УТВЕРЖДАЮ Технический директор ООО «ИЦРМ»

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

МУЛЬТИМЕТРЫ ЦИФРОВЫЕ Fluke 87V MAX

Методика поверки

ИЦРМ-МП-089-20

ВВЕДЕНИЕ

Настоящая методика предусматривает методы и средства проведения первичной и периодической поверок мультиметров цифровых Fluke 87V MAX, изготавливаемых фирмой «Fluke Corporation», США, заводом-изготовителем ANHUI SHIFU INSTRUMENTS CO., LTD, Китай.

Мультиметры цифровые Fluke 87V MAX (далее по тексту – мультиметры, приборы) предназначены для измерений напряжения постоянного и переменного тока; силы постоянного и переменного тока; электрического сопротивления постоянному току; электрической емкости; частоты; температуры с помощью преобразователей термоэлектрических (термопар).

Интервал между поверками (межповерочный интервал) – 2 года.

Периодическая поверка средств измерений в случае их использования для измерений меньшего числа величин или на меньшем числе пределов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» Описания типа, допускается на основании письменного заявления их владельца, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке средства измерений.

1 ОПЕРАЦИИ ПОВЕРКИ

- 1.1 При поверке выполняются операции, указанные в таблице 1.
- 1.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и прибор бракуется.

Таблица 1 – Операции поверки

Наименование операции	Пункт	Проведени	ие операции при
	методики	первичной	периодической
	поверки	поверке	поверке
1. Внешний осмотр	7.2	Да	Да
2. Опробование	7.3	Да	Да
3. Определение основной абсолютной погрешности измерений напряжения постоянного и переменного тока	7.4	Да	Да
4. Определение основной абсолютной погрешности измерений силы постоянного и переменного тока	7.5	Да	Да
5. Определение основной абсолютной погрешности измерений электрического сопротивления постоянному току	7.6	Да	Да
6. Определение основной абсолютной погрешности измерений электрической емкости	7.7	Да	Да
7. Определение основной абсолютной погрешности измерений частоты	7.8	Да	Да
8. Определение основной абсолютной погрешности измерений температуры с помощью преобразователей термоэлектрических (термопар)	7.9	Да	Да

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки должны применяться средства измерений, перечисленные в таблицах 2 и 3.
- 2.2 Допускается применять другие средства измерений, обеспечивающие измерение значений соответствующих величин с требуемой точностью.

2.3. Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

Таблица 2 – Основные средства поверки

Номер пункта методики поверки	Тип средства поверки
7.2 - 7.3	Визуально
7.4 – 7.9	Калибраторы многофункциональные Fluke 5522A (5520A) (регистрационный номер в Федеральном информационном фонде № 51160-12). Конкретно использовать калибратор многофункциональный Fluke 5520A

Таблица 3 – Вспомогательные средства поверки

Измеряемая величина	Диапазон измерений	Класс точности, погрешность	Тип средства поверки
Температура окружающего воздуха	от 0 до 55 °C	±0,3 °C	Термометр ртутный стеклянный лабораторный ТЛ-4
Относительная влажность воздуха	от 10 до 100 %	±(2-6) %	Психрометр аспирационный M-34-M
Атмосферное давление	от 80 до 106 кПа	±0,2 кПа	Барометр-анероид метеорологический БАММ-1
Напряжение питающей сети переменного тока	от 5 до 462 В	±0,1 %	Измеритель электрических параметров качества, мощности
Частота питающей сети	от 42,5 до 57,5 Гц	±0,01 Гц	и количества электрической энергии телеметрический LPW-305-1

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются поверители из числа сотрудников организаций, аккредитованных на право проведения поверки в соответствии с действующим законодательством $P\Phi$, изучившие настоящую методику поверки, руководство по эксплуатации на поверяемое средство измерений и имеющие стаж работы по данному виду измерений не менее 1 года.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

К проведению поверки допускаются лица, прошедшие проверку знаний правил техники безопасности и эксплуатации электроустановок напряжением до и свыше 1 кВ и имеющие квалификационную группу по электробезопасности не ниже III.

Все средства измерений, участвующие в поверке должны быть надежно заземлены.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха от +18 до +28 °C;
- относительная влажность от 30 до 80 %;
- атмосферное давление от 84 до 106 кПа или от 630 до 795 мм рт. ст.

