СОГЛАСОВАНО

Заместитель генерального директора директор исследовательского центра

«Авиационные двигатели»

ФАУ «ЦИАМ им. П.И. Баранова»

В.Г. Марков

ж. 19 ж. Веврам 2021 г.

УТВЕРЖДАЮ

Заместитель генерального директора

АО «НПЦ «Мера»

А.Н. Попов

19» 02 2021 г.

Государственная система обеспечения единства измерений

Инструкция

Система автоматизированная информационно-измерительная стенда № 5 ОП «Управленческий» АИИС 5У

Методика поверки

МП АИИС 5У

СОДЕРЖАНИЕ

ПРИНЯТЫЕ СОКРАЩЕНИЯ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ
1 ОБЩИЕ ПОЛОЖЕНИЯ4
2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ6
3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ8
4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ9
5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ 10
6 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ11
7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ12
8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ. ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ13
9 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ 15
10 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ49
11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ51
Приложение А (обязательное) Метрологические характеристики АИИС 5У52
Приложение Б (обязательное) Выполнения поверки ИК и формирование протокола поверки ИК в ПО «Recorder»
Приложение В (справочное) Форма протокола поверки при расчетном способе поверки .64
Приложение Г (рекомендуемое) Форма протокола поверки при автоматическом способе

ПРИНЯТЫЕ СОКРАЩЕНИЯ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

рп	
ВП	 верхний предел диапазона измерений или нормированного
пта	значения измеряемого параметра;
ди	 диапазон измерений ИК, в пределах которого
	устанавливаются контрольные точки (меры), для которых
	определяются значения метрологических характеристик и в которых
	выполняется их оценка на соответствие нормированным пределам
THE	допускаемой погрешности измерений;
ИК	измерительный канал (каналы);
KT	- контрольная точка диапазона измерений (ДИ), в которой
	устанавливается (задается) номинальное действительное значение
	измеряемой величины, принимаемое за истинное, при проведении
	экспериментальных исследований поверяемого ИК;
МП	 методика поверки;
MX	 метрологические характеристики;
НΠ	 нижний предел диапазона измерений;
ПК	 персональный компьютер;
ПО	 программное обеспечение;
ПП	 первичный преобразователь (датчик);
СИ	 средства измерений;
СП	- средства поверки (эталон) СИ или средства проверки
	технических характеристик СИ;
ТПР	 турбинный преобразователь расхода;
ДМП	 динамометрическая платформа;
СИС	 силоизмерительная система;
СИУ	- силоизмерительное устройство;
ПГУ	 поверочное градуировочное устройство;
СГУ	 стендовое градуировочное устройство.
	степдовое градупровочное устронетво.

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика поверки (МП) разработана в соответствии с Приказом Минпромторга России № 2907 от 28.08.2020 г., приказом Минпромторга № 2510 от 31.06.2020 г. и устанавливает порядок, методы и средства проведения первичной и периодических поверок измерительных каналов (ИК) системы измерительной АИИС 5У (далее по тексту Система), предназначеной для измерений параметров технологических процессов стендовых испытаний газотурбинных двигателей (ГТД) при испытаниях на стенде № 5 УП ПАО «ОДК-Кузнецов», г. Самара.
- 1.2 Система является многоканальной измерительной системой, отнесенной в установленном порядке к средствам измерений, и подлежит государственному регулированию обеспечения единства измерений на всех этапах жизненного цикла, включая эксплуатацию.
- 1.3 Функционально Система включает в себя измерительные каналы (ИК) разделенные на две группы:

Первая группа - ИК физических величин, состоящие из ПП, преобразующие измеряемые физические величины в электрические сигналы и вторичной аппаратуры для последующего измерения этих электрических сигналов и пересчета их в значения физических величин. К ней относятся:

- ИК температур газообразных и жидких сред;
- ИК абсолютного, избыточного и разности давлений газообразных и жидких сред;
- ИК силы от тяги двигателя:
- ИК температуры и относительной влажности воздуха в боксе;
- ИК массового расхода топлива;
- ИК объемного расхода жидкостей;
- ИК напряжения переменного тока генератора;
- ИК силы переменного тока генератора;
- ИК частоты переменного тока генератора.

Вторая группа - ИК физических величин, состоящая только из вторичной аппаратуры измерений электрических параметров, соответствующая значениям физических параметров, рассчитываемых по известным градуировочным характеристикам ПП, не входящая в состав Системы. К этим ИК относятся:

- ИК сигналов от датчиков температуры (ТЭДС термопар, соответствующих температуре);
 - ИК частоты переменного тока, соответствующей частоте вращения роторов;
 - ИК относительного напряжения тензодатчиков;
- ИК напряжений постоянного и переменного тока, соответствующего вибрациям и пульсациям давления;
 - ИК заряда пьезоэлектрических датчиков.
 - 1.4 Способы поверки
- 1.4.1 Настоящая МП устанавливает комплектный и поэлементный способы поверки ИК.
 - 1.5 Нормирование МХ
- 1.5.1 Номенклатура МХ ИК, определяемых по данной МП, установлена в соответствии с ГОСТ 8.009-84.
 - 1.5.2 Оценка и форма представления погрешностей по МИ 1317-2004.
- 1.5.3 Методы определения МХ ИК при поверке комплектным способом по ГОСТ Р 8.736-2011 и ОСТ 1 00487-83.
 - 1.5.4 Нормирование поверки: количество КТ на ДИ по МИ 2440-97.

- 1.6 Прослеживаемость АИИС 5У к Государственным первичным эталонам обеспечивается средствами поверки, являющихся средствами измерений утвержденного типа, предусмотренными Государственными поверочными схемами для средств измерений.
 - 1.7 Интервал между поверками 1 год.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ СРЕДСТВА ИЗМЕРЕНИЙ

2.1 Перечень операций, которые должны проводиться при поверке АИИС 5У, приведен в таблице 2.1.

Таблица 2.1 – Перечень операций поверки

Таолица 2.1 — Перечень операции поверки	Номер пункта	Провеление	е операции при	
Наименование операции	документа по	первичной периодической		
тапменованно операции	поверке	поверке	поверке	
1	2	3	4	
1 Внешний осмотр	7	да	да	
2 Опробование	8.2	да	да	
3 Определение метрологических		ди	Ди	
характеристик ИК:	9.1	да	да	
3.1 Определение погрешности ИК				
температур газообразных и жидких	9.2	да	да	
сред		A	~~	
3.2 Определение погрешностей ИК				
абсолютных, избыточных и разности	9.3	да	да	
давлений газообразных и жидких сред	7.5	ди	Ди	
3.3 Определение погрешностей ИК				
силы от тяги двигателя	9.4	да	да	
3.4 Определение погрешностей ИК				
температуры и относительной	9.5	да	да	
влажности воздуха в боксе	7.5	да	Да	
3.5 Определение погрешностей ИК	W 21			
массового расхода топлива	9.6	да	да	
3.6 Определение погрешностей ИК	127 50.16			
объемного расхода жидкостей	9.7	да	да	
3.7 Определение погрешностей ИК				
напряжения переменного тока	9.8	да	да	
генератора	7.0	да	ди	
3.8 Определение погрешностей ИК				
силы переменного тока генератора	9.9	да	да	
3.9 Определение погрешностей ИК				
частоты переменного тока генератора	9.10	да	да	
3.10 Определение погрешностей ИК		,		
сигналов от датчиков температуры				
(ТЭДС термопар, соответствующих	9.11	да	да	
температуре)				
3.11 Определение погрешностей ИК				
частоты переменного тока,				
соответствующей значениям частоты	9.12	да	да	
вращения ротора				
3.12 Определение погрешностей ИК				
относительного напряжения	9.13	да	да	
тензодатчиков	9.13	ди	ди	
3.13 Определение погрешностей ИК				
напряжений постоянного и				
переменного тока, соответствующего	9.14	да	да	
вибрациям, пульсациям давления и	7.11	44	744	
заряду пьезоэлектрических датчиков				
заряду презознектрических датчиков				

	Номер пункта	Проведение	е операции при
Наименование операции	документа по поверке	первичной поверке	периодической поверке
1	2	3	4
3.14 Определение погрешностей ИК заряда пьезоэлектрических датчиков	9.15	да	да
3.15 Определение погрешности канала генератора импульсов синхронизации	9.16	да	да
4 Подтверждение соответствия средств измерений метрологическим требованиям	10	да	да
5 Оформление результатов поверки	11	да	да

Примечание — при проведении периодической поверки в ограниченном объеме, перечень проверяемых ИК может быть сокращен.

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

3.1 Условия окружающей среды:

в помещении пультовой:	
- температура воздуха, °С	от +1 до +35
- относительная влажность воздуха при температуре +25 °C, %	не более 80
- атмосферное давление, кПа	от 84 до 113
в испытательном боксе:	
- температура воздуха, °С	от -40 до +40
- относительная влажность воздуха при температуре +25 °C, %	не более 80
- атмосферное давление, кПа	от 84 до 113

3.2 При выполнении поверок ИК АИИС 5У условия окружающей среды для средств поверки должны соответствовать требованиям, указанным в руководствах на их эксплуатацию и требованиям, установленным ГОСТ 8.395-80.

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

- 4.1 К поверке допускаются лица, изучившие руководство по эксплуатации (РЭ) на систему и, входящие в её состав аппаратные и программные средства, знающие принцип действия используемых средств измерений и прошедшие инструктаж по технике безопасности (первичный и на рабочем месте) в установленном организацией порядке.
- 4.2 К поверке допускаются лица, освоившие работу используемых средств поверки, изучившие настоящую методику и, имеющие достаточную квалификацию.
- 4.3 Лица, участвующие в поверке системы, должны проходить обучение и аттестацию по технике безопасности, а также производственной санитарии при работе в условиях её размещения.

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

5.1 При проведении поверки использовать средства измерений и вспомогательное оборудование, приведенные в таблице 5.1.

Таблица 5.1 – Перечень средств поверки

Ссылка на	Наименование и тип (условное обозначение) основных или										
номер	вспомогательных СП, обозначение нормативного документа										
раздела	регламентирующего технические требования, основные и (или)										
МΠ	метрологические и характеристики СП										
I	2										
	Основные средства поверки										
9.2; 9.3; 9.8;											
9.9; 9.11;	информационном фонде 22125-01										
9.14; 9.15											
	Калибратор давления DPI-615 с внешними модулями, регистрационный										
9.3	номер в Федеральном информационном фонде по обеспечению единства										
0.7. 0.10.	измерений 16347-09										
9.7; 9.10;	Генератор сигналов низкочастотный прецизионный Г3-110,										
9.12	регистрационный номер в Федеральном информационном фонде 5460-76										
9.2; 9.13	Мера электрического сопротивления Р3026-2, регистрационный номер в										
	Федеральном информационном фонде 8478-81										
0.40	Катушки электрического сопротивления измерительные Р331 (1000 Ом, 3										
9.13	шт.), регистрационный номер в Федеральном информационном фонде 1162-58										
9.4	Динамометр электронный АЦД (АЦД/1Р-300/2И-00), регистрационный										
<i>J</i> .,	номер в Федеральном информационном фонде 67638-17										
9.15	Магазин емкости Р583, регистрационный номер в Федеральном										
7.15	информационном фонде 2370-68										
9.2	Калибраторы температуры ЭЛЕМЕР-КТ-150, ЭЛЕМЕР-КТ-650,										
7.2	регистрационный номер в Федеральном информационном фонде 60979-15										
9.16	Частотомер электронно-счетный вычислительный Ч3-64/1,										
9.10	регистрационный номер в Федеральном информационном фонде 9135-83										
	Вспомогательные средства поверки										
9.1 – 9.16	Термогигрометр ИВА-6, регистрационный номер в Федеральном										
9.1 - 9.10	информационном фонде 46434-11										

- 5.2 При проведении поверки допускается применение других средств поверки, обеспечивающих определение метрологических характеристик поверяемых ИК с требуемой точностью (выбираются по поверочным схемам по соответствующим видам измерений).
- 5.3 Используемые средства поверки должны иметь действующее свидетельство об аттестации эталона и/или действующее свидетельство о поверке (с учетом требований поверочных схем), и/или наличие сведений о положительных результатах поверки в Федеральном информационном фонде по обеспечению единства измерений (ФИФ ОЕИ).

