Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева" ФГУП "ВНИИМ им. Д.И. Менделеева"

УТВЕРЖДАЮ И.о. тенерального директора ФГУП ВНИНАТА Д.И. Менделеева" А.Н. Пронин ноября 5 2020 г. HH 7809022 опотичения научно-и

Государственная система обеспечения единства измерений

Тестеры АХТ-1553

Методика поверки МП 2064-0154-2020

Руководитель лаборатории ФГУП "ВНИИМ им. Д.И Менделеева" В.П. Пиастро "_06 ⁴ ___ноября_ 2020 г.

Санкт-Петербург 2020 г.

Настоящая методика поверки распространяется на тестеры AXT-1553 (далее - тестеры), изготавливаемые ООО НТФ "АСД", С.-Петербург и устанавливает периодичность, объем и порядок первичной и периодической поверки.

При пользовании настоящей методикой поверки целесообразно проверить действие ссылочных документов по соответствующему указателю стандартов, составленному по состоянию на 1 января текущего год и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящей методикой следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

При проведении поверки необходимо использовать руководство по эксплуатации тестеров и настоящую методику поверки.

Методикой поверки не предусматривается возможность проведения периодической поверки отдельных измерительных каналов (ИК).

Вместе с тестером поставляется комплект эксплуатационной документации.

1. ОПЕРАЦИИ ПОВЕРКИ

 При проведении поверки устройства должны быть выполнены операции, указанные в таблице 1. Таблица 1

Наименование операций	Номер пункта методики поверки	Проводится	при поверке
		первичной	периодической
Внешний осмотр	7.1	да	да
Опробование	7.2	да	да
Проверка диапазонов и определение погрешностей тестера	7.3	да	да
Проверка соответствия идентификационным данным	8	да	да
Оформление результатов поверки	9	да	да

2. СРЕДСТВА ПОВЕРКИ

2.1. При проведении поверки применяются средства измерений, приведенные в таблице 2. Таблица 2 – Перечень основных средств измерений, применяемых при поверке.

Hamcanapanna	Tur	Метрологические	Регистрационный
Паименование	Тип	характеристики	номер в ФИФ
Магазин сопротивления	P4831	от 10 ⁻² до 10 ⁶ Ом, кл. 0,02	38510-08
Калибратор универсальный	H4-17	предел 2 В, ±(0,02%Ux +0,02%Uk)	46628-11
Магазин затуханий	M3-50-2	от 0 до 50 МГц, от 0 до 120 дБ, 75 Ом, ±0,2 дБ	05783-76
Мультиметр	3458A	от 100 мВ до 10 В, ±(1,0 %Ux + 0,01 % Uk),	25900-03

Вспомогательные средства измерений:

- гигрометр ВИТ 2, диапазон измерения влажности от 0 до 100 % при температуре от 15 до 40 °C;

- барометр – анероид БАММ, диапазон измерений от 610 до 790 мм рт.ст.

Примечания:

1. Все перечисленные средства измерений должны быть технически исправны и своевременно поверены.

2. Допускается применение средств поверки, не приведенных в перечне, но обеспечивающих определение (контроль) метрологических характеристик поверяемых средств измерений с требуемой точностью с запасом не менее 80 %.

3. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К поверке тестеров допускаются лица, изучившие руководство по эксплуатации и настоящую методику, освоившие работу с тестером и используемыми эталонами и допущенные к работе в качестве поверителей.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1. При выполнении операций поверки тестеров должны соблюдаться требования техники безопасности, регламентированные:

-Руководством по эксплуатации устройства;

-"Правилами технической эксплуатации электроустановок потребителей" и "Правилами техники безопасности при эксплуатации электроустановок потребителей", ГОСТ 12.2.007.0-75, ГОСТ 12.1.019-79, ГОСТ 12.2.091-2002.