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед поверкой должны быть выполнены следующие подготовительные работы:

- 1. Проверены документы, подтверждающие электрическую безопасность.
- 2. Проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75.
- 3. Средства измерения, используемые при поверке, поверены и подготовлены к работе согласно их руководствам по эксплуатации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Метрологические характеристики, подлежащие определению.

Таблица 4 — Метрологические характеристики в режиме измерений напряжения постоянного тока

Пределы измерений	Разрешение (единица младшего разряда (е.м.р.))	Пределы допускаемой основной абсолютной погрешности измерений, мВ, В
		* * * * * * * * * * * * * * * * * * * *
600 мВ	0,1 мВ	±(0,001·U+1 е.м.р.)
6 B	0,001 B	
60 B	0,01 B	±(0,0005·U+1 e.m.p.)
600 B	0,1 B	±(0,0003·0+1 e.m.p.)
1000 B	1 B	

Таблица 5 — Метрологические характеристики в режиме измерений напряжения переменного тока

Пределы	Частота	Разрешение	Пределы допускаемой основной	
измерений		(единица младшего	абсолютной погрешности измерений	
		разряда (е.м.р.))	мВ, В	
	от 45 до 65 Гц		$\pm (0,007 \cdot \text{U} + 4 \text{ e.m.p.})^{1)}$	
	от 15 до 45 Гц		$\pm (0.01 \cdot \text{U} + 4 \text{ e.m.p.})^{2}$	
600 мВ	св. 65 Гц до 1 кГц	0,1 мВ	±(0,01 0 14 c.m.p.)	
	св. 1 до 5 кГц		±(0,02·U+4 е.м.р.)	
ū.	св. 5 до 20 кГц		±(0,02·U+20 е.м.р.)	
	от 45 до 65 Гц		±(0,007·U+4 e.m.p.) 1)	
	от 15 до 45 Гц		$\pm (0.01 \cdot \text{U} + 4 \text{ e.m.p.})^{2}$	
6 B	св. 65 Гц до 1 кГц	0,001 B	±(0,01.0+4 e.m.p.)	
	св. 1 до 5 кГц		±(0,02·U+4 е.м.р.)	
	св. 5 до 20 кГц		±(0,02·U+20 е.м.р.)	
	от 45 до 65 Гц		±(0,007·U+2 е.м.р.)	
60 B	от 15 до 45 Гц	0.01 P	±(0,01·U+4 e.m.p.) 2)	
O D	св. 65 Гц до 1 кГц	0,01 B	±(0,01°0+4 e.m.p.)	
	св. 1 до 5 кГц		±(0,02·U+4 е.м.р.)	
	от 45 до 65 Гц		±(0,007·U+2 е.м.р.)	
600 B	от 15 до 45 Гц	0,1 B	±(0,01·U+4 e.m.p.) ²⁾	
ООО Б	св. 65 Гц до 1 кГц	0,1 B	±(0,01°0+4 e.m.p.)	
	св. 1 до 5 кГц		±(0,02·U+4 е.м.р.)	
	от 45 до 65 Гц		±(0,007·U+2 е.м.р.)	
1000 B	от 15 до 45 Гц	1 B	±(0,01·U+4 е.м.р.)	
	св. 65 Гц до 1 кГц		$\pm (0.01 \cdot \text{U} + 4 \text{ e.m.p.})^{2}$	

Пределы	Частота	Разрешение	Пределы допускаемой основной
измерений		(единица младшего	абсолютной погрешности измерений,
		разряда (е.м.р.))	мВ, В
Примечания			
U – измеренно	е значение напряже	ения переменного ток	а, мВ, В;
$ ^{1)}$ — при включе	енном ФНЧ погреш	ность ±(0,007·U+2 е.м	и.р.);
$^{2)}$ — при включе	енном ФНЧ на част	оте 440 Гц погрешнос	сть ±(0,06·U+4 е.м.р.)

