"УТВЕРЖДАЮ"

Заместитель директора по производственной метрологии ФГУП "ВНИИМС" Н.В. Иванникова 2020 г.

Государственная система обеспечения единства измерений.

Хроматограф газовый Agilent 6850A

МЕТОДИКА ПОВЕРКИ

МП 205-11-2020

Настоящая методика поверки распространяется на хроматограф газовый Agilent 6850A заводской № CN11233005 и устанавливает методы и средства его первичной и периодической поверки.

Межповерочный интервал – 1 год.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 - Операции поверки

No		Номер	Проведение операций поверки при	
п/п	Наименование операций	пункта методики	первичной поверке	периодичес кой поверке
1	Внешний осмотр.	6.1	да	да
2	Опробование:	6.2		
	 проверка соответствия ПО 	6.2.1		
	 – определение уровня флуктуационных шумов нулевого сигнала 	6.2.2	да	да ¹⁾
	 определение предела детектирования 	6.2.3	да	да ¹⁾
3	Определение метрологических характеристик:	6.3	да	да ¹⁾
	определение относительного среднего квадратического отклонения выходных сигналов	6.3.1	да	да ¹⁾
	 определение относительного изменения выходных сигналов за 8 часов непрерывной работы 	6.3.2	да	да ¹⁾
	- определение показателей точности результатов измерений	6.4	нет	да ²⁾

Примечания:

2. СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки применяют средства, указанные в таблице 2.

¹⁾ При отсутствии НД на методики измерений (МИ), утвержденных в установленном порядке по ГОСТ Р 8.563-09.

²⁾При наличии НД на МИ.

Таблица 2

	Наименование, тип, марка			
№ п/п	тлаименование, тип, марка эталонного средства измерений или вспомогательного средства поверки.	Номер пункта МП	ГОСТ, ТУ или основные технические и (или) метрологические характеристики	
1	СО состава гексадекана	5.1	ГСО 7289-96	
2	Весы лабораторные	5.1	ГОСТ OIML R 76-1-2011 с пределом взвешивания 20 или 200 г	
3	Микрошприцы "Газохром - 101"	5.1	Вместимостью 1·10 ⁻³ см ³ , ТУ25.05-2152-75.	
4	Микрошприцы "МШ-10"	5.1	Вместимостью 10·10 ⁻³ см ³ , ТУ 4321-011- 12908609-08	
5	Колбы мерные 2-100-2	5.1	ΓΟCT 1770-74	
6	Пипетки 6-2-2	5.1	ГОСТ 29227-91	
3	Термогигрометр TESTO мод. 608-Н1	4.1	Диапазон измерений относительной влажности от 15 до 85 %. Абсолютная погрешность ± 3 %. Диапазон измерений температуры от 0 °C до плюс 50 °C, абсолютная погрешность $\pm 0,5$ °C	
4	Барометр-анероид БАММ-1	4.1	Диапазон измерений от 80 до 120 кПа, абсолютная погрешность ±200 Па.	
5	Секундомер	6.2-6.3	Абсолютная погрешность ± 0,1 с	

^{2.2} Допускается применение других средств поверки, имеющих метрологические и технические характеристики не хуже указанных в таблице 2.

2.3 Все средства поверки должны иметь действующие свидетельства о поверке, а ГСО – действующие паспорта.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 К проведению поверки допускают лиц, достигших 18-летнего возраста, прошедших производственное обучение, проверку знаний и инструктаж по безопасному обслуживанию хроматографа, имеющих квалификацию не ниже лаборанта, изучивших настоящую инструкцию, ознакомленных с руководством по эксплуатации.
- 3.2 Помещение, в котором проводится поверка, должно быть оборудовано приточно-вытяжной вентиляцией и удовлетворять требованиям ГОСТ 12.1.005-88.

