УТВЕРЖДАЮ

Заместитель директора по производственной метрологии ФГУП "ВНИИМС"

Н.В. Иванникова

"26" октября 2020 г.

Государственная система обеспечения единства измерений. Хроматограф жидкостный Agilent 1260 Infinity с детектором на диодной матрице DAD, кондуктометрическим детектором CDD-10Avp. Методика поверки

МП 205-16-2020

г. Москва 2020 г. Настоящая методика поверки распространяется на хроматограф жидкостный Agilent 1260 Infinity с детектором на диодной матрице DAD, зав. № DEAA 303814, изготавливаемый фирмой "Agilent Technologies Inc.", США, кондуктометрическим детектором CDD-10Avp, зав. № C21345002406 LP, изготавливаемым фирмой "SHIMADZU", Япония, и устанавливает методы и средства его первичной и периодической поверок.

Интервал между поверками - один год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки выполняют операции, приведенные в таблице 1. Таблица 1

	Номер пункта	Проведение	операции при
Наименование операции	методики	первичной	периодической
	поверки	поверке	поверке
1 Внешний осмотр	6.1	да	да
2 Опробование	6.2	да	да
3 Проверка идентификационных данных ПО	6.3	да	да
4 Определение метрологических характери-	-		
стик	6.4		
- определение уровня флуктуационных			
шумов и дрейфа нулевого сигнала	6.4.1	да	да ¹⁾
- определение предела детектирования			
	6.4.2	да	да ¹⁾
- определение относительного среднего			
квадратического отклонения (СКО) выход-			
ного сигнала	6.4.3	да	да ¹⁾
- определение относительного изменения			
выходного сигнала за 4 часа непрерывной			
работы	6.4.4	да	да ¹⁾
- определение показателей точности резуль-	,		
татов измерений	6.4.5	нет	да ²⁾

Примечания:

²⁾ При наличии нормативной документации на методику измерений.

1.2 Если при проведении той или иной операции поверки получен отрицательный результат, дальнейшее выполнение поверки прекращают.

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки применяют следующие средства поверки:
- весы с наибольшим пределом взвешивания $210~\mathrm{r}$, с пределами абсолютной погрешности взвешивания $\pm 0.2~\mathrm{mr}$ по ГОСТ OIML R 76-1-2011;
 - колбы мерные наливные 2-100-2, 2-200-2, 2-1000-2, ГОСТ 1770-74;
 - секундомер 2-кнопочный, 2 разряда, диапазон измерений от 0 до 60 мин.
 - ГСО 8749-2006 состава раствора антрацена в ацетонитриле;

¹⁾ При отсутствии нормативной документации на методику измерений, утвержденной в установленном порядке по ГОСТ Р 8.563-09.

- ГСО 7813-2000 состава раствора хлорид-ионов,
- термогигрометр электронный, диапазон измерений относительной влажности от $10\,\%$ до $100\,\%$; с пределами абсолютной погрешности измерений не более $\pm 3,0\,\%$; диапазон измерений температуры от $\pm 10\,\%$ до $\pm 40\,\%$; с пределами абсолютной погрешности измерений не более $\pm 0,5\,\%$.
 - барометр-анероид М-110.
- 2.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.
- 2.3 Все средства измерений, используемые при поверке, должны иметь свидетельства о поверке, ГСО паспорта.

3 УСЛОВИЯ ПОВЕРКИ

3.1 При проведении поверки соблюдают следующие условия:

- температура окружающего воздуха, °С

от 15 до 25;

- атмосферное давление, кПа

от 84,0 до 106,7;

- относительная влажность воздуха, %

от 30 до 80;

- напряжение питания, В

 220^{+22}_{-33} ;

- частота напряжения питания, Гц

 50 ± 1 .

Механические воздействия, внешние электрические и магнитные поля, влияющие на работу хроматографа, должны отсутствовать.