Таблица 6 – Метрологические характеристики в режиме измерений силы постоянного тока

Пределы	Разрешение (единица	Пределы допускаемой основной абсолютной
измерений	младшего разряда (е.м.р.))	погрешности измерений, мкА, мА, А
600 мкА	0,1 мкА	±(0,002·I+4 e.m.p.)
6000 мкА	1 мкА	±(0,002·I+2 е.м.р.)
60 мА	0,01 мА	±(0,002·І+4 е.м.р.)
400 мА	0,1 mA	±(0,002·І+2 е.м.р.)
6 A	0,001 A	±(0,002·I+4 е.м.р.)
10 A	0,01 A	±(0,002·I+2 е.м.р.)
римечание – I - 1	измеренное значение силы пост	оянного тока, мкА, мА, А

Таблица 7 – Метрологические характеристики в режиме измерений силы переменного тока

Частота	Разрешение	Пределы допускаемой основной
	(единица младшего	абсолютной погрешности измерений,
	разряда (е.м.р.))	мкА, мА, А
	0,1 мкА	±(0,01·I+2 е.м.р.)
от 45 Гц до 2 кГц	1 мкА	
	0,01 мА	
	0,1 мА	
от 45 Гц до 2 кГц	0,001 A	±(0,01·I+2 е.м.р.)
	0,01 A	
	от 45 Гц до 2 кГц	(единица младшего разряда (е.м.р.)) от 45 Гц до 2 кГц от 45 Гц до 2 кГц

Таблица 8 - Метрологические характеристики в режиме измерений электрического

сопротивления постоянному току

Пределы	Разрешение (единица	Пределы допускаемой основной абсолютной
измерений	младшего разряда (е.м.р.))	погрешности измерений, Ом, кОм, МОм
600 Ом ¹⁾	0,1 Ом	±(0,002·R+2 е.м.р.)
6 кОм	0,001 кОм	
60 кОм	0,01 кОм	+(0,002,B+1,ax,m)
600 кОм	0,1 кОм	±(0,002·R+1 e.m.p.)
6 МОм	0,001 кОм	
50 МОм	0,01 МОм	±(0,01·R+1 е.м.р.)

Примечания

R — измеренное значение электрического сопротивления постоянному току, Ом, кОм, МОм; $^{1)}$ — погрешность гарантируется при использовании перед измерениями функции «rel»

Таблица 9 – Метрологические характеристики в режиме измерений электрической емкости

Пределы	Разрешение (единица	Пределы допускаемой основной абсолютной
измерений	младшего разряда (е.м.р.))	погрешности измерений, нФ, мкФ
10 нФ	0,01 нФ	±(0,01·C+2 e.m.p.) 1)
100 нФ	0,1 нФ	±(0,01°C+2 e.m.p.)

Пределы	Разрешение (единица	Пределы допускаемой основной абсолютной
измерений	младшего разряда (е.м.р.))	погрешности измерений, нФ, мкФ
1 мкФ	0,001 мкФ	
10 мкФ	0,01 мкФ	1(0.01.C12.cvm)
100 мкФ	0,1 мкФ	±(0,01·C+2 e.m.p.)
9999 мкФ	1 мкФ	

Примечания

С – измеренное значение электрической емкости, нФ, мкФ;

Таблица 10 – Метрологические характеристики в режиме измерений частоты

Разрешение (единица	Пределы допускаемой основной абсолютной
иладшего разряда (е.м.р.))	погрешности измерений, Гц, кГц
0,01 Гц	
0,1 Гц	+(0,00005 E+1 acces)
0,001 кГц	±(0,00005·F+1 е.м.р.)
0,01 кГц	
	младшего разряда (е.м.р.)) 0,01 Гц 0,1 Гц 0,001 кГц

Таблица 11 – Метрологические характеристики в режиме измерений температуры с помощью

преобразователей термоэлектрических (термопар) по ГОСТ Р 8.585-2001

Тип	Диапазон	Разрешение (единица	Пределы допускаемой основной
термопары	измерений, °С	младшего разряда (е.м.р.)) °С	абсолютной погрешности
			измерений, °С
К	от -200 до +1090	0,1	±(0,01·T+1)
Примечание –	Т - измеренное зн	ачение температуры, °С	

7.2 Внешний осмотр

Перед поверкой должен быть проведен внешний осмотр, при котором должно быть установлено соответствие поверяемого прибора следующим требованиям:

- 1. Комплектность прибора должна соответствовать руководству по эксплуатации;
- 2. Все органы управления и коммутации должны действовать плавно и обеспечивать надежность фиксации во всех позициях;
- 3. Не должно быть механических повреждений корпуса, лицевой панели, органов управления. Все надписи должны быть четкими и ясными;
- 4. Все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемый прибор бракуется и подлежит ремонту.