4. УСЛОВИЯ ПОВЕРКИ

4.1 При проведении поверки соблюдают следующие условия:

- температура окружающего воздуха, °С

от плюс 15 до плюс 25

- относительная влажность, %

от 5 до 90

- атмосферное давление, кПа

от 84 до 106

5. ПОДГОТОВКА К ПОВЕРКЕ

- 5.1 Перед проведением поверки выполняют следующие подготовительные работы:
- хроматограф и внешний компьютер подготавливают к работе в соответствии с инструкцией по эксплуатации.
- контрольные растворы гексадекана в н-гексане с массовой концентрацией гексадекана в диапазоне (100 -250) мг/дм³ приготавливают согласно Приложению А;

6. ПРОВЕДЕНИЕ ПОВЕРКИ

- 6.1 Внешний осмотр.
- 6.1.1 При внешнем осмотре устанавливают:
- соответствие комплектности хроматографа паспортным данным;
- четкость маркировки, включая наличие на хроматографе обозначения (наименования) и заводского номера;
- отсутствие внешних повреждений и дефектов, влияющих на работоспособность хроматографа;
- 6.1.2 Хроматограф считается выдержавшим внешний осмотр, если он соответствует всем требованиям, перечисленным в п. 6.1.1.
 - 6.2 Опробование

При опробовании проводят проверку соответствия программного обеспечения, определение уровня флуктуационных шумов нулевого сигнала и предела детектирования.

6.2.1 Проверка соответствия программного обеспечения.

Запускают ΠO , открывают вкладку HELP INFO и считывают идентификационные данные ΠO .

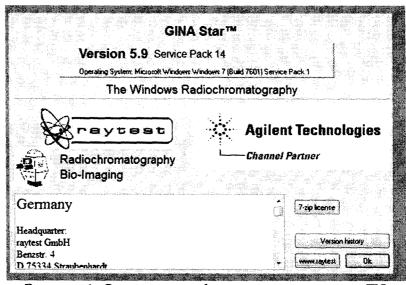


Рисунок 1- Окно с идентификационным номером ПО

Для расчета контрольной суммы по алгоритму MD5 используется программа HashTab версии 4.0.0 или выше или аналогичная. При использовании программы HashTab руководствуются следующим порядком действий:

- в папке, в которой находятся файлы программы, находят файл gina_nt.exe и устанавливают на него курсор;
 - нажимают правую кнопку мыши и выбирают пункт «свойства»;
 - в открывшемся окне выбирают вкладку «Хэш-сумма файлов», в которой выбирают строку MD5;

- из указанной строки считывают значение хэш-суммы (цифрового идентификатора ΠO).

Результат проверки соответствия программного обеспечения считают положительным, если идентификационные данные соответствуют указанным в таблице 3.

Таблица 3 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	
Наименования программного обеспечения	GINA Star	
Идентификационное наименование ПО	gina_nt.exe	
Номер версии (идентификационный номер) ПО	не ниже 5.9 Service Pack 14	
Цифровой идентификатор ПО	C928DFBAA981244EDD1F0DC96A63A58D	
Алгоритм вычисления	MD5	

- 6.2.2 Определение уровня флуктуационных шумов нулевого сигнала
- 6.2.2.1 Уровень флуктуационных шумов нулевого сигнала хроматографа газового Agilent 6850A с пламенно-ионизационным детектором (далее ПИД) определяют при условиях, указанных в п.4. Настройку параметров хроматографа газового и детектора проводят в соответствии с руководством по их эксплуатации.
- 6.2.2.2 После выхода хроматографа на режим регистрируют нулевой сигнал на самом чувствительном диапазоне в течение 1 часа.
- 6.2.2.3 Уровень флуктуационных шумов нулевого сигнала ($\Delta_{\rm X}$) принимают равным максимальному значению амплитуды (размаха: peak to peak) повторяющихся колебаний нулевого сигнала с периодом не более $20~{\rm c}$.
 - 6.2.3 Определение предела детектирования
- 6.2.3.1 Определение предела детектирования выполняют с использованием контрольных растворов гексадекана в н-гексане приготовленных по методике, являющейся Приложением А к настоящей методике поверки.
- 6.2.3.2 Вводят в инжектор-испаритель вручную микрошприцом 1 мкл контрольного раствора.
- 6.2.3.3 Измеряют уровень флуктуационных шумов нулевого сигнала на участке хроматограммы, предшествующем выходу контрольного вещества. Уровень флуктуационных шумов ($\Delta_{\rm X}$) принимают равным максимальной амплитуде повторяющихся колебаний нулевого сигнала с периодом не более 20 с (при этом единичные выбросы не учитываются).
 - 6.2.3.4 Регистрируют выходной сигнал площадь пика контрольного вещества S .
 - 6.2.3.5 Предел детектирования (Стіп) в г /с вычисляют по формуле:

$$C_{\min} = \frac{2 \cdot \Delta_{\mathcal{X}} \cdot G}{S \cdot k} \quad , \tag{1}$$

где $\, \Delta_{\, {
m X}} \,$ – значение уровня флуктуационных шумов нулевого сигнала, pA

- G масса вещества, г; $G = C \cdot V \cdot 10^{-9} \cdot (C$ массовая концентрация контрольного вещества, мг/дм³, V объем пробы, мм³);
 - S среднее арифметическое значение площади пика, pA·c;
- k коэффициент деления потока, k=1, если проба подается без деления потока. Значения $\Delta_{\rm X}$ и \overline{S} могут измеряться в мкВ и мкВ·с или усл. ед. и усл. ед·с соответственно.
 - 6.3 Определение метрологических характеристик

- k коэффициент деления потока, k=1, если проба подается без деления потока. Значения Δ_X и \overline{S} могут измеряться в мкВ и мкВ·с или усл. ед. и усл. ед·с соответственно.
 - 6.3 Определение метрологических характеристик
- 6.3.1 Определение относительного среднего квадратичного отклонения выходного сигнала.
- 6.3.1.1 Определение относительного среднего квадратичного отклонения выходного сигнала выполняют при условиях, указанных в п.4 и в соответствии с требованиями руководства по эксплуатации хроматографа газового Agilent 6850A с ПИД. Измерения проводят после выхода хроматографа на режим.
- 6.3.1.2 Контрольную смесь вводят в хроматограф не менее 10 раз, измеряют значения выходных сигналов (времен удерживания и площадей пиков), вычисляют среднее арифметическое значение выходных сигналов (\overline{X}).
- 6.3.1.3 Относительное среднее квадратическое отклонение выходных сигналов площади пика δ_s и времени удерживания δ_t рассчитывают по формулам (2-3):

$$\delta_s = \frac{100}{\overline{S}} \cdot \sqrt{\frac{\sum_i \left(S_i - \overline{S}\right)^2}{n - 1}},\tag{2}$$

где S_i – *i*-тое значение площади пика;

 \overline{S} — среднее арифметическое значение площади пика;

n — число измерений.

$$\delta_t = \frac{100}{\bar{t}} \cdot \sqrt{\frac{\sum_i (t_i - \bar{t})^2}{n - 1}},\tag{3}$$

где t_i — *i*-тое значение времени удерживания;

 \bar{t} — среднее арифметическое значение времени удерживания;

n — число измерений.

- 6.3.2 Определение относительного изменения выходного сигнала за 8 часов непрерывной работы.
- 6.3.2.1 Проводят операции по п.6.3.1.2 Через 8 часов непрерывной работы хроматографа повторяют измерения по п.6.3.1.2 Относительное изменение выходного сигнала за 8 часов непрерывной работы δ_{τ} хроматографа рассчитывают по формуле (4):

$$\delta_{r} = \frac{\left|\overline{X}_{r} - \overline{X}\right|}{\overline{X}} \cdot 100, \tag{4}$$