5. УСЛОВИЯ ПОВЕРКИ

5.1. Условия поверки:

- диапазон температуры окружающего воздуха, °С..... от +15 до +25
- относительная влажность воздуха, %.....от 10 до 80

- атмосферное давление, кПаот 84 до 106

6. ПОДГОТОВКА К ПОВЕРКЕ

6.1. Перед началом поверки следует изучить:

- руководство по эксплуатации тестеров;

- руководства по эксплуатации эталонов и других технических средств, используемых при поверке;

- настоящую методику поверки.

6.2. Перед проведением поверки тестеров средства поверки и вспомогательное оборудование должны быть подготовлены к работе в соответствии с указаниями эксплуатационной документации.

7. ПРОВЕДЕНИЕ ПОВЕРКИ

7.1. Внешний осмотр и проверка документации

7.1.1. При проведении внешнего осмотра проверить отсутствие механических повреждений.

7.1.2. Тестеры, внешний вид которых не соответствует требованиям технической документации, к поверке не допускаются.

7.1.3. Проверка документации.

Проверить наличие следующих документов:

- эксплуатационной документации на тестеры;

- технической документации и свидетельств о поверке эталонных средств измерений, используемых при поверке тестеров.

7.2 Опробование.

- подключить магазин сопротивления P4831 к разъему TEST на панели основного блока тестера;

- установить на магазине сопротивления значение R1 = 0,0 Ом;

- на экране встроенного дисплея тестера открыть приложение «Метрология» и активиро-

вать кнопку «Измерить» в группе «Измерение активного сопротивления»

- зафиксировать значение измеренного сопротивления R1 изм.

Опробование признается успешным, если значение измеренного сопротивления лежит в пределах \pm 1,0 Ом.

7.3 Проверка диапазонов и определение погрешностей тестера

7.3.1 Проверка диапазонов и определение абсолютной погрешности тестера в режиме измерений активного сопротивления линии передачи данных.

- собрать схему в соответствии с рисунком 1;

Р4831- магазин сопротивления Р4831

Рисунок 1 – Схема подключения тестера при измерении активного сопротивления

- последовательно устанавливать на магазине сопротивления значения R_i в соответствии с таблицей 3;

- на экране встроенного дисплея тестера в приложении «Метрология» активировать кнопку «Измерить» в группе «Измерение активного сопротивления» и фиксировать значения измеренного сопротивления R_{i изм};

- для каждого установленного значения R_i вычислять абсолютную погрешность тестера в режиме измерений активного сопротивления по формуле:

$$\Delta R_i = (R_{i \text{ M3M}} - R_i) \quad (OM)$$

- результаты занести в таблицу 3.

Диапазон измерений, Ом	Установленное значение R _i , Ом	Результат измерений R _{i изм} , Ом	Абсолютная погрешность ΔR_{i} , Ом	Пределы допускаемой абсолютной погрешности, ∆R _{пред} = ±(0,01R + 0,001Rп), Ом
	0,0			±1,0
от 0 то 1000	3,0			±1,03
010д01000	200,0			±3,0
	1000,0			±11,0
apr	10000,0			±200,0
то 100000	50000,0			±600,0
до 100000	100000,0			±1100,0

Таблица 3 – Режим измерений активного сопротивления

Тестер в режиме измерений активного сопротивления считается прошедшим проверку с положительными результатами, если все полученные значения абсолютной погрешности ΔR_i не выходят за допускаемые пределы ΔR_{npeq} .

7.3.2 Определение абсолютной погрешности тестера в режиме воспроизведения напряжения переменного тока.

7.3.2.1 Определение абсолютной погрешности тестера в режиме воспроизведения напряжения переменного тока (генератором основного блока).