Опробование

Проверить работоспособность дисплея и функциональных клавиш. Режимы, отображаемые на дисплее, при переключении режимов измерений и нажатии соответствующих клавиш, должны соответствовать требованиям руководства по эксплуатации.

При неверном функционировании прибор бракуется и подлежит ремонту.

7.4 Определение основной абсолютной погрешности измерений напряжения постоянного и переменного тока

Определение основной абсолютной погрешности измерений напряжения постоянного и переменного тока производить методом прямых измерений поверяемым прибором напряжения, воспроизводимого эталонной мерой – калибратором.

В качестве эталонной меры напряжения постоянного и переменного тока использовать калибратор многофункциональный Fluke 5520A.

^{1) –} погрешность гарантируется при использовании перед измерениями функции «rel»

Определение погрешности производить в следующем порядке:

- 1. Подключить к измерительным входам прибора калибратор.
- 2. Перевести калибратор в режим воспроизведения напряжения постоянного тока.
- 3. Перевести поверяемый прибор в режим измерений напряжения постоянного тока.
- 4. Провести измерения в точках, указанных в таблице 12.
- 5. Перевести калибратор в режим воспроизведения напряжения переменного тока.
- 6. Перевести поверяемый прибор в режим измерений напряжения переменного тока.
- 7. Провести измерения в точках, указанных в таблицах 13 и 14.
- 8. Результаты поверки прибора считаются удовлетворительными, если:
- во всех поверяемых точках абсолютная погрешность, определенная по формуле:

$$\Delta U = U_X - U_0 \tag{1}$$

где: U_X – показания поверяемого прибора, мВ, В;

 U_0 – показания калибратора, мВ, В;

не превышает значений, указанных в п. 7.1 настоящей Методики.

При невыполнении этих требований, прибор бракуется и направляется в ремонт.

Таблипа 12

Модификация	Пределы измерений	Поверяемые отметки
	600 мВ	330 мВ
	6 B	3,3 B
Fluke 87V MAX	60 B	33 B
	600 B	330 B
	1000 B	1000 B

Таблипа 13

Модификация	Пределы измерений	Поверяемые отметки	Частота
	600 мВ	330 мВ	50 Гц, 1 кГц, 20 кГц
	6 B	3,3 B	50 Гц, 1 кГц, 20 кГц
Fluke 87V MAX	60 B	33 B	50 Гц, 1 кГц, 2,5 кГ1
	600 B	330 B	50 Гц, 1 кГц, 2,5 кГ1
	1000 B	1000 B	50 Гц, 1 кГц

Таблица 14 – Режим ФНЧ

Модификация	Пределы измерений	Поверяемые отметки	Частота
	600 мВ	330 мВ	50 Гц, 440 Гц
	6 B	3,3 B	50 Гц, 440 Гц
Fluke 87V MAX	60 B	33 B	440 Гц
	600 B	330 B	440 Гц
	1000 B	1000 B	440 Гц

7.5 Определение основной абсолютной погрешности измерений силы постоянного и переменного тока

Определение основной абсолютной погрешности измерений силы постоянного и переменного тока производить методом прямых измерений поверяемым прибором силы тока, воспроизводимой эталонной мерой – калибратором.

В качестве эталонной меры силы постоянного и переменного тока использовать калибратор многофункциональный Fluke 5520A.

Определение погрешности производить в следующем порядке:

- 1. Подключить к измерительным входам прибора калибратор.
- 2. Перевести калибратор в режим воспроизведения силы постоянного тока.

- 3. Перевести поверяемый прибор в режим измерений силы постоянного тока.
- 4. Провести измерения в точках, указанных в таблице 15.
- 5. Перевести калибратор в режим воспроизведения силы переменного тока.
- 6. Перевести поверяемый прибор в режим измерений силы переменного тока.
- 7. Провести измерения в точках, указанных в таблице 16.
- 8. Результаты поверки прибора считаются удовлетворительными, если:
- во всех поверяемых точках абсолютная погрешность, определенная по формуле:

$$\Delta I = I_X - I_0 \tag{2}$$

где: I_X – показания поверяемого прибора, мкA, мA, A;

 I_0 – показания калибратора, мкA, мA, A;

не превышает значений, указанных в п. 7.1 настоящей Методики.