- где \overline{X} среднее значение параметра выходного сигнала (площади пика) в серии экспериментов;
 - X_r среднее значение параметра выходного сигнала (площади пика) в серии экспериментов через 8 часов непрерывной работы.
- 6.3.3 Результаты поверки считают удовлетворительными, если полученные метрологические характеристики соответствуют характеристикам, указанным в описании

6.4 При проведении периодической поверки хроматографов, эксплуатируемых по НД на МИ, отвечающим требованиям ГОСТ 8.563-09, проверяют показатели точности результатов измерений в соответствии с процедурами и нормативами контроля, регламентированными в НД на МИ.

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты поверки хроматографа заносят в протокол в соответствие с приложением Б.
- 7.2 Положительные результаты поверки хроматографа оформляют выдачей свидетельства о поверке в соответствии с Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке (утв. приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. № 1815).
- 7.3 На хроматограф, не удовлетворяющий требованиям настоящей методики поверки, выдают извещение о непригодности с указанием причин в соответствии с Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке (утв. приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. № 1815).

7.4 Знак поверки наносится на боковую панель хроматографа в виде наклейки.

Начальник отдела 205 ФГУП «ВНИИМС»

С.В. Вихрова

Начальник сектора ФГУП «ВНИИМС»

О.Л. Рутенберг

Bux folge

Методика приготовления контрольных растворов

1 Средства измерений, посуда, реактивы

ГСО 7289-96 состава гексадекана;

Колбы мерные 2-100-2, ГОСТ 1770-74;

Пипетки 6-2-2, ГОСТ 29227-91.

г.

Весы лабораторные, ГОСТ OIML R 76-1-2011 с пределом взвешивания 20 или 200

2 Процедура приготовления растворов гексадекана в н-гексане

- 2.1 Приготовление контрольного раствора с массовой концентрацией гексадекана от $100 \, \mathrm{mr/дm^3}$ до $250 \, \mathrm{mr/дm^3}$.
- В бюкс, помещённый на чашку аналитических весов, вносят от 10 до 20 мг гексадекана.
- 2.2 Массу гексадекана (m) определяют по разности масс пустого бюкса (m_1) и бюкса с гексадеканом (m_2):

$$\mathbf{m} = \mathbf{m}_2 - \mathbf{m}_1$$

- 2.3 Пипеткой вместимостью 2 см³ добавляют в бюкс 2 см³ н-гексана. Переливают полученный раствор в мерную колбу вместимостью 100 см³. Повторяют операцию 2-3 раза для полного переноса контрольного вещества в колбу. Доводят объём раствора в колбе до метки н-гексаном.
 - 2.4 Массовую концентрацию гексадекана (с) рассчитывают по формуле:

$$c=\frac{m}{V_{100}},$$

где V_{100} – вместимость мерной колбы. V_{100} = 100 см³.

Контрольный раствор может храниться в герметично закрытом сосуде не более 30 дней.

Протокол поверки

Дата поверки:
Средство измерений: Хроматограф газовый Agilent 6850A, зав. № CN11233005.
Методика поверки: МП 205-11-2020 «Хроматограф газовый Agilent 6850A. Методика
поверки».
Вид поверки: Первичная / периодическая.
Средства поверки: ГСО 7289-96 состава гексадекана.
Условия поверки:
- температура окружающей среды °C;
– давление кПа;
- относительная влажность воздуха%.
Результаты поверки
1. Результаты внешнего осмотра: соответствуют / не соответствуют.
2. Результаты опробования:
- Соответствие программного обеспечения: соответствует / не соответствует;
 Уровень флуктуационных шумов нулевого сигнала А;
Предел детектирования по гексадекану г /с.
3. Результаты определения метрологических характеристик:
- Относительное среднее квадратическое отклонение выходных сигналов:
по площади пика%;
по времени удержания%;
- Относительное изменение выходных сигналов за 8 часов непрерывной
работы%.
Заключение:
Поверитель: