Согласовано

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений

Система измерений количества и параметров газа (СИКГ), поступающего на продувку факельного коллектора низкого давления УПН-1, в БПРГ ЦПС Куюмбинского месторождения Методика поверки НА.ГНМЦ.0558-20 МП

РАЗРАБОТАНА

Обособленным подразделением Головной научный

метрологический центр АО «Нефтеавтоматика» в

г. Казань

(ОП ГНМЦ АО «Нефтеавтоматика»)

исполнители:

Березовский Е.В., к.т.н,

Хусаинов Р.Р.

1 Общие положения

Настоящая инструкция распространяется на систему измерений количества и параметров газа (СИКГ), поступающего на продувку факельного коллектора низкого давления УПН-1, в БПРГ ЦПС Куюмбинского месторождения и устанавливает методику ее периодической поверки.

Поверка СИКГ в соответствии с настоящей методикой поверки обеспечивает передачу единиц объемного расхода газа от рабочего эталона 1-ого разряда в соответствии с Государственной поверочной схемой для средств измерений объемного и массового расходов газа, утвержденной приказом Росстандарта от 29.12.2018 г. № 2825 «Об утверждении Государственной поверочной схемы для средств измерений объемного и массового расходов газа», что обеспечивает прослеживаемость к ГЭТ 118-2017 «Государственный первичный эталон единиц объемного и массового расходов газа». Поверка СИКГ осуществляется косвенным методом.

Методика поверки не предусматривает проведение поверки для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений.

Интервал между поверками СИКГ: 4 года.

2 Перечень операций поверки СИКГ

2.1 При проведении поверки выполняют следующие операции, указанные в таблице 1.

Таблица 1

	Номер	Проведение операции при		
Наименование операции	пункта методики поверки	первичной поверке	периодической поверке	
1. Внешний осмотр	6.1	Да	Да	
2. Опробование	7.2	Да	Да	
 Проверка программного обеспечения (далее – ПО) СИКГ 	8	Да	Да	
4. Определение метрологических характеристик СИКГ	9	Да	Да	
5. Подтверждение соответствия СИКГ метрологическим требованиям	10	Да	Да	

2.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается.

3 Метрологические и технические требования к средствам поверки

- 3.1 Рабочий эталон 1-го разряда, с погрешностью не более ±0,4% в соответствии с Государственной поверочной схемы для средств измерений объемного и массового расходов газа, утвержденной приказом Росстандарта №2825 от 29.12.2018 г. «Об утверждении Государственной поверочной схемы для средств измерений объемного и массового расходов газа».
- 3.2 Рабочий эталон 1-го разряда в соответствии с Государственной Поверочной схемы для средств измерений избыточного давления до 4000 МПа, утвержденной приказом Минпромторга №1339 от 29.06.2018 г. «Об утверждении Государственной Поверочной схемы для средств измерений избыточного давления до 4000 МПа».
- 3.3 Рабочий эталон 3-го разряда в соответствии с ГОСТ 8.558-2009 Государственная система обеспечения единства измерений (ГСИ). Государственная поверочная схема для средств измерений температуры.

- 3.4 Калибратор многофункциональный MC5-R (Регистрационный номер №22237-08).
- 3.5 Другие эталонные и вспомогательные СИ в соответствии с нормативными документами (НД) на поверку СИ, входящих в состав СИКГ.
- 3.6 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

4 Требования (условия) по обеспечению безопасности проведения поверки

При проведении поверки соблюдают требования, определяемые в области охраны труда и промышленной безопасности:

- «Правила безопасности в нефтяной и газовой промышленности» утверждены приказом Федеральной службы по экологическому, технологическому и атомному надзору от 15 декабря 2020 г. №534;
 - Трудовой кодекс Российской Федерации;
 - в области пожарной безопасности:
 - СНиП 21-01-97 «Пожарная безопасность зданий и сооружений»;
- Постановление Правительства Российской Федерации «Об утверждении правил противопожарного режима в Российской Федерации» от 16.09.2020г. №1479;
- СП 12.13130.2009 «Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности»;
- СП 5.13130.2009 «Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования»;
- в области соблюдения правильной и безопасной эксплуатации электроустановок:
 - ПУЭ «Правила устройства электроустановок»;
 - в области охраны окружающей среды:
- Федерального закона от 10.01.2002 г. № 7-Ф3 «Об охране окружающей среды» и других законодательных актов по охране окружающей среды, действующих на территории РФ.

5 Требования к условиям проведения поверки

Поверку проводят в условиях эксплуатации:

- температура окружающей среды

от +5 до +30 °C

- относительная влажность, не более

92 %

- атмосферное давление

от 94 до 106,7 кПа

6 Внешний осмотр СИКГ

- 6.1 При внешнем осмотре должно быть установлено соответствие СИКГ следующим требованиям:
 - комплектность СИКГ должна соответствовать технической документации;
- на компонентах СИКГ не должно быть механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
 - надписи и обозначения на компонентах СИКГ должны быть четкими.

6.2 Для исключения возможности несанкционированного вмешательства, которое может влиять на показания СИ, входящих в состав СИКГ, должна быть обеспечена возможность пломбирования в соответствии с описаниями типа СИ.

7 Подготовка к поверке и опробование

7.1 При подготовке к поверке СИКГ проверяют наличие актуальных сведений о поверке в Федеральном информационном фонде по обеспечению единства измерений СИ, входящих в состав СИКГ.

7.2 Опробование

Проверяют отсутствие сообщений об ошибках и соответствие текущих измеренных СИКГ значений температуры, давления, объемного расхода данным, отраженным в описании типа СИКГ.

Результаты опробования считают положительными, если текущие измеренные СИКГ значения температуры, давления, объемного расхода соответствуют данным, отраженным в описании типа СИКГ, а также отсутствуют сообщения об ошибках.

8 Проверка программного обеспечения СИКГ

8.1 Проверка идентификационных данных ПО комплекса измерительновычислительного расхода и количества жидкостей и газов «АБАК+» (далее – ИВК).

Чтобы определить идентификационные данные для ПО ИВК необходимо выполнить нижеперечисленные процедуры.

Для проверки текущей контрольной суммы необходимо нажать на клавишу под названием «Информация» на лицевой панели ИВК, прокрутить список, нажав клавишу «Вниз».

Занести информацию в соответствующие разделы протокола.

8.2 Если идентификационные данные, указанные в описании типа СИКГ и полученные в ходе выполнения п.8.1, идентичны, то делают вывод о подтверждении соответствия ПО СИКГ программному обеспечению, зафиксированному во время проведения испытаний в целях утверждения типа, в противном случае результаты поверки признают отрицательными.

9 Определение метрологических характеристик СИКГ

- 9.1 Определение МХ
- 9.1.1 Проверка результатов поверки СИ, входящих в состав СИКГ Проверяют наличие действующих свидетельств о поверке СИ и (или) знаков поверки на СИ, и (или) записей и знаков поверки в паспортах (формулярах) СИ, и (или) сведений в Федеральном информационном фонде по обеспечению единства измерений о поверке СИ, входящих в состав СИКГ.
- 9.1.2 Определение относительной расширенной неопределенности измерений (при коэффициенте охвата 2) объемного расхода свободного нефтяного газа (СНГ), приведенного к стандартным условиям.
- 9.1.2.1 Определение относительной стандартной неопределенности измерений объемного расхода СНГ, приведенного к стандартным условиям.

Если для СИ или компонента измерительной цепи нормирована основная погрешность, то значения основной относительной стандартной неопределенности u'_{ov} , %, величины «y» рассчитывают по следующим формулам

• при известной основной абсолютной Δy_o или основной относительной погрешности δ_{ov} , %:

$$u'_{oy} = 0.5 \cdot \frac{\Delta y_o}{y} \cdot 100\% = 50 \cdot \frac{\Delta y_o}{y} = 0.5 \cdot \delta_{oy},$$
 (1)

где

- у измеряемая величина, выраженная в единицах измерения компонента измерительной цепи;
 - при известной приведенной основной погрешности γ₀,%, если нормирующим параметром принят диапазон измерений:

$$u'_{oy} = 0.5 \cdot \gamma_0 \cdot \frac{y_B - y_H}{y},\tag{2}$$

у_в – верхний предел измерений СИ величины «у»;

у_н – нижний предел измерений СИ величины «у».

• если нормирующим параметром принят верхний предел измерений $y_{\rm B}$:

$$u'_{oy} = 0.5 \cdot \gamma_o \cdot \frac{y_B}{y} \tag{3}$$

Относительную стандартную неопределенность измерений u_y' , % рассчитывают по формуле

$$u_y' = \left(\sum_{i=1}^l [u_{y_i}']^2\right)^{0.5},\tag{4}$$

где

 число последовательно соединенных компонентов измерительной цепи, используемых для измерения величины «у»;

и'_{yi} – относительная стандартная неопределенность, вносимая *i*-м компонентом измерительной цепи с учетом дополнительных составляющих неопределенности, вызванных внешними влияющими величинами,%.

Относительную стандартную неопределенность измерений u_y' , %, рассчитывают по формуле

$$u_y' = \left[u_{oy_i}'^2 + \sum_{i=1}^m u_{\beta y_{ij}}'^2 \right]^{0.5},\tag{5}$$

где

 u_{oy_i}' – основная составляющая относительной стандартной неопределенности результата измерений величины « y_i », рассчитанная без учета дополнительных составляющих неопределенности, вызванных внешними влияющими величинами, %;

та исло влияющих величин;

 $u'_{{\rm д}y_{ij}}$ – дополнительная составляющая относительной стандартной неопределенности результата измерений величины « y_i », от j-ой влияющей величины,%.

Относительную стандартную неопределенность результата косвенных измерений $u_{\nu}',\%$, величины «y», которая связана функциональной зависимостью с

измеряемыми величинами « y_i » (например, температурой, давлением, компонентным составом) $y=f(y_1,y_2,...y_m)$, рассчитывают по формуле

$$u_{y}' = \left[u_{yf}'^{2} + \sum_{i=1}^{m} \vartheta_{yi}^{2} \cdot u_{yi}'^{2} \right]^{0,5}, \tag{6}$$

где

 u_{yf}^{\prime} – относительная стандартная неопределенность, приписываемая функциональной зависимости,%;

 ϑ_{yi} – коэффициент чувствительности величины «y» к изменению значения i- ой измеряемой величины;

 u_{y_i}' – относительная стандартная неопределенность результата измерений i- ой измеряемой величины.

Примечание — При известной абсолютной погрешности Δy или относительной погрешности δ_y , %, приписываемой функциональной зависимости, неопределенность u'_{vf} , % рассчитывают по формуле

$$u'_{yf} = \frac{\Delta y}{y \cdot \sqrt{3}} \cdot 100 = \frac{\delta_y}{\sqrt{3}} \tag{7}$$

Относительный коэффициент чувствительности ϑ_{y_i} , рассчитывают по формуле

$$\vartheta_{y_i} = f'_{yi} \cdot \frac{y_i}{y},\tag{8}$$

где f'_{vi}

– частная производная функции f по « y_i ».

Если неизвестна математическая взаимосвязь величины (y) с величиной (y) или дифференцирование функции f затруднено, значение частной производной f'_{y} рассчитывают по формуле

$$f'_{y_i} = \frac{f(y_i + \Delta y_i) - f(y_i)}{\Delta y_i}.$$
 (9)

Значение приращения аргумента Δy_i рекомендуется выбирать не более абсолютной погрешности измерений величины « y_i ».

Относительную стандартную неопределенность измерений объемного расхода СНГ, приведенного к стандартным условиям, $u_{q_{\rm c}}'$, %, рассчитывают по формуле

$$u_{q_c}' = \sqrt{u_{q_v}'^2 + u_B'^2 + (1 - \vartheta_{Z_p})^2 \cdot u_P'^2 + (1 + \vartheta_{Z_T})^2 \cdot u_T'^2 + \tilde{u}_{Z/Z_c}'^2},$$
(10)

где

 q_v' – относительная стандартная неопределенность измерений объемного расхода СНГ при рабочих условиях, вычисляют по формуле (11) %;

 и'_B – составляющая относительной стандартной неопределенности измерений объемного расхода и объема СНГ при стандартных условиях, обусловленная алгоритмом вычислений и его программной реализацией, согласно свидетельству о поверке, %;

 ϑ_{Z_p} – относительный коэффициент чувствительности фактора сжимаемости газа при рабочих условиях к изменению давления СНГ,

вычисляют по формуле (8);

 u_P' — относительная стандартная неопределенность результата измерений абсолютного давления СНГ, вычисляют по формуле (12) %:

 ϑ_{Z_T} – относительный коэффициент чувствительности фактора сжимаемости газа при рабочих условиях к изменению температуры, вычисляют по формуле (8);

 u_T' — относительная стандартная неопределенность результата измерений температуры СНГ, вычисляют по формуле (13) %;

 \tilde{u}'_{Z/Z_c} — относительная стандартная неопределенность определения отношения фактора сжимаемости СНГ при рабочих условиях к фактору сжимаемости СНГ при стандартных условиях без учета неопределенности измерений давления и температуры, вычисляется по формуле (14),%.

Относительную стандартную неопределенность измерений объемного расхода СНГ при рабочих условиях u_{q_n}' , %, рассчитывают по формуле

$$u'_{q_{\nu}} = \sqrt{u'_{\rm pcr}^2 + u'_{\rm np}^2} \,, \tag{11}$$

где

 $u'_{\rm pcr}$ – относительная стандартная неопределенность измерений расхода СНГ при рабочих условиях с помощью расходомера, вычисляют по формуле (1), %;

 $u_{\rm пp}'$ — относительная стандартная неопределенность преобразования выходного сигнала расходомера в значение измеряемого параметра ИВК «АБАК+», %.

Относительную стандартную неопределенность измерений абсолютного давления СНГ u_p' , %, рассчитывают по формуле

$$u_{\rm p}' = \sqrt{u_{\rm pl}'^2 + u_{\rm pl, qon}'^2 + u_{\rm KFD}'^2 + u_{\rm p2}'^2}, \tag{12}$$

где

 $u'_{\rm pl}$ – относительная стандартная неопределенность измерений абсолютного давления СНГ СИ давления, %;

 $u'_{\rm plдоп}$ – дополнительная относительная стандартная неопределенность измерений абсолютного давления СНГ СИ давления, %;

 u'_{KFD} – относительная стандартная неопределенность измерительного преобразователя KFD2-STC4-Ex1.20, %;

 u_{p2}^{\prime} — относительная стандартная неопределенность преобразования выходного сигнала силы постоянного тока измерительного преобразователя KFD2-STC4-Ex1.20 в значение измеряемого параметра ИВК «АБАК+», %.

Относительную стандартную неопределенность результата измерений температуры СНГ u_T' ,% рассчитывают по формуле

$$u_T' = 0.5 \cdot \frac{(t_{\rm B} - t_{\rm H})}{273.15 + t} \cdot \sqrt{\left(\frac{\Delta t \cdot 100}{t_{\rm B} - t_{\rm H}}\right)^2 + \gamma_{KFD}^2 + \gamma_{p2}^2},$$
(13)

t_в – верхнее значение диапазона измерений СИ температуры, °С;

t_н – нижнее значение диапазона измерений СИ температуры, °C;

t — измеренное значение температуры СНГ, °С;

 Δt – абсолютная погрешность измерительного преобразователя температуры ТСПТ Ex. °C:

 γ_{KFD} – приведенная погрешность измерительного преобразователя KFD2-STC4-Ex1.20, %;

 γ_{P2} – приведенная погрешность преобразования выходного сигнала силы постоянного тока измерительного преобразователя KFD2-STC4-Ex1.20 в значение измеряемого параметра ИВК «АБАК+», %.

Составляющую относительной стандартной неопределенности стандартизованной процедуры определения отношения фактора сжимаемости СНГ при рабочих условия к фактору сжимаемости СНГ при стандартных условиях без учета неопределенности измерений давления и температуры \tilde{u}'_{Z/Z_c} , %, рассчитывают по формуле

$$\tilde{u}'_{Z/Z_c} = \sqrt{\tilde{u}'^2_{Zf} + \tilde{u}'^2_{Zcf} + \sum_{i=1}^{N} (\vartheta_{Z/Z_{cx_i}} \cdot u'_{x_i})^2},$$
(14)

где

 $ilde{u}_{Zf}^{\prime}$ — относительная стандартная неопределенность, приписанная уравнению, применяемому для расчета фактора сжимаемости СНГ при рабочих условиях, принимают в соответствии с ГСССД МР 113, %;

 $ilde{u}_{Zcf}'$ — относительная стандартная неопределенность, приписанная уравнению, применяемому для расчета фактора сжимаемости СНГ при стандартных условиях, принимают в соответствии с ГСССД МР 113, %;

N – число компонентов в газе;

 $\vartheta_{Z/Z_{cx_i}}$ — относительный коэффициент чувствительности отношения между факторами сжимаемости СНГ при рабочих условия и фактору сжимаемости СНГ при стандартных условиях к изменению содержания i-го компонента СНГ;

 u'_{x_i} — относительная стандартная неопределенность измерений молярной доли *i*-го компонента СНГ, в соответствии с таблицей 2 ГОСТ 31371.7,%.

Относительную стандартную неопределенность молярной доли i-го компонента СНГ, принятую за условно-постоянный параметр, ,%, рассчитывают по формуле

$$u'_{x_i} = \frac{100}{\sqrt{6}} \cdot \left(\frac{x_{imax} - x_{imin}}{x_{imax} + x_{imin}}\right),\tag{15}$$

 x_{imax} — максимальное значение молярной доли -го компонента, принятой за условно-постоянной параметр, в соответствии с ГОСТ 31371.7,%;

 x_{imax} — минимальное значение молярной доли -го компонента, принятой за условно-постоянный параметр, в соответствии с ГОСТ 31371.7,%.