При невыполнении этих требований, прибор бракуется и направляется в ремонт.

Таблица 15

Модификация	Пределы измерений	Поверяемые отметки
	600 мкА	330 мкА
	6000 мкА	3300 мкА
Fluke 87V MAX	60 мА	33 мА
Fluke 8/V MAX	400 мА	330 мА
	6 A	3,3 A
	10 A	6 A

Таблица 16

Модификация	Пределы измерений	Поверяемые отметки	Частота
	600 мкА	330 мкА	50 Гц, 1 кГц
Fluke 87V MAX	6000 мкА	3300 мкА	50 Гц, 1 кГц
	60 мА	33 мА	50 Гц, 1 кГц
	400 мА	330 мА	50 Гц, 1 кГц
	6 A	3,3 A	50 Гц, 1 кГц
	10 A	6 A	50 Гц, 1 кГц

7.6 Определение основной абсолютной погрешности измерений электрического сопротивления постоянному току

Определение основной абсолютной погрешности измерений электрического сопротивления постоянному току производить методом прямых измерений поверяемым прибором сопротивления, воспроизводимого эталонной мерой – калибратором.

В качестве эталонной меры электрического сопротивления постоянному току использовать калибратор многофункциональный Fluke 5520A.

Определение погрешности производить в следующем порядке:

- 1. Подключить к измерительным входам прибора калибратор.
- 2. Перевести калибратор в режим воспроизведения электрического сопротивления постоянному току.
- 3. Перевести поверяемый прибор в режим измерений электрического сопротивления постоянному току.
- 4. Провести измерения в точках, указанных в таблице 17.
- 5. Результаты поверки прибора считаются удовлетворительными, если:
- во всех поверяемых точках абсолютная погрешность, определенная по формуле:

$$\Delta R = R_X - R_0 \tag{3}$$

где: R_X – показания поверяемого прибора, Ом, кОм, МОм;

R₀ – показания калибратора, Ом, кОм, МОм;

не превышает значений, указанных в п. 7.1 настоящей Методики.

При невыполнении этих требований, прибор бракуется и направляется в ремонт.

Таблипа 17

Модификация	Пределы измерений	Поверяемые отметки
-	600 Ом ¹⁾	330 Ом ¹⁾
	6 кОм	3,3 кОм
Fluke 87V MAX	60 кОм	33 кОм
Fluke 8/V MAX	600 кОм	330 кОм
	6 МОм	3,3 МОм
	50 МОм	30 МОм

7.7 Определение основной абсолютной погрешности измерений электрической емкости

Определение основной абсолютной погрешности измерений электрической емкости производить методом прямых измерений поверяемым прибором электрической емкости, воспроизводимой эталонной мерой – калибратором.

В качестве эталонной меры электрической емкости использовать калибратор многофункциональный Fluke 5520A.

Определение погрешности производить в следующем порядке:

- 1. Подключить к измерительным входам прибора калибратор.
- 2. Перевести калибратор в режим воспроизведения электрической емкости.
- 3. Перевести поверяемый прибор в режим измерений электрической емкости.
- 4. Провести измерения в точках, указанных в таблице 18.
- 5. Результаты поверки прибора считаются удовлетворительными, если:
- во всех поверяемых точках абсолютная погрешность, определенная по формуле:

$$\Delta C = C_X - C_0 \tag{4}$$

где: C_X – показания поверяемого прибора, нФ, мкФ;

 C_0 – показания калибратора, н Φ , мк Φ ;

не превышает значений, указанных в п. 7.1 настоящей Методики.

При невыполнении этих требований, прибор бракуется и направляется в ремонт.