4 ПОДГОТОВКА К ПОВЕРКЕ

- 4.1 Подготовку хроматографа к поверке выполняют в соответствии с Руководством по эксплуатации.
- 4.2 Перед проведением поверки готовят контрольные растворы по методике, указанной в приложении **A**. Назначение растворов и содержание в них анализируемых компонентов и условия приведены в таблице 2.

Таблица 2

Детектор	на диодной матрице DAD	кондуктометрический CDD-10Avp
Постоянная времени, с	2	1
Раствор	антрацена в ацетонитриле	хлористого калия
Массовая концентрация контрольного вещества, мг/дм ³	5	1
Объем дозирования пробы, мм ³	20	20
Элюент	ацетонитрил 80 %: вода 20 %	2,512 мМ NaHCO ₃ / 0,6 мМ Na ₂ CO ₃
Скорость потока элюента, см ³ /мин	1	1 с супрессор-системой
Длина волны, нм	250 ширина полосы (bandwidth) 4 нм	-
Температура ячейки, °С	40	30

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 Требования безопасности должны соответствовать рекомендациям, изложенным в Руководстве по эксплуатации хроматографа жидкостного Agilent 1260 Infinity с детектором на диодной матрице DAD, кондуктометрическим детектором CDD-10Avp.
- 5.2 К проведению поверки допускаются лица, имеющие опыт работы с жидкостными хроматографами, изучившие НД по их эксплуатации и методику поверки, имеющие техническое образование и навыки работы с прибором.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре устанавливают:

- соответствие комплектности хроматографа паспортным данным;
- четкость маркировки, включая наличие на хроматографе обозначения (наименования)
 и заводского номера;
- отсутствие внешних повреждений и дефектов, влияющих на работоспособность хроматографа.

Хроматограф считают выдержавшими внешний осмотр, если он соответствует перечисленным выше требованиям.

6.2 Опробование

При опробовании хроматографа необходимо проделать следующие операции:

- включить питание прибора;
- осуществить прогрев прибора в соответствии с техническим описанием на прибор;
- установить поток 1 см³/мин и проверить отсутствие течей подвижной фазы в местах соединений;
- удостовериться в стабильности давления подвижной фазы на входе в колонку при скорости потока 1 см^3 /мин.

Хроматограф допускается к дальнейшей поверке, если результаты тестирования положительные.

6.3 Проверка идентификационных данных ПО

Запускают ПО, открывают вкладку HELP INFO и считывают идентификационные данные ПО.

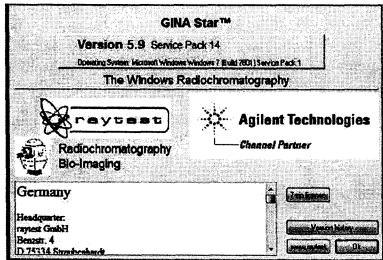


Рисунок 1- Окно с идентификационными данными ПО

Результат проверки соответствия программного обеспечения считают положительным, если идентификационные данные соответствуют указанным в таблице 3.

Таблица 3 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Наименования программного обеспечения	GINA Star
Идентификационное наименование ПО	gina_nt.exe
Номер версии (идентификационный номер) ПО	не ниже 5.9 Service Pack 14
Цифровой идентификатор ПО	-
Алгоритм вычисления	-

- 6.4 Определение метрологических характеристик
- 6.4.1 Определение уровня флуктуационных шумов и дрейфа нулевого сигнала.
- Определение производят при условиях, указанных в таблице 4.