Дополнительные относительные стандартные неопределенности величин «у», связанные с отклонением температуры окружающей среды от нормальных условий, рассчитывают по формуле

$$u_{y_{\text{don}}} = 0.5 \cdot \gamma_{y_{\text{A}}} \cdot \frac{\Delta T_{\text{p}}}{\Delta T} \cdot \frac{y_{\text{B}} - y_{\text{H}}}{v} = 50 \cdot \frac{\Delta y_{\text{don}}}{v} \cdot \frac{\Delta T_{\text{p}}}{\Delta T} = 0.5 \cdot \delta_{\text{don}} \cdot \frac{\Delta T_{\text{p}}}{\Delta T}, \tag{16}$$

где

 γ_{y_n} — приведенная дополнительная погрешность на каждые ΔT °C, %;

 $\Delta y_{\text{доп}}$ – абсолютная дополнительная погрешность на каждые ΔT °C;

 $\Delta T_{
m p}$ — отклонение температуры окружающей среды от нормальных условий, °C;

 ΔT — диапазон температур, для которого нормирована погрешность, $^{\circ}\mathrm{C}$:

у_в – верхний предел измерений СИ величины «у»;

у_н – нижний предел измерений СИ величины «у»;

значение измеряемой величины. В качестве измеряемой величины могут выступать давление СНГ, температура СНГ, значение силы тока токового сигнала и т.п.

П р и м е ч а н и е. Если погрешность нормирована на диапазон изменений выходного сигнала, то вместо верхнего и нижнего пределов измерений СИ величины и измеренного значения величины «у» следует использовать соответствующие значения выходного сигнала.

Связи между абсолютной, относительной и приведенной погрешностями измерений:

$$\delta_y = \frac{\Delta_y}{y} \cdot 100 \%, \tag{17}$$

где

 δ_y — относительная погрешность измерений величины «y»;

 Δ_y — абсолютная погрешность измерений величины «y».

$$\gamma_{y} = \frac{\Delta_{y}}{\gamma_{R} - \gamma_{H}} \cdot 100 \%, \tag{18}$$

 γ_{y} — приведенная погрешность измерений величины «y».

Относительную стандартную неопределенность измерений объема СНГ, приведенного к стандартным условиям, прошедшего через СИКГ за отчетный период, $u_{V_c}{}'$, %, вычисляют по формуле

$$u_{V_c}' = \sqrt{u_{q_c}'^2 + u_{\tau}'^2 + u_{\Delta y}'^2}, \tag{19}$$

где

 u_{q_c}' — относительная стандартная неопределенность измерения объемного расхода СНГ, приведенного к стандартным условиям, вычисляют по формуле (10),%;

 $u_{ au}'$ — относительная стандартная неопределенность при измерении интервала времени ИВК «АБАК+»,%, согласно свидетельству о поверке, вычисляют по формуле (1) или принимают равным нулю если относительная стандартная неопределенность измерения интервала времени $u_{ au}'$, не превышает 0,01%;

 $u'_{\rm Дy}$ – относительные стандартные неопределенности измерения параметров газа, обусловленные дискретизацией аналоговых сигналов СИ во времени вычисляют по ГОСТ 8.740-2011 п.13.4 или принимают равным нулю если интервал дискретизации не более 1 с, %.

Относительную расширенную неопределенность (при коэффициенте охвата 2) объемного расхода СНГ, приведенного к стандартным условиям, U'_{V_c} , %, рассчитывают по формуле

$$U_{V_c}' = 2 \cdot u_{V_c}' \tag{20}$$

Относительная расширенная неопределенность U'_{V_c} в процентах при коэффициенте охвата k=2, соответствует границе относительной погрешности при доверительной вероятности P= 0,95.

10 Подтверждение соответствия СИКГ метрологическим требованиям

Расчет относительной расширенной неопределенности (при коэффициенте охвата 2) объемного расхода СНГ, приведенного к стандартным условиям, может быть выполнен ручным способом в соответствии с ГОСТ Р 8.740-2011 или при помощи модуля «ГОСТ Р 8.740-2011» программного комплекса «Расходомер ИСО». Пример определения относительной стандартной неопределенности СИ и пример расчета, выполненный в программном комплексе «Расходомер ИСО» на модуле «ГОСТ Р 8.740-2011», приведены в приложениях Б и В.

П р и м е ч а н и е. «Расходомер ИСО» на модуле «ГОСТ Р 8.740-2011» рассчитывает коэффициент сжимаемости как отношение между фактором сжимаемости при рабочих условиях и фактором сжимаемости при стандартных условиях.

Критерием принятия решения по подтверждению соответствия СИКГ метрологическим требованиям является выполнение условия не превышения относительной погрешности измерений объема СНГ, приведенного к стандартным условиям, вычисленной в соответствии с пунктом 9 настоящей методики поверки, ±5,0 %.

В случае если относительная погрешность измерения объема СНГ, приведенного к стандартным условиям, превышает ±5,0 %, не подтверждается соответствие СИКГ метрологическим требованиям.

11 Оформление результатов поверки

- 11.1 Результаты идентификации программного обеспечения оформляют протоколом по форме, приведенной в приложении А.
- 11.2 Результат расчета относительной погрешности объема СНГ, приведенного к стандартным условиям, СИКГ оформляют протоколом в свободной форме.
- 11.3 При положительных результатах поверки оформляют свидетельство о поверке СИКГ в соответствии с требованиями документа «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденного приказом Минпромторга России № 2510 от 31.07.2020 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке». На оборотной стороне свидетельства о поверке системы указывают:
 - наименование измеряемой среды;
- значения относительной погрешности измерений объема СНГ, приведенного к стандартным условиям, и соответствующий им диапазон измерений объема СНГ при стандартных условиях;
 - идентификационные признаки программного обеспечения СИКГ.

Знак поверки наносится на свидетельство о поверке СИКГ.

11.4 При отрицательных результатах поверки СИКГ к эксплуатации не допускают, свидетельство о поверке аннулируют и выдают извещение о непригодности к применению в соответствии с документом «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденным приказом Минпромторга России № 2510 от 31.07.2020 г.

Форма протокола подтверждения соответствия программного обеспечения СИКГ Протокол №1 подтверждения соответствия программного обеспечения СИКГ

Место проведения поверки:

Мосто проводении поворкии		
Наименование СИ:		
Заводской номер СИ: №		
Таблица 1 - Идентификационные данные ПО		
Идентификационные данные (признаки)	Значение, указанное в описании типа СИКГ	Значение, полученное во время проведения поверки СИКГ
Идентификационное наименование ПО		
Номер версии (идентификационный номер) ПО		
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)		
Заключение: ПО СИКГ соответствует / не соответств утверждения типа СИКГ.	вует ПО, зафиксированному во врем	я испытаний в целях
Должность лица проводившего поверку: ————————————————————————————————————	сь) (инициалы, фамилия)	
Дата поверки: «» 20 г.		

Пример расчета неопределенностей (погрешностей) средств измерений ч.1

Исходные данные

Таблица Б1

Наименование характеристики	Значение	
Defeuer energ	свободный нефтяной	
Рабочая среда	газ	
Температуры газа, °С	+10	
Давление газа, МПа (абс.)	0,31	
Пределы допускаемой относительной погрешности	15.0	
измерений объема газа, приведенного к стандартным условиям, %	±5,0	
Температура эксплуатации средств измерений, °С	от +5 до +30	

Б1. Определение относительной стандартной неопределенности измерений расхода СНГ при рабочих условиях с помощью расходомера.

$$u'_{q_v} = \sqrt{u'^2_{pcr} + u'^2_{np2}} = \sqrt{0.5^2 + 0.104^2} = 0.51\%$$
 (5.1)

$$u'_{pcr} = 0.5 \cdot \delta_{pcr} = 0.5 \cdot 1 = 0.5\%$$
 (5.2)

$$u'_{\rm np} = \sqrt{{u'_{\rm npo}}^2 + {u'_{\rm npdon}}^2} = \sqrt{0.1^2 + 0.0288^2} = 0.104\%$$
 (5.3)

$$u'_{\text{npo}} = 0.5 \cdot \gamma_{\text{npo}} \cdot \frac{I_{\text{B}_{\text{пp}}} - I_{\text{H}_{\text{пp}}}}{I_{\text{np}}} = 0.5 \cdot 0.05 \cdot \frac{(20 - 4)}{4} = 0.1\%$$
 (5.4)

$$u'_{\text{прдоп}} = 0.5 \cdot \gamma_{\text{прдоп}} \cdot \frac{I_{\text{Впр}} - I_{\text{Нпр}}}{I_{\text{пр}}} \cdot \frac{\Delta T_{\text{рпр}}}{\Delta T_{\text{пр}}} = 0.5 \cdot 0.0009 \cdot \frac{(20 - 4)}{4} \cdot \frac{21 - 5}{1} = 0.0288\%$$
(6.5)

где

 u_{q_v}' — относительная стандартная неопределенность измерений объемного расхода СНГ при рабочих условиях, %;

 $\delta_{\rm pcr}$ — относительная погрешность расходомера Prowirl R 200, согласно свидетельству о поверке, %;

и'_{рсг} – относительная стандартная неопределенность измерений расхода
 СНГ при рабочих условиях с помощью расходомера, %;

 $u'_{\rm пp}$ — относительная стандартная неопределенность преобразования выходного сигнала расходомера в значение измеряемого параметра ИВК «АБАК+», %;

 $u'_{\rm про}$ — основная относительная стандартная неопределенность преобразовании входного аналогового сигнала силы постоянного тока расходомера Prowirl R 200, ИВК «АБАК+», %;

 $u'_{\rm прдоп}$ – дополнительная относительная стандартная неопределенность преобразовании входного аналогового сигнала силы постоянного

тока расходомера Prowirl R 200, ИВК «АБАК+», %;

 γ_{про} – приведенная основная погрешность преобразовании входного аналогового сигнала силы постоянного тока ИВК «АБАК+», согласно свидетельству о поверке, %;

 γ_{прдоп} – приведенная дополнительная погрешность преобразовании входного аналогового сигнала силы постоянного тока ИВК «АБАК+», согласно описанию типа, %;

 $I_{\rm впр}$ — верхний предел измерений силы постоянного тока, согласно описанию типа ИВК «АБАК+», мА:

 $I_{\rm H_{\rm np}}$ — нижний предел измерений силы постоянного тока, согласно описанию типа ИВК «АБАК+», мА;

 $I_{\rm np}$ — значение измеряемой величины силы постоянного тока, мА.

 $\Delta T_{\rm p_{\pi p}}$ — отклонение температуры окружающей среды от нормальных условий, согласно описанию типа ИВК «АБАК+», (за нормальные условия принимаются значения от 21 до 25 °C, в расчете необходимо использовать наибольшее отклонение температуры от нормальных условий, в соответствии с таблицей Б1), °C;

 $\Delta T_{\rm пр}$ — диапазон температур, для которого нормирована погрешность, согласно описанию типа (погрешность нормирована на изменение температуры на 1 °C), °C.

Относительную расширенную неопределенность измерений расхода СНГ определяют по формуле

$$U'_{q_v} = 2 \cdot u'_{q_v} = 2 \cdot 0.51\% = 1.02\%$$
 (5.6)

Б2. Определение относительной стандартной неопределенности ИВК «АБАК+»,.

$$u'_{\rm B} = 0.5 \cdot \delta_{\rm B} = 0.5 \cdot 0.01 = 0.005\%,$$
 (5.7)

где

 и'_в – составляющая относительной стандартной неопределенности измерений объемного расхода и объема СНГ при стандартных условиях, обусловленная алгоритмом вычислений и его программной реализацией, %;

 δ_B – относительная погрешность измерений объемного расхода и объема СНГ при стандартных условиях, обусловленная алгоритмом вычислений и его программной реализацией, согласно свидетельству о поверке,%.

Б3. Определение относительной стандартной неопределенности результата измерений абсолютного давления СНГ.

$$u_{\rm p}' = \sqrt{u_{\rm plo}'^2 + u_{\rm pl,on}'^2 + u_{\rm KFD}'^2 + u_{\rm p2}'^2} = \sqrt{0.121^2 + 0.129^2 + 0.131^2 + 0.104^2} = 0.24\%$$
 (5.8)

$$u'_{\text{plo}} = 0.5 \cdot \gamma_{plo} \cdot \frac{P_{\text{B}} - P_{\text{H}}}{P} = 0.5 \cdot 0.075 \cdot \frac{1 - 0}{0.31} = 0.121\%$$
 (5.9)

$$u'_{\rm plgon} = 0.5 \cdot \gamma_{plgon} \cdot \frac{P_{\rm B} - P_{\rm H}}{P} \cdot \frac{\Delta T_{\rm p}}{\Delta T_{pl}} = 0.5 \cdot 0.05 \cdot \frac{1 - 0}{0.31} \cdot \frac{(21 - 5)}{10} = 0.129\%$$
 (5.10)

$$\gamma_{pl,qon} = 0.02 + 0.03 \cdot \frac{P_{max}}{P_{B}} = 0.02 + 0.03 \cdot \frac{1}{1} = 0.05\%$$
 (5.11)