- собрать схему в соответствии с рисунком 2;

Н4-17 – калибратор универсальный Н4-17

3458А – мультиметр 3458А

НКУ – нагрузочно-коммутационное устройство (из комплекта тестера)

Рисунок 2 – Схема подключения тестера при воспроизведении напряжения переменного тока (генератором основного блока)

- на экране встроенного дисплея тестера в приложении «Метрология» в списке "Выбор генератора" задать значение "Основной";

- на экране встроенного дисплея в группе «Воспроизведение напряжения» задать значение частоты выходного сигнала генератора равным F = 1000 кГц (установлено по умолчанию) и активировать кнопку «Выдать»;

- фиксировать показание мультиметра 3458A U_i, после чего отключить вход мультиметра от AXT-1553 и подключить к выходу калибратора универсального H4-17;

- регулируя выходное напряжение переменного тока калибратора H4-17 на частоте 1 МГц добиться, чтобы показания мультиметра совпали с U_i (разновременное компарирование,

мультиметр 3458А – нуль-индикатор) и фиксировать значение выходного напряжения калибратора U_{і воспр};

результаты заносить в таблицу 4;

- вычислить абсолютную погрешность тестера в режиме воспроизведения напряжения переменного тока по формуле:

$$\Delta U_i = (U_{i \text{ BOCH}} - U) \tag{B}$$

и занести результаты в таблицу 4.

Таблица 4 – Режим воспроизведения напряжения переменного тока (генератором основного блока тестера)

Установл дисплее п выходного U, B	иенные на параметры напряжения F, МГц	Результат на H4-17 U _{і воспр} , В	Абсолютная погрешность воспроизведения ΔU_i , В	Пределы допускаемой абсолютной погрешности $\Delta U_{пред}$, В
1,0	1,0			$\pm 0,008$

Тестер в режиме воспроизведения напряжения переменного тока (генератором основного блока) считается прошедшим проверку с положительными результатами, если полученное значение абсолютной погрешности ΔU_i не выходит за допускаемые пределы $\Delta U_{\text{пред}}$.

7.3.2.2 Определение абсолютной погрешности тестера в режиме воспроизведения напряжения переменного тока (генератором блока удаленного трансмиттера).

- собрать схему в соответствии с рисунком 3;

- на экране встроенного дисплея тестера в приложении «Метрология» в списке "Выбор генератора" задать значение "Удаленный";

- на экране встроенного дисплея в группе «Воспроизведение напряжения» задать значение частоты выходного сигнала генератора равным F = 1000 кГц (установлено по умолчанию) и активировать кнопку «Выдать»;

Н4-17 – калибратор универсальный Н4-17 3458А – мультиметр 3458А

НКУ – нагрузочно-коммутационное устройство (из комплекта тестера)

Рисунок 3 – Схема подключения тестера при воспроизведении напряжения переменного тока (генератором блока удаленного трансмиттера)

 фиксировать показание мультиметра 3458А U_i, после чего отключить вход мультиметра от АХТ-1553 и подключить к выходу калибратора универсального H4-17;

регулируя выходное напряжение переменного тока калибратора Н4-17 на частоте 1 МГц добиться, чтобы показания мультиметра совпали с U_i (разновременное компарирование, мультиметр 3458А – нуль-индикатор) и фиксировать значение выходного напряжения калибратора U_{i воспр};

результаты заносить в таблицу 5;

- вычислять абсолютную погрешность тестера в режиме воспроизведения напряжения переменного тока по формуле:

$$\Delta U_i = (U_{i \text{ bocnp}} - U) \tag{B}$$

Таблица 5 –	Режим воспроизведения напряжения переменного тока
	(генератором блока удаленного трансмиттера)

Установ дисплее выходного U, B	ленные на значения напряжения F, МГц	Результат на Н4-17 U _{і воспр} , В	Абсолютная погрешность воспроизведения ΔU_i , В	Пределы допускаемой абсолютной погрешности $\Delta U_{пред}, B$
1,0	1,0			±0,008

Тестер в режиме воспроизведения напряжения переменного тока (генератором блока удаленного трансмиттера) считается прошедшим проверку с положительными результатами, если полученное значение абсолютной погрешности ΔU_i не выходит за допускаемые пределы ΔU_{пред}.