Таблица 18

Модификация	Предел измерений	Поверяемые отметки
	10 нФ	10 нФ
	100 нФ	100 нФ
Fluke 87V MAX	1 мкФ	1 мкФ
Fluke 6/V MAA	87 V МАХ 10 мкФ	10 мкФ
	100 мкФ	100 мкФ
	9999 мкФ	1000 мкФ

7.8 Определение абсолютной погрешности измерений частоты

Определение абсолютной погрешности измерений частоты производить методом прямых измерений поверяемым прибором частоты напряжения, воспроизводимого эталонной мерой – калибратором.

В качестве эталонной меры частоты использовать калибратор многофункциональный Fluke 5520A.

Определение погрешности производить в следующем порядке:

- 1. Подключить к измерительным входам прибора калибратор.
- 2. Перевести калибратор в режим воспроизведения частоты.
- 3. Перевести поверяемый прибор в режим измерений частоты.
- 4. Провести измерения в точках, указанных в таблице 19.
- 5. Результаты поверки прибора считаются удовлетворительными, если:
- во всех поверяемых точках абсолютная погрешность, определенная по формуле:

$$\Delta F = F_X - F_0 \tag{5}$$

где: F_X – показания поверяемого прибора, Γ ц, к Γ ц;

 F_0 – показания калибратора, Γ ц, к Γ ц;

не превышает значений, указанных в п. 7.1 настоящей Методики.

При невыполнении этих требований, прибор бракуется и направляется в ремонт.

Таблипа 19

Модификация	Предел измерений	Поверяемые отметки	Напряжение
	199,99 Гц	199,50 Гц	0,15 B
Fluke 87V MAX	19,999 кГц	19,95 кГц	0,15 B
	199,99 кГц	199,50 кГц	0,15 B

7.9 Определение основной абсолютной погрешности измерений температуры с помощью преобразователей термоэлектрических (термопар)

Определение основной абсолютной погрешности измерений температуры производить методом прямых измерений поверяемым прибором температуры, воспроизводимой (имитируемой) эталонной мерой – калибратором.

В качестве эталонной меры температуры использовать калибратор многофункциональный Fluke 5520A.

Для учета влияния потенциала холодного спая термопары при ненулевой температуре необходимо компенсировать выходной сигнал калибратора с помощью показаний термометра ртутного стеклянного лабораторного ТЛ-4. При этом использовать ручной метод компенсации холодного спая термопары.

Определение погрешности производить в следующем порядке:

- 1. Подключить удлинитель термопары типа «К» с миниатюрным разъемом термопары на обоих концах (кабель КМРС1МР, см. рисунок 1) к выходу имитатора термопары калибратора и мультиметру через адаптер ТС-to-banana (рисунок 2).
- 2. Перевести калибратор в режим воспроизведения температуры с помощью термопар.
- 3. Перевести поверяемый прибор в режим измерений температуры.
- 4. Не прикасаться к измерительному кабелю термопары после подключения его к калибратору. Дать соединению стабилизироваться в течение не менее 15 минут перед выполнением измерений. Убедиться, что температура окружающей среды стабильна в пределах ±1 °C.

Примечание — рекомендуется поместить мультиметр в пассивный термостат. В этом случае время ожидания может быть сокращено.

- 5. Провести измерения в точках, указанных в таблице 20.
- 6. Результаты поверки прибора считаются удовлетворительными, если:
- во всех поверяемых точках абсолютная погрешность, определенная по формуле:

$$\Delta T = T_X - T_0 \tag{6}$$

где: T_X – показания поверяемого прибора, °C;

 T_0 – показания калибратора, °C;

не превышает значений, указанных в п. 7.1 настоящей Методики.

При невыполнении этих требований, прибор бракуется и направляется в ремонт.

Рисунок 1 – Кабель КМРС1МР

Рисунок 2 – Адаптер TC-to-banana

Таблина 20

Модификация	Тип термопары	Поверяемые отметки, °С
Fluke 87V MAX		-200
	«K»	0
	«K»	+100
		+1000

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Оформление результатов поверки производится в соответствии с требованиями Приказа Минпромторга России от 02.07.2015 г. № 1815.

При положительных результатах поверки выдается свидетельство о поверке. Знак поверки наносится на свидетельство о поверке.

При отрицательных результатах поверки прибор не допускается к дальнейшему применению, знак предыдущей поверки гасится и выдается извещение о непригодности.

Ведущий инженер OOO «ИЦРМ»

June

А.В. Щетинин