$$u'_{KFD} = \sqrt{{u'_{KFD0}}^2 + {u'_{KFD,Q0\Pi}}^2} = \sqrt{0.125^2 + 0.0406^2} = 0.131\%$$
 (5.12)

$$u'_{KFDo} = 0.5 \cdot \frac{\Delta y_{KFDo}}{I_{KFD}} \cdot 100\% = 50 \cdot \frac{0.01}{4} = 0.125\%$$
 (5.13)

$$u'_{KFD,\text{доп}} = 0.5 \cdot \frac{\Delta y_{KFD,\text{доп}}}{I_{KFD}} \cdot 100\% \cdot \frac{\Delta T_{\text{p}_{KFD}}}{\Delta T_{KFD}} = 50 \cdot \frac{0.00025}{4} \cdot \frac{(18-5)}{1} = 0.0406\%$$
 (5.14)

$$u'_{p2} = \sqrt{{u'_{p20}}^2 + {u'_{p2,\text{doff}}}^2} = \sqrt{0.1^2 + 0.0288^2} = 0.104\%$$
 (5.15)

$$u'_{p20} = 0.5 \cdot \gamma_{p20} \cdot \frac{I_{\text{B}p2} - I_{\text{H}p2}}{I_{p2}} = 0.5 \cdot 0.05 \cdot \frac{(20 - 4)}{4} = 0.1\%$$
 (5.16)

$$u'_{p2,\text{доп}} = 0.5 \cdot \gamma_{p2,\text{доп}} \cdot \frac{I_{\text{B}_{p2}} - I_{\text{H}_{p2}}}{I_{p2}} \cdot \frac{\Delta T_{\text{p}_{p2}}}{\Delta T_{p2}} = 0.5 \cdot 0.0009 \cdot \frac{(20 - 4)}{4} \cdot \frac{21 - 5}{1} = 0.0288\%$$
(6.17)

 u'_p – относительная стандартная неопределенность результата измерений абсолютного давления СНГ;

 $u_{\rm plo}'$ — предел основной относительной стандартной неопределенности датчика давления, %;

 γ_{plo} — основная приведенная погрешность датчика давления, согласно паспорту или свидетельству о поверке, %;

 $u'_{\rm plдоп}$ – предел дополнительной относительной стандартной неопределенности датчика давления, %;

 у_{рІдоп} – дополнительная приведенная погрешность датчика давления, согласно руководству по эксплуатации, %;

 P_{max} — максимальный верхний предел измерений давления, согласно руководству по эксплуатации, МПа;

 Р_в – верхний предел измерений давления, на который настроен датчик, согласно паспорту или свидетельству о поверке, МПа;

 Р_н – нижний предел измерений давления, согласно паспорту или свидетельству о поверке, МПа;

вначение измеренного давления, согласно таблице Б1, МПа;

 $\Delta T_{\mathrm{p}_{pl}}$ — отклонение температуры окружающей среды от нормальных условий, согласно описанию типа датчика давления (за нормальные условия принимаются значения от 21 до 25 °C, в расчете необходимо использовать наибольшее отклонение температуры от нормальных условий, в соответствии с таблицей Б1), °C;

- ΔT_{pl} диапазон температур, для которого нормирована погрешность, согласно описанию типа датчика давления (погрешность нормирована на изменение температуры на 10 °C), °C;
- u'_{KFD} относительная стандартная неопределенность измерительного преобразователя KFD2-STC4-Ex 1.20, %;
- u'_{KFDo} основная относительная стандартная неопределенность измерительного преобразователя KFD2-STC4-Ex 1.20, %;
- $u'_{KFDдоп}$ дополнительная относительная стандартная неопределенность измерительного преобразователя KFD2-STC4-Ex 1.20, %;
- Δy_{KFD0} предел основной абсолютной погрешности измерительного преобразователя KFD2-STC4-Ex 1.20, согласно свидетельству о поверке (в расчете абсолютная погрешность равная ± 10 мкА, переведена в мА), мА;
- $\Delta y_{KFDдог}$ предел дополнительной абсолютной погрешности измерительного преобразователя KFD2-STC4-Ex 1.20, согласно описанию типа (в расчете абсолютная погрешность равная $\pm 0,25$ мкА, переведена в мА), мА;
- I_{KFD} значение силы постоянного тока измерительного преобразователя KFD2-STC4-Ex 1.20, мА;
- $\Delta T_{\mathrm{p}_{KFD}}$ отклонение температуры окружающей среды от нормальных условий, согласно описанию типа (за нормальные условия принимаются 20 ± 2 °C, в расчете необходимо использовать наибольшее отклонение температуры от нормальных условий, в соответствии с таблицей Б1), °C;
- ΔT_{KFD} диапазон температур, для которого нормирована погрешность, согласно описанию типа измерительного преобразователя KFD2-STC4-Ex 1.20, (погрешность нормирована на изменение температуры на 1 °C), °C;
- преобразования u'_{p2} относительная стандартная неопределенность выходного сигнала силы постоянного тока измерительного KFD2-STC4-Ex1.20 преобразователя В значение измеряемого параметра ИВК «АБАК+», %;
- u'_{p2o} основная относительная стандартная неопределенность преобразовании входного аналогового сигнала силы постоянного тока измерительного преобразователя KFD2-STC4-Ex1.20 в значение измеряемого параметра ИВК «АБАК+», %;
- $u_{p2,\text{доп}}'$ дополнительная относительная стандартная неопределенность преобразовании входного аналогового сигнала силы постоянного тока измерительного преобразователя KFD2-STC4-Ex1.20 в значение измеряемого параметра ИВК «АБАК+», %;
- у_{р2о} приведенная основная погрешность преобразовании входного аналогового сигнала силы постоянного тока ИВК «АБАК+», согласно свидетельству о поверке, %;
- $\gamma_{p2\text{доп}}$ приведенная дополнительная погрешность преобразовании входного аналогового сигнала силы постоянного тока ИВК «АБАК+», согласно

описанию типа, %;

 $I_{{}^{8}p2}$ — верхний предел измерений силы постоянного тока ИВК «АБАК+», согласно описанию типа, мА;

 $I_{^{\rm H}p2}$ — нижний предел измерений силы постоянного тока ИВК «АБАК+», согласно описанию типа, мА;

 I_{p2} — значение измеряемой величины силы постоянного тока ИВК «АБАК+», мА;

 $\Delta T_{\rm p_{\it p2}}$ — отклонение температуры окружающей среды от нормальных условий, согласно описанию типа ИВК «АБАК+», (за нормальные условия принимаются значения от 21 до 25 °C, в расчете необходимо использовать наибольшее отклонение температуры от нормальных условий, в соответствии с таблицей Б1), °C;

 ΔT_{p2} — диапазон температур, для которого нормирована погрешность, согласно описанию типа ИВК «АБАК+», (погрешность нормирована на изменение температуры на 1 °C), °C.

Относительную расширенную неопределенность измерений абсолютного давления СНГ определяют по формуле

$$U_P' = 2 \cdot u_p' = 2 \cdot 0.24\% = 0.48\%$$
 (5.18)

Б4. Определение относительной стандартной неопределенности измерения температуры

$$u_T' = 0.5 \cdot \frac{(t_{\rm B} - t_{\rm H})}{273.15 + t} \cdot \sqrt{\left(\frac{\Delta t \cdot 100}{t_{\rm B} - t_{\rm H}}\right)^2 + \gamma_{KFD}^2 + \gamma_{p2}^2} =$$
(5.19)

$$= 0.5 \cdot \frac{\left(50 - (-30)\right)}{273,15 + 10} \cdot \sqrt{\left(\frac{0,119 \cdot 100}{50 - (-30)}\right)^2 + 0,065^2 + 0,052^2} = 0.024\%$$

$$\Delta t = \sqrt{\Delta t_o^2 + \left(\Delta t_{\text{доп}} \cdot \frac{\Delta T_{\text{p}_t}}{\Delta T_t}\right)^2} = \sqrt{0.1^2 + \left(0.005 \cdot \frac{18 - 5}{1}\right)^2} = 0.119 \,\text{°C}$$
 (5.20)

$$\gamma_{KFD} = \sqrt{\gamma_{KFD0}^2 + \gamma_{KFD00}^2} = \sqrt{0.0625^2 + 0.02^2} = 0.065\%$$
 (5.21)

$$\gamma_{KFD0} = \frac{\Delta y_{KFD0}}{I_{BKFD}} \cdot 100 \% = \frac{0.01}{20 - 4} \cdot 100 = 0.0625\%$$
 (5.22)

$$\gamma_{KFD,\text{доп}} = \frac{\Delta y_{KFD,\text{доп}}}{I_{\text{B},KFD}} \cdot 100 \% \cdot \frac{\Delta T_{\text{p}_{KFD}}}{\Delta T_{KFD}} = \frac{0,00025}{20 - 4} \cdot 100 \cdot \frac{(18 - 5)}{1} = 0,02\%$$
 (5.23)

$$\gamma_{p2} = \sqrt{\gamma_{p2o}^2 + \left(\gamma_{p2\text{doff}} \cdot \frac{\Delta T_{p_{p2}}}{\Delta T_{p2}}\right)^2} = \sqrt{0.05^2 + \left(0.0009 \cdot \frac{21 - 5}{1}\right)^2} = 0.052\%$$
 (5.24)

где

 u_T' – предел относительной стандартной неопределенности измерения температуры, %;

- Δt предел абсолютной погрешности датчика температуры, °C;
- $\Delta t_{\rm o}$ предел основной абсолютной погрешности датчика температуры, согласно свидетельству о поверке, °C;
- $\Delta t_{
 m доп}$ предел дополнительной абсолютной погрешности датчика температуры, согласно описанию типа, °C;
- ΔT_{p_t} отклонение температуры окружающей среды от нормальных условий, согласно описанию типа датчика температуры (за нормальные условия принимаются значения 23 ± 5 °C, в расчете необходимо использовать наибольшее отклонение температуры от нормальных условий, в соответствии с таблицей Б1), °C;
- ΔT_t диапазон температур, для которого нормирована погрешность, согласно описанию типа датчика температуры (погрешность нормирована на изменение температуры на 1 °C), °C;
- $t_{\rm B}$ верхний предел измерений датчика температуры, согласно свидетельству о поверке, °C;
- $t_{\rm H}$ нижний предел измерений датчика температуры, согласно свидетельству о поверке, °C;
- т значение измеряемой температуры, в соответствии с таблицей Б1,
 °C;
- γ_{KFD} приведенная погрешность измерительного преобразователя KFD2-STC4-Ex 1.20, %;
- γ_{KFDo} основная приведенная погрешность измерительного преобразователя KFD2-STC4-Ex 1.20, %;
- $\gamma_{KFDдоп}$ дополнительная приведенная погрешность измерительного преобразователя KFD2-STC4-Ex 1.20, %;
- $\Delta T_{\mathrm{p}_{KFD}}$ отклонение температуры окружающей среды от нормальных условий, согласно описанию типа измерительного преобразователя KFD2-STC4-Ex 1.20 (за нормальные условия принимаются 20 \pm 2 °C, в расчете необходимо использовать наибольшее отклонение температуры от нормальных условий, в соответствии с таблицей Б1), °C;
- ΔT_{KFD} диапазон температур, для которого нормирована погрешность, согласно описанию типа измерительного преобразователя KFD2-STC4-Ex 1.20 (погрешность нормирована на изменение температуры на 1 °C), °C;
- I_{вкгр} верхний предел измерений силы постоянного тока, согласно описанию типа измерительного преобразователя KFD2-STC4-Ex 1.20, мА;
- $I_{^{\rm H}KFD}$ нижний предел измерений силы постоянного тока, согласно описанию типа измерительного преобразователя KFD2-STC4-Ex 1.20, мA;
- γ_{p2} приведенная погрешность преобразования выходного сигнала силы постоянного тока измерительного преобразователя KFD2-STC4-Ex
 1.20, в значение измеряемого параметра ИВК «АБАК+», %;
- γ_{p2o} приведенная основная погрешность преобразовании входного

аналогового сигнала силы постоянного тока ИВК «АБАК+», согласно свидетельству о поверке, %;

 $\gamma_{p2\text{доп}}$ — приведенная дополнительная погрешность преобразовании входного аналогового сигнала силы постоянного тока ИВК «АБАК+», согласно описанию типа, %;

 $\Delta T_{\mathrm{p}_{p2}}$ — отклонение температуры окружающей среды от нормальных условий, согласно описанию типа ИВК «АБАК+» (за нормальные условия принимаются значения от 21 до 25 °C, в расчете необходимо использовать наибольшее отклонение температуры от нормальных условий, в соответствии с таблицей Б1), °C;

 ΔT_{p2} — диапазон температур, для которого нормирована погрешность, согласно описанию типа ИВК «АБАК+», (погрешность нормирована на изменение температуры на 1 °C), °C.

Относительную расширенную неопределенность измерений температуры СНГ определяют по формуле

$$U_T' = 2 \cdot u_T' = 2 \cdot 0.024\% = 0.048\%$$
 (5.25)

Программный комплекс "Расходомер ИСО", модуль "ГОСТ Р 8.740-2011", версии 2.15 от 17.08.2020

Владелец данной копии программы: АО «Нефтеавтоматика»

Расчёт № 8 от 31.12.2020

ВИШАМЧОФНИ ВАШНО

Наименование узла измерений / объекта - Система измерения количества и параметров газа (СИКГ), поступающего на продувку факельного коллектора низкого давления УПН-1, в БПРГ ЦПС Куюмбинского месторождения Принадлежит - ООО "Славнефть-Красноярскнефтегаз" Установлен - ЦПС

Метод расчёта расхода при стандартных условиях - pTZ-пересчёт

измеряемая среда

Наименование измеряемой среды - Влажный нефтяной газ

Объёмный расход при рабочих условиях. .15 м3/ч Температура. .10 °C Абсолютное давление. 0,31 МПа Температура при стандартных условиях. .20 °C Абсолютное давление при стандартных условиях. .0,101325 МПа	
Температура определения влажности. 20 °C Давление определения влажности. 0,101325 МПа Абсолютная влажность. 0 г/м3	
Содержание компонентов газа 67,288 Метан (СН4) 67,288 Этан (С2Н6) 13,7 Пропан (СЗН8) 6 и-Бутан (и-С4Н10) 1,85 н-Бутан (н-С4Н10) 3,42 и-Пентан (и-С5Н12) 0,819 н-Пентан (н-С5Н12) 0,782 Гексан (С6Н14) 0,528 Гептан (С7Н16) 0,1 Азот (N2) 5,45 Диоксид углерода (СО2) 0,063 Единицы измерения состава газа - молярные %	
*Коэффициент сжимаемости	
СВЕДЕНИЯ О СРЕДСТВАХ ИЗМЕРЕНИЯ	

Система измерения количества и параметров газа (СИКГ), поступающего $\,$ Страница $\,$ 1 из 4 $\,$

Наименование вычислителя - Комплекс измерительно-вычислительный расхода и количества жидкостей и газов «АБАК+» (Регистрационный номер № 52866-13)

Относительная стандартная неопределённость основная
Наименование счётчика - Расходомер вихревоой Prowirl R 200 (Регистрациооный номер №58533-14) Пределы измерения объёмного расхода при рабочих условиях от
Преобразование выходного сигнала счётчика Относительная стандартная неопределённость основная
Наименование СИ температуры - Датчик температуры на основе термопреобразователя сопротивления ТСПТ Exi101-L16-Pt100-A4H10-C110-6-250/100 (Регистрационный номер №57176-14) Пределы измерения температуры от
1-й преобразователь температуры - Преобразователь измерительный серии К, модель KFD2-STC4-Ex1.20 (Регистрационный номер № 65857-16) Пределы измерения температуры от
2-й преобразователь температуры - Комплекс измерительно-вычислительный расхода и количества жидкостей и газов «АБАК+» (Регистрационный номер № 52866-13) Пределы измерения температуры от
СИ абсолютного давления: производитель - Метран серия - 150 модель - ТАК исполнение по пределам погрешности - Обычное код диапазона измерений - 2 Верхний предел измерения абсолютного давления

Система измерения количества и параметров газа (СИКГ), поступающего $\,$ Страница $\,$ 2 из 4

дополнительная приведенная погрешность от влияния температуры окружающей среды
0,02+0,03*Pmax/PB % на каждые 10 °C
Диапазон изменения температуры окружающей среды (в месте установки датчика)
от
1-й преобразователь абсолютного давления — Преобразователь измерительный серии К, модель KFD2-STC4-Ex1.20 (Регистрационный номер № 65857-16 Относительная стандартная неопределённость основная
2-й преобразователь абсолютного давления - Комплекс измерительно-вычислительный расхода и количества жидкостей и газов «АБАК+» (Регистрационный номер № 52866-13) Относительная стандартная неопределённость
основная
Относительная стандартная неопределённость влажности нефтяного газа основная
Абсолютная погрешность состава газа по ГОСТ 31371.7-2008 Метан (СН4)
РАССЧИТАННЫЕ НЕОПРЕДЕЛЁННОСТИ
*Относ. расш. неопред-ть вычисления

Таблица неопределённостей измерения объёмного расхода, приведённого к стандартным условиям, при заданных отклонениях температуры и давления среды и заданных значениях объёмного расхода при рабочих условиях

Температура, °С Абсолютное давление, МПа		10	10	10	15	15
		M∏a 0,31	0,41	0,31	0,31	0,41
Pacx	од газа		Расход газа пр	и стандартных	условиях, м3/ч	
м3/ч	%	Относительная расширенная неопределённость определения расхода,				
15	2,76311	47,9817 1,3	63,7476 1,3	47,9817 1,3	47,1131 1,3	62,5776 1,3
50	9,21036	159,939 1,3	212,492 1,3	159,939 1,3	157,044 1,3	208,592 1,3
100	18,4207	319,878 1,3	424,984 1,3	319,878 1,3	314,088 1,3	417,184 1,3
150	27,6311	479,817 1,3	637,476 1,3	479,817 1,3	471,131 1,3	625,776 1,3
200	36,8414	639,757 1,3	849,968 1,3	639,757 1,3	628,175 1,3	834,368 1,3
400	73,6829	1279,51 1,3	1699,94 1,3	1279,51 1,3	1256,35 1,3	1668,74 1,3

Рассчитанная относительная расширенная неопределённость COOTBETCTBYET выбранному уровню точности: 5%

Исполнитель Хусаинов Р.Р.