СОГЛАСОВАНО

Первый заместитель генерального

пиректора - заместитель по научной

работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов

2021 г.

Государственная система обеспечения единства измерений

Система измерительная СИ-1/Р-0475

Методика поверки

404.173 MΠ

СОДЕРЖАНИЕ

	ОБОЗНАЧЕНИЯ 3						
	общие положения	4					
1	ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ	4					
2	МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ	5					
	ПОВЕРКИ						
3	ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ	6					
4	ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ	6					
	ПРОВЕДЕНИЯ ПОВЕРКИ						
5	ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ	6					
6	ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ						
7	ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ						
8	ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ 7						
9	ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА	8					
	ИЗМЕРЕНИЙ						
10	ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ						
Ι	Триложение А	14					
Ι	Триложение Б	18					
Ι	Триложение В	22					
Ι	Триложение Г	23					

ОБОЗНАЧЕНИЯ

- МП методика поверки;
- ИК измерительный канал;
- СИ средство измерений;
- ПО программное обеспечение;
- МХ метрологические характеристики;
- ВП верхний предел диапазона измерений;
- ИВ измеренная величина;
- Н3 нормированное значение;
- ПИП первичный измерительный преобразователь;
- ТПР турбинный преобразователи расхода;
- ТС термопреобразователь сопротивления;
- РЭТ- рабочий эталон;
- РЭ руководство по эксплуатации;
- ТД техническая документация;
- ПК персональный компьютер.

ОБЩИЕ ПОЛОЖЕНИЯ

Настоящий документ «Система измерительная СИ-1/Р-0475. Методика поверки. 404.173 МП» распространяется на систему измерительную СИ-1/Р-0475 (далее – система), заводской номер 001, изготовленную фирмой ZF Luftfahrttechnik GmbH, Германия, и устанавливает порядок, методы и объем ее первичной и периодической поверок.

Необходимо обеспечение прослеживаемости поверяемой системы к государственным первичным эталонам единиц величин посредством использования аттестованных (поверенных) в установленном порядке средств поверки.

По итогам проведения поверки должна обеспечиваться прослеживаемость к ГЭТ 1-2018, ГЭТ 149-2010, ГЭТ 14-2014, ГЭТ 118-2017, ГЭТ 43-2013, ГЭТ 23-2010, ГПЭ-1.

Методика поверки реализуется посредством методов прямых измерений и косвенных измерений.

Интервал между поверками – 1 год.

1 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

- 1.1 Поверка ИК системы осуществляется двумя способами:
- комплектным способом с оценкой МХ ИК в целом (по результатам сквозной градуировки);
- поэлементным способом с оценкой МХ ИК по МХ элементов, входящих в состав ИК. *Примечание* Перечень документов на поверку элементов ИК приведен в приложении Д.
 - 1.2 При поверке системы выполнить операции, приведенные в таблице 1.

Таблица 1

	Номер	Проведение операции при		
Наименование операции	пункта МП	первичной поверке (по- сле ремонта)	периоди- ческой поверке	
1 Внешний осмотр	7.1	да	да	
2 Опробование	7.2	да	да	
3 Определение метрологических характеристик	7.3	да	да	
3.1 Определение погрешностей измерений давления жидкостей ^{1), 2)}	7.3.1	да	да	
3.2 Определение погрешностей измерений темпе-	7.3.2	да	да	
ратуры жидкостей, измеряемой термопреобразователями сопротивления (TC), и сопротивления постоянному току, соответствующего значениям температуры $^{1),2)}$				
3.3 Определение погрешностей частоты вращения приводов и измерений частоты электрических сигналов, соответствующей значениям частоты вращения приводов 1)	7.3.3	да	да	
3.4 Определение погрешности измерений расхода (прокачки) масла ²⁾	7.3.4	да	да	
3.5 Определение погрешности измерений крутящего момента силы 1)	7.3.5	да	да	
4 Идентификация ПО	7.4	да	да	
1) Поверка осуществляется комплектным способом 2) Поверка осуществляется поэлементным способом				

- 1.3 Допускается сокращенная поверка системы измерительной в соответствии с требованиями программ испытания изделий для измерительного контроля параметров, которых она предназначена.
- 1.4 Допускается независимая поверка каждого ИК, в том числе после ремонта (в объеме первичной), с обязательным указанием об этом в свидетельстве о поверке системы измерительной.

2 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

При проведении поверки должны применяться средства поверки, приведенные в таблице 2.

Таблица 2

- 2.2 Вместо указанных в таблице 2 допускается применять другие аналогичные средства поверки, обеспечивающие определение МХ системы с требуемой точностью.
- 2.3 Применяемые средства поверки должны быть исправны, поверены в соответствии с требованиями приказа Минпромторга России № 2510 от 31.07.2020, иметь действующие свидетельства о поверке (отметки в формулярах или паспортах) и (или) запись во ФГИС «Аршин».

3 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

- 3.1 К поверке допускаются лица, аттестованные в качестве поверителя, изучившие РЭ системы, знающие принцип действия используемых СИ, имеющие навыки работы на персональном компьютере.
- 3.2 Поверитель должен пройти инструктаж по технике безопасности (первичный и на рабочем месте) в установленном в организации порядке и иметь удостоверение на право работы на электроустановках с напряжением до 1000 В с группой допуска по электробезопасности не ниже 2.

4 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 4.1 При проведении поверки необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и «Правилами техники безопасности при эксплуатации электроустановок потребителей» (изд.3), а также изложенные в РЭ на приборы, в ТД на применяемые при поверке РЭТ и вспомогательное оборудование.
- 4.2 Любые подключения аппаратуры проводить только при отключенном напряжении питания системы.

5 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

- 5.1 Поверку проводить при следующих условиях (если не оговорено иное):
- температура окружающего воздуха, °С (К)......от 15 до 25 (от 288 до 298);
- относительная влажность воздуха при температуре 25 °C, % от 30 до 80;
- атмосферное давление, мм рт.ст. (кПа)......от 720 до 800 (от 96 до 106,7);
- частота переменного тока, Гцот 49,6 до 50,4.

П р и м е ч а н и е – При проведении поверочных работ условия окружающей среды средств поверки (РЭТ) должны соответствовать требованиям, указанным в их РЭ.

6 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 6.1 При внешнем осмотре установить соответствие системы следующим требованиям:
- комплектность согласно формуляру УРАБ.СИ-1/Р-0475.001ФО;
- маркировку согласно руководству по эксплуатации УРАБ.СИ-1/Р-0475.001 РЭ;
- наличие и сохранность пломб (согласно сборочным чертежам);
- герметичность линий измерения давлений.

СИ, входящие в состав системы, не должны иметь внешних повреждений, которые могут влиять на работу системы, при этом должно быть обеспечено: надежное крепление соединителей и разъемов, отсутствие нарушений экранировки кабелей, качественное заземление.

Результаты внешнего осмотра считать положительными, если выполняются вышеприведенные требования.

7 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНЙ

- 7.1 При подготовке к поверке провести следующие работы:
- проверить комплектность проектно-технологической и эксплуатационной документации системы;
- эталоны единиц величин, используемые при поверке, должны соответствовать требованиям Положения об эталонах единиц величин (постановление правительства РФ от 23.09.2010 N 734);

- проверить наличие сведений о результатах поверки в Федеральном информационном фонде средств измерений утвержденного типа, входящих в состав системы;
 - подготовить к работе все приборы и аппаратуру согласно их РЭ;
- собрать схемы поверки ИК, приведенные ниже, проверить целостность электрических пепей:
- обеспечить оперативную связь оператора у монитора с оператором, задающим контрольные значения эталонных сигналов на входе ИК;
 - включить вентиляцию и освещение в испытательных помещениях;
- включить питание ПИП и аппаратуры системы не менее чем за 30 мин до начала проведения поверки;
 - создать, проконтролировать и записать в протокол условия проведения поверки.

7.2 Опробование

Перед началом работ проверить оборудование и включить систему, руководствуясь документом УРАБ.СИ-1/P-0475.001 РЭ.

При опробовании проверить правильность функционирования ИК системы.

Для этого необходимо задать на входе ИК с помощью РЭТ физическую величину, соответствующую минимальному и максимальному значениям параметра контролируемого диапазона измерений. Оператору ПК проконтролировать измеренные системой значения единицы величины. Убедиться в правильности функционирования ИК.

Результаты опробования считать положительными, если измеренные значения единицы величины совпадают с заданными эталонными значениями в пределах допускаемой погрешности измерений ИК системы. В противном случае система бракуется и после выявления и устранения причины производится повторное опробование.

8 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

8.1 Идентификация ПО

Проверку идентификационных данных (признаков) метрологически значимой части ПО провести в соответствии с УРАБ 73.СТ. 126.00.00.000.

Убедиться в соответствии идентификационных признаков метрологически значимой части ПО данным, указанным в таблице 3.

В случае несоответствия идентификационных признаков данным, приведенным в таблице 3 ПО направляется для проведения настройки.

Таблица 3 - Идентификационные данные ПО

	Значение				
Наименование ПО	расчётных каналов, создавае- мых ПЛК, к системе визуали-	Файл скриптов расчёта мощно- стей загрузки левой и правой МСХ, валов несущего и хвосто- вого винтов			
Идентификационное наименование ПО	Tagname.x	00000034.dch			
Номер версии (идентификаци- онный номер) ПО	V. 1.0.17640	V. 1.0.17640			
Цифровой идентификатор ПО	3FA3A3FCD1292EB7304FECC D9BB032B3	305BF5687980648198FD7D556 EBAD555			

9 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ

- 9.3.1 Определение погрешностей измерений давления жидкостей
- 9.3.1.1 Погрешности измерений давления жидкостей определить одним из способов:
- комплектным способом (прямые измерения) с оценкой МХ по результатам сквозной поверки ИК в следующей последовательности:
- отсоединить вход ПИП давления (преобразователи давления измерительные АИР-10H, IFM PA 3021, IFM PA 3023) от магистрали давления испытательного стенда и соединить его с РЭТ давления (калибратор ИКСУ-260 с преобразователем давления эталонным ПДЭ-010) по схеме, приведенной на рисунке 1;
- провести градуировку ИК давления в диапазонах, указанных в таблице А.1 приложения А, по методике, приведенной в разделе 1 приложения Б;
- оценить МХ ИК давления в соответствии с алгоритмом, приведенным в разделе 2 приложения Б.
 - поэлементным способом (прямые измерения) ИК давления с оценкой МХ ИК по МХ элементов ИК в следующей последовательности:
- провести в аккредитованной на право поверки организации поверку ПИП (АИР-10Н;
 IFM PA 3021;
 IFM PA 3023) по утвержденным методикам поверки;
- подключить ИК без ПИП к РЭТ (калибратор ИКСУ-260) по схеме, приведенной на рисунке 2;
- провести градуировку ИК силы постоянного тока, соответствующего значениям давления, в диапазоне значений от 4 до 20 мА, по методике, приведенной в разделе 1 Приложения Б:
 - оценить МХ ИК в соответствии с алгоритмом, приведенным в разделе 2 Приложения Б.
- 9.3.1.2 Результаты поверки считать положительными, если значения погрешностей измерений давления жидкостей в заданных диапазонах измерений находятся в допускаемых пределах, указанных в графе 4 таблицы А.1 приложения А. В противном случае ИК бракуется и после выявления и устранения причины производится повторная поверка.

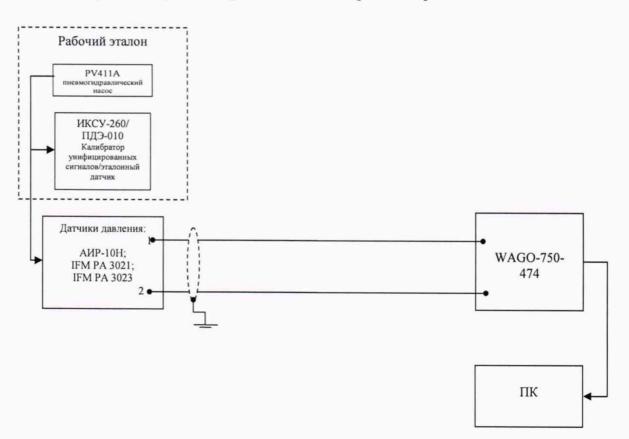


Рисунок 1 — Схема поверки ИК давления жидкостей РЭТ ИКСУ-260/ПДЭ-010

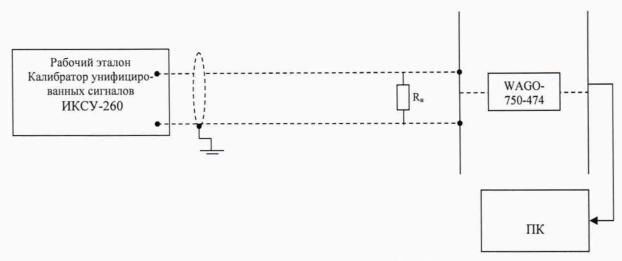


Рисунок 2 - Схема поверки поэлементным способом ИК давления рабочим эталоном ИКСУ-260

- 9.3.2 Определение погрешностей измерений температуры жидкостей, измеряемой ТС, и сопротивления постоянному току, соответствующего значениям температуры.
- 9.3.2.1 Погрешности измерений температуры жидкостей, измеряемой термопреобразователями сопротивления, определить одним из следующих способов:
- комплектным способом (прямые измерения) с оценкой МХ по результатам сквозной градуировки ИК в следующей последовательности:
- подключить ИК температуры к РЭТ (Термопреобразователь с унифицированным выходным сигналом ТСМУ-Ex-2221 и термостат «ЭЛЕМЕР-Т-150») по схеме, приведенным на рисунке 3;
- провести градуировку ИК температуры в диапазонах, указанных в таблице А.1 приложения А, по методике, приведенной в разделе 1 приложения Б;
 - оценить МХ ИК в соответствии с алгоритмом, приведенным в разделе 2 приложения Б.

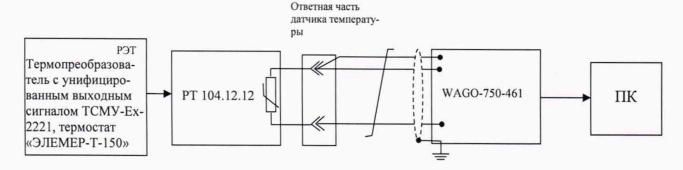


Рисунок 3 - Схема поверки ИК температуры, измеряемой ТС, РЭТ «Термостат «ЭЛЕМЕР-Т-150»»

- поэлементным способом (прямые измерения) с оценкой МХ ИК по МХ элементов ИК в следующей последовательности:
- провести в аккредитованной на право поверки организации поверку термопреобразователей сопротивления ТП-9021-21, TC1288/5 по МП ГОСТ 8.461-2009;
- подключить ИК без ПИП к РЭТ (калибратор ИКСУ-260) по схеме, приведенной на рисунке 4;
 - провести градуировку ИК температуры без ПИП по методике, приведенной в разделе 1
 - Приложения Б;
 - оценить МХ ИК в соответствии с алгоритмом, приведенным в разделе 2 приложения Б.

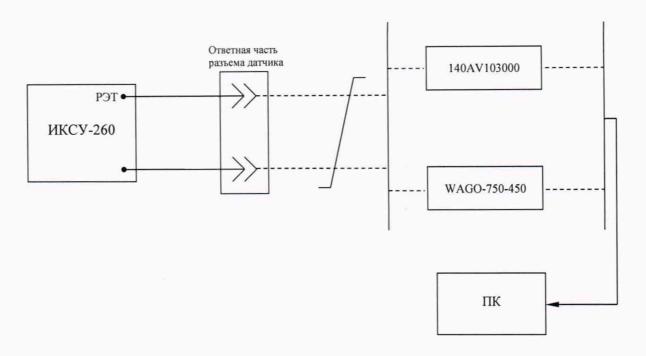


Рисунок 4 - Схема поверки ИК температуры без ПИП (ТП-9201-21, TC1288/5) РЭТ ИКСУ-260

- 9.3.2.2 Погрешности измерений ИК сопротивления постоянному току, соответствующего значениям температуры, измеряемой ТС, определить комплектным способом (прямые измерения) с оценкой МХ по результатам сквозной градуировки ИК в следующей последовательности:
- подключить ИК сопротивления постоянному току к РЭТ (калибратор ИКСУ-260) по схеме, приведенной на рисунке 5;

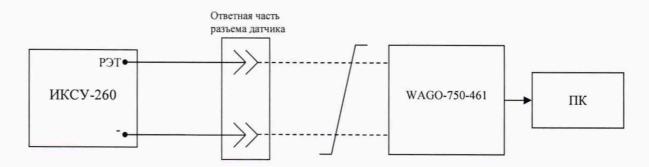


Рисунок 5 - Схема поверки ИК сопротивления постоянному току, соответствующего значениям температуры, РЭТ ИКСУ-260

- провести градуировку ИК сопротивления постоянному току по методике, приведенной в разделе 1 приложения Б;
 - оценить МХ ИК в соответствии с алгоритмом, приведенным в разделе 2 приложения Б.
- 9.3.2.3 Результаты поверки считать положительным, если значения погрешностей измерений температуры жидкостей, измеряемой термопреобразователями сопротивления, и сопротивления постоянному току, соответствующего значениям температуры в заданных диапазонах измерений, находятся в допускаемых пределах, указанных в графе 4 таблицы А.1 и в графе 6 таблицы А.2 приложения А. В противном случае ИК бракуется и после выявления и устранения причины производится повторная поверка.

- 9.3.3 Определение погрешностей измерений частоты вращения приводов и частоты электрических сигналов, соответствующих значениям частоты вращения приводов
- 9.3.3.1 Погрешности измерений частоты вращения приводов определить комплектным способом (прямые измерения) с оценкой МХ по результатам сквозной градуировки в следующей последовательности:
- на вал привода поверяемого ИК прикрепить светоотражающую метку для отсчитывания показаний с РЭТ (тахометр Testo 470) согласно схеме, приведенной на рисунке 6;
- провести градуировку ИК частоты вращения в диапазонах, указанных в таблице А.1 приложения А, по методике, приведенной в разделе 1 приложения Б;
 - оценить МХ ИК в соответствии с алгоритмом, приведенным в разделе 2 приложения Б.

Рисунок 6 - Схема поверки ИК частоты вращения приводов, РЭТ Testo 470

- 9.3.3.2 Погрешности измерений частоты электрических сигналов, соответствующей значениям частоты вращения приводов, определить комплектным способом (прямые измерения) с оценкой МХ по результатам сквозной градуировки ИК в следующей последовательности:
- подключить ИК частоты электрических сигналов с помощью жгута-переходника к РЭТ (генератор SFG-2004) согласно схеме, приведенной на рисунке 7;

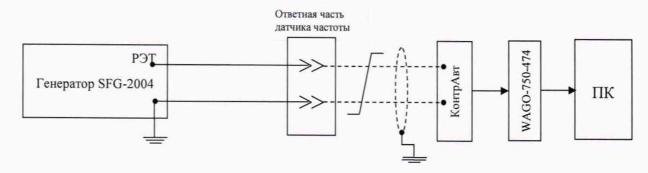


Рисунок 7 - Схема поверки ИК частоты электрических сигналов, соответствующей частоте вращения привода, РЭТ SFG-2004

- провести градуировку ИК частоты электрических сигналов, соответствующей значениям частоты вращения приводов, по методике, приведенной в разделе 1 Приложения Б, устанавливая с помощью РЭТ контрольные значения частоты электрического сигнала синусоидальной формы с амплитудой 10 В для измерительной схемы, приведенной на рисунке 7;
 - оценить МХ ИК в соответствии с алгоритмом, приведенным в разделе 2 приложения Б.

- 9.3.3.3 Результаты поверки считать положительными, если значения погрешностей измерений частоты вращения приводов и частоты электрических сигналов, соответствующих значениям частоты вращения приводов, в заданных диапазонах измерений находятся в допускаемых пределах, указанных в графе 4 таблицы А.1 и в графе 6 таблицы А.2 приложения А. В противном случае ИК бракуется и после выявления и устранения причины производится повторная поверка.
 - 9.3.4 Определение погрешностей расхода (прокачки) масла
- 9.3.4.1 Погрешности измерений расхода (прокачки) масла определить поэлементным способом (прямые измерения) с оценкой МХ ИК по МХ элементов следующей последовательности:
- провести поверку турбинных преобразователей расхода ТПР в аккредитованной на право поверки организации по документу ЛГФИ407221.034 МИ «Преобразователи расхода турбинные ТПР», утвержденному ГНИИ МО РФ 29 мая 2003 г.;
- отсоединить электрический кабель датчика ТПР от ИК и с помощью жгута-переходника подключить к этому кабелю РЭТ (генератор сигналов SFG-2004) по схеме, приведенной на рисунке 8;
- провести градуировку ИК расхода (прокачки) масла (без ПИП) по методике, приведенной в разделе 1 приложения Б;
 - оценить МХ ИК соответствии с алгоритмом, приведенным в разделе 2 приложения Б.
- 9.3.4.2 Результаты поверки считать положительными, если значения приведенной погрешности измерений (от H3) расхода (прокачки) масла в диапазоне от 24 до 240 л/мин, находятся в пределах ± 3.0 %. В противном случае ИК бракуется и после выявления и устранения причины производится повторная поверка.

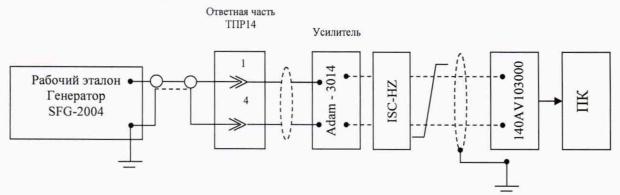


Рисунок 8 - Схема поверки ИК расхода (прокачки) масла без ПИП (ТПР14) РЭТ SFG-2004

- 9.3.5 Определение погрешностей крутящего момента силы
- 9.3.5.1 Погрешность измерений КМС определять комплектным способом (прямые измерения) с оценкой МХ по результатам сквозной градуировки ИК в следующей последовательности:
 - собрать схему поверки ИК, приведенную на рисунке 9:
 - провести градуировку ИК по методике раздела 1 приложения Б;

П р и м е ч а н и е - При проведении градуировки ИК подход к измеряемому значению должен осуществляться медленно с одной стороны, соответствующей ходу градуировочной характеристики. Перемена знака приращения нагрузки в процессе уменьшения нагрузки (или увеличения) не допускается. Прямая ветвь градуировочной характеристики снимается в результате прямого хода (увеличения нагрузки) градуировки ИК, обратная ветвь градуировочной характеристики снимается в результате обратного хода (уменьшения нагрузки). Один прямой и один следующий за ним обратный ход градуировки составляют один цикл градуировки ИК.

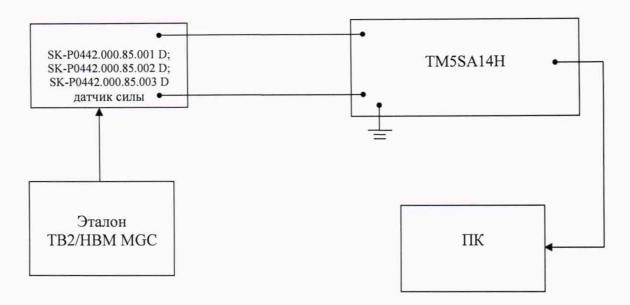


Рисунок 9 – Схема поверки ИК крутящего момента силы, РЭТ ТВ2/НВМ MGC

- оценить МХ ИК крутящего момента силы в соответствии с алгоритмом, приведенным в разделе 2 приложения Б.
- 9.3.5.2 Результаты поверки считать положительными, если значения погрешностей крутящего момента силы, в заданных диапазонах измерений находятся в допускаемых пределах, указанных в графе 4 таблицы А.1 приложения А. В противном случае ИК бракуется и после выявления и устранения причины производится повторная поверка.

10 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 10.1 Результаты поверки системы занести в протокол.
- 10.2 Результаты поверки системы подтверждаются сведениями о результатах поверки средства измерений, включенного в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца системы или лица, представившего его на поверку, на средство измерений наносится знак поверки и (или) выдается свидетельство о поверке системы, и (или) в паспорт (формуляр) средства измерений вносится запись о проведенной поверке, заверяемая подписью поверителя и знаком поверки, с указанием даты поверки, или выдается извещение о непригодности к применению системы.

Заместитель генерального директора - начальник

НИО-10 ФГУП «ВНИИФТРИ»

Ф.И. Храпов

Заместитель начальника НИО-10 ФГУП «ВНИИФТРИ»

В.В. Мороз

Приложение А Таблица A.1 — Состав и метрологические характеристики ИК системы, включающих ПИП и вторичную часть ИК

	X	арактеристики ИК			Сост	ав ИК	
Наименование ИК	Коли-	Диапазон	Пределы допускае-	ПИ	П	Вторична	я часть ИК
	чество ИК	измерений	мой погрешности (нормированы для рабочих условий)	Тип	Пределы допускаемой основной погрешности	Тип аппаратуры	Пределы допускаемой основной погрешности
ИК крутящего мо- мента силы	2	от 1 до 90 Н·м от 1 до 50 Н·м от 1 до 1400 Н·м	±0,5 % (γ от ВП) в диапазоне от 0 до 0,5ВП; ±0,5 % (δ) в диапазоне от 0,5ВП до 1,0ВП ±0,5 % (γ от ВП) в диапазоне от 0 до 0,5ВП; ±0,5 % (δ) ²⁾ в диапазоне от 0,5ВП до 1,0ВП ±0,5 % (γ от ВП) в диапазоне от 0 до 0,5ВП; ±0,5 % (δ) в диапазоне от 0 до 0,5ВП; ±0,5 % (δ) в диапазоне от 0,5ВП до 1,0ВП	Manner Sen- sortelemetri cep.MF	линейность ±0,1 % (γ)	Manner Sensortelemetri Evaluation Unit Schneider Electric TM5SA14H	±0,01 % (γ οτ ΒΠ)
ИК давления жид- костей	1	Избыточное давление жидкостей: от 0 до 0,588 МПа	±1,0 % (γ ot BΠ) ¹⁾	Преобразова- тели давления измерительные АИР-10Н-ДИ	±0,25 % (у от ВП)	Модуль WAGO-750-	±0,1 % (γ οτ ΒΠ)
	1 2 3	от 0 до 15,691 МПа от 0 до 2,452 МПа от 0 до 17,652 МПа	±1,0 /0 (7 01 BH)	Датчики давления IFMPA3021, IFM PA 3023.	(7 01 1511)	474	(101 111)

Продолжение таблицы А.1

	X	арактеристики ИК		Состав ИК			
		ПИП Вторичная част			я часть ИК		
Наименование ИК	Коли-	Диапазон	Пределы допускае-	Тип	Пределы	Тип	Пределы
	чество	измерений	мой погрешности		допускаемой	аппаратуры	допускаемой
	ИК		(нормированы для		основной		основной
			рабочих условий)		погрешности		погрешности
ИК частоты враще-	1	от 25 до 252 об/мин		Klashka		Schneider	
ния				IAD/AΠM		Electric	
				Motrona DZ266		TM5SA14H	
	1	от 350 до 3500 об/мин		Lenord&Bauer	±0,1 % (γ от BΠ) Schneider Elec		
				248V2M15005C			±0,01 %
			$\pm 0,2$ % (γ ot B Π)	Motrona DZ266			(у от ВП)
	1	от 5700 до 6200 об/мин		Baumer		Schneider Elec-	(7 01 111)
	2	от 7800 до 8400 об/мин		HG16DN10241		tric Altivau71	
	2	от 3000 до 15500 об/мин		Klashka		Schneider Elec-	
				IAD/AΠM		tric TM5SA14H	
		1		Motrona DZ266			
ИК расхода (про-						Нормализатор	±0,1 %
качки) масла						сигнала	(γ от ВП)
				Турбинный		Adam-3014	(101 511)
			±3 % (у от НЗ)	преобразова-	Company of the Company	Нормализатор	±0,2 %
	1	от 24 до 240 л/мин	НЗ = 240 л/мин	тель расхода	$\pm 0,4\% (\delta)$	сигнала Omega	(γ от ВП)
			113 2 TO 30 MARII	ТПР14		ISH-HZ	(101211)
						Schneider	±0,05 %
						Electric	(γ от ВП)
						140AV103000	(1 5. 2.2)

Продолжение таблицы А.1

	Xa	арактеристики ИК		Состав ИК			
				ПИП Вторична			я часть ИК
Наименование ИК	Коли- чество ИК	Диапазон измерений	Пределы допускае- мой погрешности (нормированы для рабочих условий)	Тип	Пределы допускаемой основной погрешности	Тип аппаратуры	Пределы допускаемой основной погрешности
ИК температуры жидкостей, измеряемой ТС, и сопротивления постоянному току,	1	Температура жидко- стей: от 283 до 363 К (от 10 до 90 °C)	±1,5 % (γ oτ H3) ³⁾ H3=80 °	Термопреобра- зователи со- противления: TC1288/5	Класс допуска А по ГОСТ 6651-2009	Schneider Electric 140AV103000	±0,5 % (γ οτ ΒΠ)
соответствующего значениям темпе-	1	от 283 до 393 К (от 10 до 120 °C)	±1,5 % (γ oτ H3) H3=110 °	ТП9201-21		WAGO-750-450	±0,6 °C
ратуры (в части измерений темпе-	1	от 10 до 100 °C	±1,5 % (γ от H3) H3=90 °	PT104.12.12M	Класс допуска	WAGO-750-461	±0,2 % (γ от ВП)
ратуры)	2		11 5 0/ / TID	TC1388/5	В по ГОСТ	WAGO-750-450	±0,6 °C
1	1	от 10 до 150 °C	±1,5 % (γ от H3) H3=140 °	PT104.12.12M	6651-2009	WAGO-750-461	±0,2 % (γ οτ ΒΠ)

γ от ВП- приведенная к верхнему пределу (ВП) измерений погрешность;
 δ – относительная от измеряемой величины (ИВ) погрешность;
 γ от НЗ – приведенная к нормированному значению (НЗ) погрешность

Таблица A.2 – Состав и метрологические характеристики ИК системы с входными электрическими сигналами от ПИП

Наименование ИК	Ко-	Диапазон изме-	Источник сиг-	Тип аппарату-	Пределы до-
	личе-	рений (диапазон	нала на входе	ры ИК	пускаемой
	ство	показаний на	ИК		основной
	ИК	дисплее систе-			погрешности
		мы)			ИК*
ИК сопротивления			Термопреобра-		
постоянному току,			зователи сопро-		
соответствующего		от 100 до	тивления пла-		
значениям темпера-	2	138,51 Ом	тиновые НСХ		
туры (в части измере-		(от 0 до 100 °C)	Рt 100 по ГОСТ		
ний сопротивления			6651-2009	A	
постоянному току)			TF7/E-10/100	Модуль АЦП	±0,2%
			Термопреобра-	WAGO-750-	(γ от ВП)
			зователи сопро-	461	(or bii)
		от 100 до	тивления пла-		
	11	157,33 Ом	тиновые НСХ		
	11	(от 0 до 150 °C)	Рt 100 по ГОСТ		
		(01 0 до 130 С)	6651-2009		
			PT104.12.12M		
			IFM TT0281		
ИК частоты электри-				Нормализатор	
ческих сигналов, со-		от10 до 90 Гц	Датчик тахо-	сигнала:	±0,2 %
ответствующей зна-	2	(от 10 до 100%)	метрический	«КонтрАвт»	(γ от ВП)
чениям частоты вра-			Д-1М	Модуль АЦП:	(7 01 111)
щения приводов				WAGO-750-474	

^{*} Пределы допускаемой основной погрешности ИК приведены в таблице 3 без учета погрешностей ПИП

Приложение Б

Подтверждение соответствия средства измерений метрологическим требованиям

- 1. Методика проведения градуировки ИК
- 1.1 Сквозную градуировку ИК или градуировку элементов ИК проводить в следующей последовательности:
- задать с помощью РЭТ на входе ИК или элемента ИК в диапазоне измерений: p контрольных значений (ступеней) входной величины X_{κ} в порядке возрастания от X_{o} до X_{p} при прямом ходе; p контрольных значений входной величины X_{κ} в порядке убывания от X_{p} до X_{o} при обратный ходе;

$$X_{\kappa} = X_o + [(X_p - X_o)/p] \cdot k, \tag{B.1}$$

где k - номер контрольной точки (ступени); k=0, 1, 2...p;

 X_0, X_0 - нижний и верхний пределы диапазона измерений проверяемых ИК;

- произвести на каждой ступени при прямом и обратном ходе *m* отсчетов измеряемой величины (значение параметра *m* определяется частотой опроса ИК и временем измерения). При этом программа градуировки вычисляет значение сигнала на выходе АЦП как среднее значение кода по *m* отсчетам, зарегистрированным при подаче входного сигнала. Полученное значение сохраняется в файле градуировки;
- повторить l раз указанные циклы градуировки (прямой и обратный ходы). В результате в памяти компьютера запоминаются массивы значений выходной величины $y'_{i\kappa}$ при прямом ходе и $y''_{i\kappa}$ при обратном ходе, где i номер градуировки, i=1,2,....l.

 Π р и м е ч а н и е — Для ИК с пренебрежимо малой погрешностью вариации допускается обратные ходы градуировки не проводить.

При проверке принять следующие значения параметров градуировки p, l, m: $p \ge 5, l \ge 5, m \ge 10$.

- 2 Порядок обработки результатов градуировки ИК
- 2.1 Обработку результатов градуировки проводить по алгоритму настоящей методики. Для определения доверительных границ оценки погрешностей ИК принимается величина доверительной вероятности P = 0.95 (по ГОСТ P 8.736-2011, π .4.4).
 - 2.2 Исключение «грубых промахов»
- 2.2.1 Предварительная отбраковка «грубых промахов» на этапе многократного опроса наблюдаемой величины для каждой контрольной точки производится следующим образом:
 - результаты опроса ранжируются в ряд в порядке возрастания;
 - из указанного ряда исключаются 10 % значений от верхней и нижней границ ряда.
- 2.2.2 Исключение «грубых промахов» на этапе обработки результатов измерений производится с использованием критерия Граббса по ГОСТ Р 8.736-2011 следующим образом:
- 2.2.2.1 Вычислить для каждой k-той контрольной точки оценки измеряемой величины y'_{κ} при прямом ходе градуировки и y''_{κ} при обратном ходе градуировки по формулам (Б.2):

$$y'_{k} = \frac{1}{l} \cdot \sum_{i=1}^{l} y'_{ik}, y''_{k} = \frac{1}{l} \cdot \sum_{i=1}^{l} y''_{ik}$$
 (E.2)

2.2.2.2 Вычислить для каждой k-той контрольной точки средние квадратические отклонения S'_k (при прямом ходе) и S''_k (при обратном ходе) по формулам (Б.3):

$$S'_{k} = \sqrt{\frac{\sum_{i=1}^{l} (y'_{ik} - y'_{k})^{2}}{l-1}}, S''_{k} = \sqrt{\frac{\sum_{i=1}^{l} (y''_{ik} - y''_{k})^{2}}{l-1}}$$
 (E.3)

2.2.2.3 Вычислить для выборки $y'_{I_{\kappa}}...y'_{I_{\kappa}}$ значения G_{I} , G_{2} критерия Граббса по формулам (Б.4):

$$G_1 = \frac{|y_{\text{max}} - y_k'|}{S_k'}, G_2 = \frac{|y_k' - y_{\text{min}}|}{S_k'},$$
 (E.4)

где y_{max} , y_{min} — соответственно максимальный и минимальный элементы в выборке $y'_{l\kappa}...y'_{l\kappa}$.

- 2.2.2.4 Сравнить значения G_1 , G_2 с теоретическим значением G_T критерия, указанным в приложении А ГОСТ Р 8.736-2011:
 - если $G_I > G_T$, то элемент y_{max} исключить из выборки как маловероятное значение;
 - если $G_2 > G_T$, то элемент y_{min} исключить из выборки как маловероятное значение;
- 2.2.2.5 Повторить процедуру исключения «грубых промахов» по п.п. 2.2.2.1 2.2.2.4 для оставшихся элементов, если в выборке $y'_{l\kappa}...y'_{l\kappa}$ был исключен один элемент.
 - 2.2.2.6 Выполнить проверку по выборке $y''_{l\kappa}$... $y''_{l\kappa}$ аналогично п.п. 2.2.2.1 2.2.2.5.

Примечание –Допускается проводить отбраковку «грубых промахов» на стадии просмотра оператором результатов наблюдений при проведении градуировки в случае, когда факт появления «грубого промаха» установлен достоверно. При этом производится повторное измерение в заданной контрольной точке с регистрацией результата наблюдений.

2.3 Определение индивидуальной функции преобразования ИК

Индивидуальную функцию преобразования ИК системы определять по результатам градуировки в виде обратной функции, т.е. как зависимость значений величины x на входе ИК от значений y на его выходе.

Если нелинейность функции такова, что с достаточной точностью можно ограничиться аппроксимирующим полиномом не выше 4-той степени, то эту функцию представляют в виде степенного полинома (формула Б.5). В противном случае функцию представляют кусочнолинейной зависимостью (формула Б.6).

$$x = a_0 + a_1 y + ... + a_n y^n,$$
 (B.5)

$$x = x_k + q_{sfk} \cdot (y - y_k), \tag{5.6}$$

где $a_0, a_1, \dots a_n$ – коэффициенты аппроксимирующего полинома, определяемые методом наименьших квадратов;

 x_{κ} - эталонное значение входной величины на κ -той ступени;

q_{sfk} - цена единицы наименьшего разряда кода на к-той ступени;

 y_k - среднее значение результатов наблюдений выходной величины при градуировке на κ -той ступени.

Значения y_k и q_{sfk} определить по формулам (Б.7) и (Б.8):

$$y_{\kappa} = \sum_{i=1}^{l} (y'_{ik} + y''_{ik})/2 \cdot l \qquad , \tag{5.7}$$

$$q_{sf_{\kappa}} = \frac{x_{\kappa+1} - x_{\kappa}}{y_{\kappa+1} - y_{\kappa}}$$
 (6.8)

- 2.4 Определение характеристик погрешностей ИК
- 2.4.1 Определение характеристик абсолютной погрешности ИК при комплектном способе поверки (прямые измерения) с оценкой МХ ИК по результатам сквозной градуировки ИК
- 2.4.1.1 Определить доверительные границы неисключенной систематической составляющей абсолютной погрешности (НСП) ИК при P=0,95 по формуле (Б.9):

$$\tilde{\Delta}_{osk} = \sqrt{\tilde{\Delta}_{oska}^2 + \Delta_{P\Im T}^2} \qquad , \tag{5.9}$$

где $\Delta_{P \ni T}$ – погрешность $P \ni T$;

 $\tilde{\Delta}_{oska}$ – абсолютная НСП ИК, обусловленная погрешностью аппроксимации.

При задании индивидуальной функции преобразования в виде степенного полинома (1.A) значение $\tilde{\Delta}_{\textit{oska}}$ вычисляется по формуле (Б.10):

$$\widetilde{\Delta}_{oska} = \left| \left(a_o + a_1 y_{\kappa} + \dots + a_n y_{\kappa}^n \right) - x_{\kappa} \right| \tag{5.10}$$

При задании индивидуальной функции преобразования в виде кусочно-линейной зависимости (6.A) погрешность $\tilde{\Delta}_{oska}$ =0.

2.4.1.2 Определить доверительные границы случайной составляющей абсолютной погрешности на каждой κ -той контрольной точке при P=0,95 по формуле (Б.11):

$$\widetilde{\Delta}_{o\kappa} = \tau \cdot \sqrt{\widetilde{\sigma}^{2}_{[\dot{\Delta}o\kappa]} + \frac{\widetilde{H}_{o\kappa}^{2}}{12}} \qquad , \tag{5.11}$$

где τ - коэффициент Стьюдента-Фишера, зависящий от доверительной вероятности P и числа степеней свободы 2l-1. Таблица значений τ при P=0,95 приведена в Приложении Б;

 $\tilde{\sigma}_{\left[\dot{\Delta}_{ok}\right]}$ - среднее квадратическое отклонение случайной составляющей абсолютной погрешности на каждой к-той контрольной точке, определяемое по формуле (Б.12):

$$\widetilde{\sigma}_{\left[\dot{\Delta}_{OK}\right]} = \sqrt{\frac{\sum_{i=1}^{l} \left(x'_{ik} - x'_{K}\right)^{2} + \sum_{i=1}^{l} \left(x''_{ik} - x''_{K}\right)^{2}}{2l - 1}},$$
(E.12)

где $x_{i\kappa}$, x_{ik}'' - приведенные по входу значения результатов наблюдений на κ -той ступени при прямом и обратном ходе градуировки соответственно;

 x_{κ} , $x_{\kappa}^{"}$ - приведенные по входу средние значения результатов наблюдений на κ -той ступени при прямом и обратном ходе градуировки соответственно, определяются по формулам (Б.13);

$$x_{k}' = \frac{1}{l} \sum_{i=1}^{l} x_{ik}' ,$$

$$x_{k}'' = \frac{1}{l} \sum_{i=1}^{l} x_{ik}'' ,$$
(E.13)

 $\widetilde{H}_{\scriptscriptstyle o\kappa}$ - абсолютное значение вариации, определяется по формуле (Б.14):

$$\widetilde{H}_{\scriptscriptstyle OK} = \left| x_{\scriptscriptstyle K} - x_{\scriptscriptstyle K} \right| \tag{5.14}$$

2.4.1.3 Определить доверительные границы абсолютной погрешности ИК на каждой ктой контрольной точке при P=0.95 по формулам (Б.15):

$$\widetilde{\Delta}_{okabc} = \widetilde{\Delta}_{osk} \qquad \qquad \text{при } (\widetilde{\Delta}_{osk} \cdot \tau / \widetilde{\Delta}_{ok}) \geq 8 ,$$

$$\widetilde{\Delta}_{okabc} = \widetilde{\Delta}_{ok} \qquad \qquad \text{при } (\widetilde{\Delta}_{osk} \cdot \tau / \widetilde{\Delta}_{ok}) \geq 0.8 ,$$

$$\widetilde{\Delta}_{okabc} = (\sqrt{\frac{\widetilde{\Delta}_{osk}^2}{3} + \widetilde{\sigma}_{\left[\Delta ok \right]}^2}) \cdot \frac{\widetilde{\Delta}_{osk} + \widetilde{\Delta}_{ok}}{\widetilde{\Delta}_{osk} / \sqrt{3} + \widetilde{\sigma}_{\Delta_{ok}}}) \qquad \text{при } 8 > \widetilde{\Delta}_{osk} \cdot \tau / \widetilde{\Delta}_{ok}) > 0.8 .$$
 (Б.15)

2.4.1.4 Определить доверительные границы абсолютной погрешности ИК при P=0,95 по формуле (Б.16):

$$\widetilde{\Delta}_o = \max(\widetilde{\Delta}_{oka6c})$$
 (B.16)

- 2.4.2 Определение характеристик погрешности ИК при комплектной поверке с оценкой МХ ИК по МХ элементов системы.
- 2.4.2.1 Определить доверительные границы абсолютной погрешности ИК давления при P=0.95 по формуле (Б.17):

$$\tilde{\Delta}_o = 1, 1 \cdot P \cdot \sqrt{\left(\delta \mathcal{U} K_I\right)^2 + \delta P^2} / 100, \qquad (B.17)$$

где P – измеренное значение давления, кгс/см²;

 δP — значение относительной погрешности ПИП (датчики давления АИР-10Н, ШАЬ ЗФ 3021, ШАЬ ЗФ 3023), %. Значение погрешности δP берется из протокола поверки датчика, либо из паспорта на датчик;

 $\delta \mathit{ИK}_I$ – значение относительной погрешности ИК постоянного тока (без ПИП), %.

2.4.2.2 Определить доверительные границы абсолютной погрешности ИК температуры, измеряемой термопреобразователями сопротивления (ТСП), при P = 0,95 по формуле (Б.18):

$$\tilde{\Delta}_o = 1, 1 \cdot \sqrt{\left(\Delta_{HK_T}\right)^2 + \left(\Delta T\right)^2} , \qquad (B.18)$$

где T – измеренное значение температуры, °C;

 ΔT — значение абсолютной погрешности ПИП (ТСП), °С. Значение погрешности ΔT определяется по ГОСТ 6651-2009, либо берется из протокола поверки ПИП или паспорта на датчик;

 $\Delta_{\mathit{ИK_T}}$ - значение абсолютной погрешности ИК температуры (без ПИП), °С.

2.4.2.3 Определить доверительные границы абсолютной погрешности ИК расхода (прокачки) масла по формуле (Б.19):

$$\tilde{\Delta}_o = 1.1 \cdot G_m \cdot \sqrt{(\Delta(F)/F)^2 + (\Delta Q/Q)^2}, \tag{E.19}$$

где *Gm* – измеренное значение прокачки масла;

 $\Delta(F)/F$ - относительное значение погрешности ИК без ПИП;

 $\Delta(Q)/Q$ - относительное значение погрешности ПИП (турбинный преобразователь расхода ТПР10). Значение погрешности $\Delta(Q)/Q$ берется из протоколов поверки ТПР.

2.4.3 Определить относительные погрешности ИК

Доверительные границы относительной погрешности ИК при P=0.95 определить по формулам (Б.20-Б.22):

– относительной погрешности:
$$\widetilde{\delta}_o = \frac{\widetilde{\Delta}_o}{VB} \cdot 100,\% ; \qquad (Б.20)$$

- погрешности, приведенной к верхнему пределу измерений (ВП):

$$\widetilde{\gamma}_{o} = \frac{\widetilde{\Delta}_{o}}{B\Pi} \cdot 100,\% \tag{5.21}$$

- погрешности, приведенной к нормированному значению (НЗ) измеренной величины:

$$\widetilde{\gamma}_{H3}^* = \frac{\widetilde{\Delta}_o}{H3} \cdot 100,\% \tag{5.22}$$

(справочное)

Значения коэффициента Стьюдента-Фишера в зависимости от числа степеней свободы при доверительной вероятности P = 0,95

Число сте-	Доверитель-	Число степе-	Доверитель-
пеней свободы	ная вероятность	ней свободы	ная вероятность
	P=0,95	2ml-1	P=0,95
1	12,706	18	2,103
2	4,303	19	2,093
3	3,182	20	2,086
4	2,776	21	2,080
5	2,571	22	2,074
6	2,447	23	2,069
7	2,365	24	2,064
8	2,306	25	2,060
9	2,262	26	2,056
10	2,228	27	2,052
11	2,201	28	2,048
12	2,179	29	2,045
13	2,160	30	2,042
14	2,145	40	2,021
15	2,131	60	2,000
16	2,120	120	1,980
17	2,110	-	

Приложение Д (справочное)

Перечень эксплуатационных и нормативных документов

Обозначение	Наименование
ГОСТ 8.009-2009 ГСИ	Нормируемые метрологические характеристики средств измерений
ГОСТ Р 8.736-2011 ГСИ	Измерения прямые многократные. Методы обработки результатов измерений. Основные положения
ГОСТ 22261-94	Средства измерений электрических и магнитных величин. Общие технические условия
ГОСТ 8.461-2009 ГСИ	Термопреобразователи сопротивления из платины, меди и никеля. Методика поверки
ГОСТ 6651-2009 ГСИ	Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний
ОТУ-2018	Общие технические условия
МИ 2083-90	Измерения косвенные. Определение результатов измерений и оценивание их погрешностей
ЛГФИ407221.034 МИ	Преобразователи расхода ТПР. Методика поверки
УРАБ.СИ-1/Р-0475.001 РЭ	Система измерительная СИ-1/Р-0475. Руководство по эксплуатации
УРАБ.СИ-1/Р-0475.001ФО	Система измерительная СИ-1/ Р-0475 Формуляр
P-0475-2317-1504-01	Механический замкнутый испытательный стенд для главных редукторов P-0475. Описание системы и инструкция по эксплуатации
P-0475-2317-1504-02	Механический замкнутый испытательный стенд для главных редукторов P-0475. Руководство по эксплуатации.
P-0475-2317-1504-03	Механический замкнутый испытательный стенд для главных редукторов P-0475. Руководство по калибровке.
P-0475-2317-1504-04	Механический замкнутый испытательный стенд для главных редукторов P-0475. Руководство по техническому обслуживанию