 \cdot (10 + 1 \cdot 10^{-6} \cdot D)$
- по высоте	$\pm 2 \cdot (15 + 1 \cdot 10^{-6} \cdot D)$	$\pm 2 \cdot (20 + 1 \cdot 10^{-6} \cdot D)$
- в режиме «Дифференциальные кодовые		
измерения (DGPS)»:		
- в плане	$\pm 2 \cdot (250 + 1 \cdot 10^{-6} \cdot D)$	-
- по высоте	$\pm 2 \cdot (250 + 1 \cdot 10^{-6} \cdot D)$	-
Допускаемая средняя квадратическая		
погрешность измерений длины базиса мм:		
- в режиме «Статика»:		
- в плане	$3,0+0,5\cdot10^{-6}\cdot D$	-
- по высоте	$5,0+0,5\cdot10^{-6}\cdot D,$	-
- в режиме «Кинематика в реальном времени (RTK)»:		
- в плане	$8+1\cdot10^{-6}\cdot D$	10+1·10 ⁻⁶ ·D
- по высоте	$15+1\cdot10^{-6}\cdot D$	20+1·10 ⁻⁶ ·D
- в режиме «Дифференциальные кодовые		
измерения (DGPS)»:	-	
- в плане	$250+1\cdot10^{-6}\cdot D$	-
- по высоте	$250+1\cdot10^{-6}\cdot D$,	-
	где D – измеряемое	где D – измеряемое
	расстояние в мм	расстояние в мм