Таблица 4

Детектор	на диодной матрице DAD	кондуктометрический CDD-10Avp
Постоянная времени, с	2	1
Элюент	ацетонитрил 80 % : вода 20 %	2,512 мМ NaHCO ₃ / 0,6 мМ Na ₂ CO ₃
Скорость потока элюента, см ³ /мин	1.	1 (с супрессор-системой)
Объем дозирования пробы (Injection Volume), мм ³	20	20
Длина волны, нм, -для определения уровня флуктуационных шумов и дрейфа нулевого сигнала	230; ширина полосы (bandwidth) 4 нм; контрольная (reference) длина волны 360 нм с шириной полосы (reference bandwidth) 100 нм; ширина щели (slitwidth) 4 нм	-
- для определения предела де- тектирования	250, ширина полосы (bandwidth) 4 нм	
Температура ячейки, °С	40	30

При определении уровня флуктуационных шумов и дрейфа нулевого сигнала хроматографическую колонку заменяют на стальной или полиэтиленовый капилляр (сталь марки 316 или материал РЕЕК) длиной 30-50 см и внутренним диаметром 0,1-0,3 мм.

Нулевой сигнал регистрируют на самом чувствительном диапазоне в течение 1 часа.

Дрейф рассчитывают как максимальное значение одностороннего смещения нулевой линии в течение 1 часа и выражают в е.о.п./ч или мкСм/см·ч.

За уровень флуктуационных шумов принимают максимальную амплитуду повторяющихся колебаний нулевого сигнала с периодом не более 20 с при непрерывной записи в течение 15 мин.

Прибор считается выдержавшим поверку, если полученные значения уровня флуктуационных шумов и дрейфа нулевого сигнала не превышают значений, приведенных в таблице 5. Таблица 5

3 4001111144 0			
Детектор	Уровень флуктуаци- онных шумов нулевого сигнала	Дрейф нулевого сигнала	Предел детектирования, г/см ³
на диодной матрице DAD	2,5·10 ⁻⁵ е.о.п.	1,8·10 ⁻³ е.о.п./ч	по антрацену 2·10 ⁻⁹
кондуктометрический CDD-10Avp	0,004 мкСм/см	0,048 мкСм/см·ч	по хлорид-иону 5·10 ⁻⁸

6.4.2 Определение предела детектирования.

Предел детектирования определяют при условиях, указанных в таблице 2.

В хроматограф вводят пробу контрольного вещества, определяют высоту (h) и ширину пика на половине его высоты $(\mu_{0.5})$ или площадь пика (S).

Предел детектирования рассчитывают по формуле (1)

$$C_{\text{\tiny MUH.}} = \frac{2 \cdot \Delta x \cdot G}{h \cdot \mu_{0.5} \cdot V}$$
 или $C_{\text{\tiny MUH}} = \frac{2 \cdot \Delta x \cdot G \cdot 60}{S \cdot V}$ (1),

где G — масса вещества, Γ ; $G = C \cdot v$ (C — массовая концентрация контрольного вещества, $\Gamma/\text{дм}^3$, v - объем пробы, дм^3);

V – скорость потока элюента, см 3 /мин;

 $\mu_{0,5}$ — ширина пика на половине высоты, мин;

 Δx — уровень флуктуационных шумов нулевого сигнала, определенный по п.6.4.1, е.о.п. или мкСм/см; уровень флуктуационных шумов определяют на участке нулевой линии до ввода контрольного вещества;

h - значение высоты пика контрольного вещества, е.о.п. или мкСм/см;

S – значение площади пика контрольного вещества, е.о.п. с или мкСм с/см.

Прибор считается выдержавшим поверку, если полученные значения предела детектирования не превышают значений, приведенных в таблице 5.

6.4.3. Определение относительного среднего квадратического отклонения (СКО) выходного сигнала.

Измерения проводятся после выхода хроматографа на режим. Элюент, колонку и типовое вещество выбирают в соответствии с таблицей 2.

Контрольный раствор вводят в хроматограф не менее 6 раз, измеряют значения выходного сигнала X_i (площади пика, высоты пика и времени удерживания) и вычисляют их среднее арифметическое значение \overline{X} .