7.3.3 Проверка диапазона и определение абсолютной погрешности тестера в режиме измерений напряжения переменного тока.

собрать схему в соответствии с рисунком 4;

Н4-17 – калибратор универсальный Н4-17

Рисунок 4 - Схема подключения тестера при измерении напряжения переменного тока

- последовательно устанавливать на выходе калибратора H4-17 значения напряжения U_i с частотой 1 МГц в соответствии с таблицей 6;

- на экране встроенного дисплея тестера в приложении «Метрология» активировать кнопку "Измерить" в группе "Измерение напряжения" и фиксировать измеренные значения напряжения U_{i изм};

- результаты заносить в таблицу 6;

- для каждого установленного значения напряжения вычислять абсолютную погрешность тестера в режиме измерений напряжения переменного тока по формуле:

$$\Delta U_i = (U_{i \text{ M3M}} - U_i) \tag{B}$$

- результаты заносить в таблицу 6.

Установло выходе кал H4-17 зн	енные на ибратора ачения	Результат измерений	Абсолютная погрешность	Пределы допускаемой абсолютной погрешности
		U _{і изм} , В	$\Delta U_i, B$	$\Delta U_{nped} =$
U _i , B	F, МГц			$=\pm(0,0060+0,0020\pi),$ B
0,10				±0,0026
0,25				±0,0035
0,50	1,0			$\pm 0,0050$
0,75				±0,0065
1,00				$\pm 0,0080$

Таблица 6 – Режим измерений напряжения переменного тока

Тестер в режиме измерений напряжения переменного тока считается прошедшим проверку с положительными результатами, если все полученные значения абсолютной погрешности ΔU_i не выходят за допускаемые пределы ΔU_{npeg} .

7.3.4 Проверка диапазона и определение абсолютной погрешности тестера в режиме определения вносимых линией потерь.

7.3.4.1 Проверка диапазона и определение абсолютной погрешности тестера в режиме определения вносимых линией потерь (с генератором основного блока).

- собрать схему в соответствии с рисунком 5;

- на экране встроенного дисплея тестера в группе "Воспроизведение напряжения" в списке "Выбор генератора" задать значение "Основной блок";

- установить на экране параметры напряжения переменного тока, воспроизводимого генератором основного блока – 1 В (скз), частота 1 МГц;

- последовательно устанавливать на магазине МЗ-50-2 значения К_i в соответствии с таблицей 7;

- на экране встроенного дисплея тестера активировать кнопку «Старт» в группе «Тест Кроссовера/Вносимых потерь» и фиксировать значения К_{і изм};

- для каждого установленного значения К_i вычислять погрешность тестера в режиме определения вносимых потерь по формуле:

$$\Delta K_i = (K_{i \mu_{3M}} - K_i) \qquad (\pi E)$$

- результаты заносить в таблицу 6.

МЗ-50-2– магазин затуханий МЗ-50-2

НКУ – нагрузочно-коммутационное устройство (из комплекта тестера)

Рисунок 5 - Схема подключения тестера при определении вносимых потерь (с генератором основного блока).

Таблица 7 – Режим определения вносимых потерь

Установленные на M3-50-2 значения К _i , дБ	Показания тестера К _{і изм} , дБ	Абсолютная погрешность определения вносимых потерь $\Delta K_i, дБ$	Пределы допускаемой абсолютной погрешности ΔК _{пред} , дБ
0,0			
-3,0			
-6,0			
-12,0			±1,0
-18,0			
-24,0			
-32,0			

(с генератором основного блока тестера)

Тестер в режиме определения вносимых потерь (с генератором основного блока) считается прошедшим проверку с положительными результатами, если все полученные значения абсолютной погрешности ΔK_i не выходят за допускаемые пределы ΔK_{npeg} .

7.3.4.2 Проверка диапазона и определение абсолютной погрешности тестера в режиме определения вносимых линией потерь (с генератором блока удаленного трансмиттера).

- собрать схему в соответствии с рисунком 6;

- на экране встроенного дисплея тестера в группе "Воспроизведение напряжения" в списке "Выбор генератора" задать значение "Блок удаленного трансмиттера";

- установить на экране встроенного дисплея тестера параметры напряжения переменного тока, воспроизводимого генератором блока удаленного трансмиттера– 1 В (скз), частота 1 МГц;

- последовательно устанавливать на магазине МЗ-50-2 значения K_i в соответствии с таблицей 8;

- на экране встроенного дисплея тестера активировать кнопку «Старт» в группе «Тест Кроссовера/Вносимых потерь» и фиксировать значения К_{і изм};

- для каждого установленного значения К_і вычислять погрешность

тестера в режиме определения вносимых потерь по формуле:

$$\Delta K_i = (K_{i \mu_{3M}} - K_i) \qquad (дE)$$

- результаты заносить в таблицу 8.

МЗ-50-2- магазин затуханий МЗ-50-2

НКУ – нагрузочно-коммутационное устройство (из комплекта тестера)

Рисунок 6 - Схема подключения тестера при определении вносимых потерь (с генератором блока удаленного трансмиттера)

Таблица 8 – Режим определения вносимых потерь (с генератором блока удаленного трансмиттера)

Установленные на M3-50-2 значения К _i , дБ	Показания тестера К _{і изм} , дБ	Абсолютная погрешность определения вносимых потерь $\Delta K_i, дБ$	Пределы допускаемой абсолютной погрешности ΔК пред, дБ
0,0			
-3,0			
-6,0			
-12,0			±1,0
-18,0			
-24,0			
-32,0			

Тестер в режиме определения вносимых потерь (с генератором блока удаленного трансмиттера) считается прошедшим проверку с положительными результатами, если все полученные значения абсолютной погрешности ΔК_i не выходят за допускаемые пределы ΔК_{пред}.

8. ПРОВЕРКА СООТВЕТСТВИЯ ПО ИДЕНТИФИКАЦИОННЫМ ДАННЫМ

Проверки проводятся в соответствии с требованиями Р 50.2.077-2014.

Проверка идентификационных данных встроенного ПО выполняется в следующей последовательности:

- включить питание основного блока Тестера АХТ-1553;

- дождаться загрузки программного обеспечения и появления на экране тестера «Домашнего экрана» (рисунок 7);

- выполнить «смахивание вниз» в верхней части экрана (в области панели состояния);

На экране появится панель (рисунок 8) с ползунком регулировки яркости, кнопкой выключения в правом углу, а также номером версии и цифровым идентификатором ПО в нижней части (рисунок 9).

Рисунок 7 - Домашний экран Рисунок 8 - Панель регулировки яркости и версии ПО

Рисунок 9 - Окно идентификации ПО (увеличеннный масштаб)

Результат подтверждения соответствия программного обеспечения считается положительным, если полученные идентификационные данные (идентификационный номер и цифровой идентификатор ПО) соответствуют идентификационным данным, указанным в разделе "Программное обеспечение" описания типа средства измерений (таблица 9).

Таблица 9

Идентификационные данные (признаки)	Значения
Идентификационное наименование	AXT-1553
Номер версии (идентификационный номер)	Не ниже 1.4.0
Цифровой идентификатор (алгоритм MD5)	1bf6e69c

Результаты поверки признаются положительными при положительных результатах проверок по п.п. 7.3 и 8.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

9.1 При положительных результатах поверки тестера оформляется свидетельство о поверке. К свидетельству прилагаются протоколы с результатами поверки.

9.2 При отрицательных результатах поверки тестера свидетельство о предыдущей поверке аннулируется и выдается извещение о непригодности.

9.3 Документы по результатам поверки оформляются в соответствии с установленными требованиями к применению.

9.4 Знак поверки наносится на боковую панель основного блока тестера.