Относительное СКО выходного сигнала (площади пика, высоты пика и времени удерживания) σ рассчитывают по формуле (2)

$$\sigma = \frac{100}{\overline{X}} \cdot \sqrt{\frac{\sum (X_i - \overline{X})^2}{n - 1}}$$
 (2)

- где \overline{X} среднее арифметическое значение параметра выходного сигнала (площади пика, высоты пика и времени удерживания);
 - X_i значение параметра выходного сигнала (площади пика, высоты пика и времени удерживания);
 - п число измерений.

Полученные значения относительного СКО выходного сигнала (σ) хроматографа не должны превышать значений, приведенных в таблице 6. Таблица 6

Детектор	Предел допускае ного СКО выход	мого относитель- цного сигнала, %	Пределы допускаемого относительного изменения выходного сигнала за 4 часа непрерывной работы, %
	площади, высоты пика	площади пика	
на диодной матрице DAD	2	1	±3
кондуктометрический CDD-10Avp	5	1	±6

6.4.4 Определение относительного изменения выходного сигнала за 4 часа непрерывной работы.

Проводят операции, описанные в разделе 6.4.3. Через 4 часа непрерывной работы повторяют измерения. Относительное изменение выходного сигнала за 4 часа непрерывной работы хроматографа рассчитывают по формуле (3)

$$\delta = \frac{\left|\overline{X}_t - \overline{X}\right|}{\overline{X}} \cdot 100 \tag{3}$$

где \overline{X} – среднее арифметическое значение параметра выходного сигнала (площади пика);

 \overline{X}_{i} — среднее арифметическое значение параметра выходного сигнала (площади пика), полученное через 4 часа непрерывной работы.

Полученные значения относительного изменения выходного сигнала за 4 часа непрерывной работы хроматографа не должны превыщать значений, приведенных в таблице 6.

6.4.5 При проведении периодической поверки хроматографов, эксплуатируемых по НД на методики, отвечающим требованиям ГОСТ Р 8.563-2009, проверяют показатели точности результатов измерений в соответствии с процедурами и нормативами контроля, регламентированными в методике измерений.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 По результатам поверки хроматографа оформляют протокол (рекомендуемая форма протокола приведена в приложении Б).
- 7.2 Положительные результаты поверки хроматографа оформляют выдачей свидетельства в соответствии с Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке (утв. приказом Минпромторга России № 1815 от 02.07.2015 г.).
 - 7.3. Знак поверки наносится на боковую поверхность хроматографа.
- 7.4 На хроматограф, не удовлетворяющий требованиям настоящей методики поверки, выдают извещение о непригодности с указанием причин в соответствии с Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке (утв. приказом Минпромторга России № 1815 от 02.07.2015 г.).

Buefola

Начальник отдела ФГУП "ВНИИМС"

Начальник сектора ФГУП "ВНИИМС", к.х.н.

С.В. Вихрова

О.Л. Рутенберг

МЕТОДИКА ПРИГОТОВЛЕНИЯ КОНТРОЛЬНЫХ РАСТВОРОВ

А.1 СРЕДСТВА ИЗМЕРЕНИЙ, ПОСУДА, РЕАКТИВЫ

- $A.1.1\ \Gamma CO\ 8749-2006\ cocтава$ раствора антрацена в ацетонитриле, массовая концентрация антрацена 0,200 мг/см³.
- А.1.2 ГСО 7813-2000 состава раствора хлорид-ионов, массовая концентрация хлорид-иона в воде $1\,\mathrm{Mr/cm}^3$.
- А.1.3 Весы лабораторные по ГОСТ OIML R 76-1-2011 с пределом взвешивания 20 или 200 г.
 - А.1.4 Колбы мерные наливные 2-100-2, 2-200-2, 2-1000-2, ГОСТ 1770-74.
 - А.1.5 Пипетки с одной отметкой 1-2-1, 1-2-5, 1-2-10, ГОСТ 29169-91.
 - А.1.6 Стаканы В-1-50ТС, ГОСТ 25336-82.
 - А.1.7 Вода для лабораторного анализа, ГОСТ Р 52501-2005.
 - А.1.8 Дистиллированная вода по ГОСТ 6709-72.
- А.19 Ацетонитрил для жидкостной хроматографии, квалификации "ос.ч.", по ТУ 6-09-5449-89.

А.2 ПРОЦЕДУРА ПРИГОТОВЛЕНИЯ

- А.2.1 Приготовление контрольных растворов антрацена
- A.2.1.1 Приготовление контрольного раствора антрацена в ацетонитриле с массовой концентрация антрацена 5 мг/дм³
- 5 см³ ГСО состава раствора антрацена в ацетонитриле с массовой концентрацией 0,200 мг/см³ помещают в мерную колбу вместимостью 200 см³ и доводят содержимое колбы до метки ацетонитрилом.

Погрешность приготовления раствора – 2,5 %.

- А.2.2 Приготовление контрольных растворов хлористого калия
- А.2.2.1 Приготовление раствора хлористого калия с массовой концентрацией 10 мг/дм³.
- 1 см³ ГСО состава раствора хлорид-ионов пипеткой вместимостью 1 см³ переносят в мерную колбу вместимостью 1000 см³ и доводят содержимое колбы до метки деионизованной водой.

Погрешность приготовления раствора – 1,8 %.

- A.2.2.2 Приготовление контрольного раствора хлористого калия с массовой концентрацией 1 мг/дм³.
- 10 см^3 раствора хлорид-ионов, приготовленного по A.2.2.1, пипеткой вместимостью 10 см^3 переносят в мерную колбу вместимостью 100 см^3 и доводят содержимое колбы до метки деионизованной волой.

Погрешность приготовления раствора – 1,9 %.

приложение Б

ПРОТОКОЛ ПОВЕРКИ

(рекомендуемый)

	хроматограф жидко	стныи		
Зав. №				
Принадлежит				
ИНН владельца	- 			
Дата выпуска				
Дата поверки		_		
Условия поверки:				
	нощего воздуха°(
атмосферное давлен	иекПа	a;		
	тность %			
Документ, по которому п				
Средства поверки Результаты внешнего осм				
Результаты внешнего осм	отра и опробования	· · · · · · · · · · · · · · · · · · ·		
D	ПО			
Результаты проверки соо	тветствия ПО			
O	Amanua Amarania		AARA AMBIIAMA	
Определение	уровня флуктуационні	ых шумов и дрейфа нулег	вого сигнала	
Допускаемое значе-	Результат определе-	Допускаемое значе-	Результат опреде-	
ние дрейфа нулевого	ния значения	ние уровня флуктуа-	ления уровня	
сигнала, не более	дрейфа нулевого сиг-	ционных шумов, не	флуктуационных	
	нала	более	шумов	
	Определение предел	а детектирования		
Допускаемое значение		Результат определ	пения предела	
вания, не	• • •	детектирования		
Исходные данные для ра	счета предела детектиг	ования:		
Значение шума (размах ц	цумовой полосы):			
·	• /			
Среднее значение площа	ди пика (S):			
Масса контрольного веш	ества (G)			
V - скорость потока (рас	ход) элюента, см ³ /мин			

Определение	относительного	СКО	выходного	сигнала	(S_r)	И	относительного	изменения	вы-
ходного сигна	ала (δ) за 4 часа н	епрері	ывной работ:	ы.					

	1	
N	Время удерживания (t)	Площадь пика (S)
№ измерения		
1.		
2.		
3.		
4.		· · · · · · · · · · · · · · · · · · ·
5.		
δ		
Серия измерений	2	
N.	Время удерживания (t)	Площадь пика (S)
№ измерения		
<u>1.</u>		
2.		
Результаты опре		О выходного сигнала (по времени удержи ия)
Допускаемое за	начение (St), %, не более	Результат определения значения (St), %
	еделения относительного из пи ние (б), %, не более	менения выходного сигнала (б) по площади ка Результат определения значения (б), %