6 ТРЕБОВАНИЯ (УСЛОВИЯ) ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 6.1 При проведении поверки необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и «Правилами по охране труда при эксплуатации электроустановок», ГОСТ 12.2.007.0-75, ГОСТ Р 12.1.019-2009, ГОСТ 12.2.091-2002 и требования безопасности, указанные в технической документации на применяемые эталоны и вспомогательное оборудование. Любые подключения приборов проводить только при отключенном напряжении питания системы.
 - 6.2 Кроме того, необходимо соблюдать следующие требования:
- к работе по выполнению поверки (калибровки) допускаются лица не моложе 18 лет, прошедшие аттестацию по технике безопасности и промышленной санитарии, ознакомленные с эксплуатационной документацией на систему, с инструкцией по эксплуатации электрооборудования системы и с настоящей методикой;
- электрооборудование стенда, а также электроизмерительные приборы, используемые в качестве средств поверки, должны быть заземлены, блоки питания должны иметь предохранители номинальной величины;
- работы по выполнению поверки системы должны проводиться по согласованию с лицами, ответственными за её эксплуатацию.

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

- 7.1 При выполнении внешнего осмотра должно быть установлено соответствие поверяемого ИК следующим требованиям:
 - комплектность ИК системы должна соответствовать РЭ;
- измерительные, вспомогательные и соединительные компоненты (кабельные разъемы, клеммные колодки и т. д.) ИК системы не должны иметь визуально определяемых внешних повреждений и должны быть надежно соединены и закреплены;
- соединительные линии (кабели, провода) не должны иметь повреждений изоляции и экранирования и должны быть надежно соединены с разъемами и клеммами;
 - система должна быть защищена от несанкционированного вмешательства.
- 7.2 Результаты внешнего осмотра считать удовлетворительными, если выполняются условия, изложенные в пункте 7.1. В противном случае проведение поверки не проводится до устранения выявленных недостатков.

8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ. ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

8.1 Подготовка к поверке

При проведении поверки должны быть соблюдены следующие условия:

- 8.1.1 Проверить техническое состояние и подготовить Систему к работе в соответствии с РЭ на Систему.
 - 8.1.2 Проверить соответствие условий поверки требованиям раздела 3.
 - 8.1.3 При подготовке к поверке:
- проверить наличие действующих свидетельств о поверке и/или наличия сведений о положительных результатах поверки средств измерений (изме-рительных компонентов), входящих в состав Системы в ФИФ ОЕИ, а также наличие знаков поверки, установленные на средства измерений и/или на свидетельстве о поверке или паспорте (формуляре), если это предусмотрено документами на поверку данных средств измерений (перечень средств изме-рений (измерительных компонентов), входящих в состав Системы, приведен в описании типа и формуляре на Систему);
- проверить наличие действующих свидетельств об аттестации эталонов на средства поверки и/или действующих свидетельств о поверке, и/или наличия све-дений о положительных результатах поверки в ФИФ ОЕИ;
- при необходимости обеспечить оперативную связь оператора у монитора с оператором, задающим контрольные значения;
 - включить питание аппаратуры;
 - ожидать прогрева аппаратуры не менее 30 минут.
- 8.1.4 Перед началом поверки измерить и занести в протокол поверки условия окружающей среды (температура, влажность воздуха и атмосферное давление).

8.2 Опробование

- 8.2.1 Идентификация ПО
- 8.2.1.1 Для проверки наименования и версии метрологически значимого ПО выполнить следующие операции (рисунок 1):
 - 8.2.1.1.1. Запустить ПО управления комплексами «СИАМ»;
- 8.2.1.1.2. В открывшемся главном окне программы щелчком правой кнопки «мыши» по пиктограмме в левом верхнем углу открыть контекстное меню;
- 8.2.1.1.3. Щелчком левой кнопки «мыши» в контекстном меню на опции «О программе» открыть информационное окно.
- 8.2.1.1.4. Убедиться в соответствии характеристик в информационном окне программы, характеристикам программного обеспечения, приведенным ниже:
 - идентификационное наименование scales.dll;
 - номер версии scales.dll 1.0.0.8;
 - ID (цифровой идентификатор) 24СВС163.

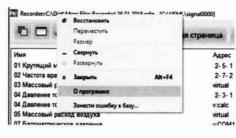


Рисунок 1 – Идентификация ПО

8.2.2 Проверку работоспособности поверяемых ИК системы выполнить в соответствии с РЭ.

9 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВА ИЗМЕРЕНИЙ

9.1 Определение метрологических характеристик ИК

9.1.1 Проверку проводить комплектным и поэлементным способом.

9.2 Определение погрешности ИК температур газообразных и жидких сред

Поверку каждого ИК (кроме ИК температуры воздуха в боксе) поэлементным способом выполнять в 3 этапа:

- 1 этап контроль (оценка) состояния и МХ ПП;
- 2 этап поверка электрической части ИК с целью определения диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);
 - 3 этап определение и оценка максимальной погрешности ИК.
 - 9.2.1 Для контроля (оценки) ПП:
- 9.2.1.1 Проверить внешний вид, наличие пломб и маркировку ПП не должен иметь видимых внешних повреждений, а пломбирование, маркировка типа и номера ПП должны соответствовать паспорту (этикетке).
- 9.2.1.2 Для каждого ПП проверить действующее свидетельство о поверке и/или наличия сведений о положительных результатах поверки в ФИФ ОЕИ.
- 9.2.2 Поверку электрической части каждого ИК выполнить в указанной ниже последовательности:
- 9.2.2.1 Собрать схему поверки в соответствии с рисунком 2 или 3. На вход электрической части ИК, вместо ПП подключить средство поверки. Места подключений указаны в БЛИЖ.423819.004.008 Э0.

Рисунок 2 — Схема поверки ИК температуры жидких и газообразных сред (с ПП — термопреобразователями сопротивления) поэлементным способом

Рисунок 3 — Схема поверки ИК температуры жидких и газообразных сред (с ПП — термоэлектрическим преобразователем) поэлементным способом

9.2.2.2 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку для поверяемой электрической части соответствующих ИК. При настройке в поле «Контрольные точки» установить значения из поля «Номинальные значения температуры в КТ» (или номинальные значения сопротивления в КТ, соответствующие значениям температуры) таблицы 9.2.1 для соответствующего ИК (можно выбирать другие КТ, но не менее 5 равномерно распределенных по диапазону, включае верхнее и нижнее значения).

Таблица 9.2.1 – Контрольные точки измерения температуры

Наименование ИК (измеряемого параметра)	Размерность	нп ди ик	вп ди ик	Кол-во КТ	Номинальные значения температуры в КТ, x_k	Номинальные значения сопротивлени я (напряжения) в КТ, Ом (мВ)
Температура воздуха в боксе (Параметр: t.бокс)	°C	-45	+60	Пове	ряется автономно	о, см. раздел 8.7
Температура воздуха при отборе на нормальные и аварийные нужды ЛА (Параметр: t.г.нужды ЛА)	К	400	770	5	400; 500; 600; 700; 770	Соответствую щие значениям температуры в КТ по ГОСТ Р 8.585-2001 (НСХ – ТХА)
Температура воздуха на входе ВЗУ (Параметры: t.н.1 – t.н.13)	К	223	323	5	223; 248; 273; 298; 323	
Температура г/ж в баке НП-177-1, температура г/ж в баке НП-177-2 (Параметры: t.гж.нn177.1; t.гж.нn177.2)		- 50	+120		50, 40, 20,	Соответствую щие значениям температуры в
Температура г/ж на входе НП-177-1, температура г/ж на входе НП-177-2 (Параметры: t.гж.вх.нn177.1; t.гж.вх.нn177.2)	°C	- 50	+120	11	-50; -40; -30; - 20; -10; 0; +25; +50; +75; +100; +120	KT πο ΓΟСΤ 6651-2009 (HCX 100Π)
Температура г/ж на выходе НП-177-1, температура г/ж на выходе НП-177-2		- 50	+120			

Наименование ИК (измеряемого параметра)	Размерность	нп ди ик	вп ди ик	Кол-во КТ	Номинальные значения температуры в KT, x_k	Номинальные значения сопротивлени я (напряжения) в КТ, Ом (мВ)
(Параметры: t.гж.вых.нn177.1; t.гж.вых.нn177.2)						
Температура г/ж на выходе т/о НП-177-1, температура г/ж на выходе т/о НП-177-2 (Параметры: t.гж.то.нп177.1; t.гж.то.нп177.2)		- 50	+120			
Температура топлива на входе в изделие (Параметры: t.m.ex)		- 50	+50	11	-50; -40; -30; - 20; -10; 0; +10; +20; +30; +40; +50	
Температура масла на входе в изделие (Параметры: t.м.ex)		- 50	+250		-50; -40; -30; -	
Температура масла на выходе из изделия (Параметры: t.м.вых)		- 50	+250	11	20; -10; 0; +50; +100; +150;	
Температура масла в ОТ (опоры турбины) (Параметры: t.м.OT)		- 50	+250		+200; +250	

- 9.2.2.3 Используя ПО «Recorder», поочередно для всех номинальных значений температуры в КТ, указанных в таблице 9.2.1, провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом номинальные значения сопротивления на входе ИК, соответствующие номинальным значениям температуры в КТ и указанные в поле «Номинальные значения сопротивления в КТ», устанавливать с помощью соответствующего средства поверки.
- 9.2.2.4 Используя указания п.п.7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и сформировать протокол поверки. При этом во вкладке «Настройка протокола» окна «Настройка параметров протокола» (рисунок Б6 Приложения Б к настоящему документу) установить параметры для всех ИК кроме ИКтемпературы воздуха на входе ВЗУ (Параметры: t.н.1 t.н.13) и ИК температуры воздуха при отборе на нормальные и аварийные нужды ЛА (Параметр: t.г.нужды ЛА), ПО «Recorder» будет выполнена обработка результатов измерений по формулам (10.1) и (10.4), приведенным в разделе 10 настоящего документа. Для ИК температуры воздуха на входе ВЗУ (Параметры: t.н.1 t.н.13) обработка результатов измерений будет выполнена по формулам (10.1) и (10.2), приведенным в разделе 10 настоящего документа. Для ИК температуры воздуха при отборе на нормальные и аварийные нужды ЛА (Параметр: t.г.нужды ЛА) обработка результатов измерений будет выполнена по формуле (10.1), приведенной в разделе 10 настоящего документа.
- 9.2.3 Результаты поверки ИК температуры жидких и газообразных сред считать положительными если:
- 9.2.3.1 ПП ИК имеет действующее свидетельство о поверке и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ;
- 9.2.3.2 Погрешность электрической части ИК не превышает значений, приведенных в приложении А настоящего документа;

- 9.2.3.3 Выполнение п.п. 9.2.3.1 и 9.2.3.2 обеспечивает выполнение установленных требований к суммарной погрешности (приведенных в приложении А настоящего документа) для соответствующего ИК.
- 9.2.4 В случае не выполнения условий, указанных в п.9.2.3, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

Поверку каждого ИК комплектным способом выполнять следующим образом:

- 9.2.5 Проверить внешний вид, наличие пломб и маркировку ПП не должен иметь видимых внешних повреждений, а пломбирование, маркировка типа и номера ПП должны соответствовать паспорту (этикетке).
- 9.2.6 Собрать схему поверки в соответствии с рисунком 4, для чего ПП поместить в термостатирующий блок калибратора температуры.

Рисунок 4 – Схема поверки ИК температуры жидких и газообразных сред комплектным способом

- 9.2.6.1 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку для поверки соответствующих ИК. При настройке в поле «Контрольные точки» установить значения из поля «Номинальные значения температуры в КТ» таблицы 9.2.1 для соответствующего ИК (можно выбирать другие КТ, но не менее 5 равномерно распределенных по диапазону, включае верхнее и нижнее значения).
- 9.2.6.2 Используя ПО «Recorder», поочередно для всех номинальных значений температуры в КТ, указанных в таблице 9.2.1, провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом температуру на входе ИК, указанныю в поле «Номинальные значения температуры в КТ», устанавливать с помощью сухоблочного калибратора.
- 9.2.7 Результаты поверки ИК температуры жидких и газообразных сред считать положительными если погрешность ИК не превышает значений, приведенных в приложении А настоящего документа.
- 9.2.8 В случае не выполнения условий, указанных в п.9.2.7, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.3 Определение погрешности измерений абсолютных, избыточных и разности давлений газообразных и жидких сред

Поверку каждого ИК (кроме ИК температуры воздуха в боксе) поэлементным способом выполнять в 3 этапа:

- 1 этап контроль (оценка) состояния и МХ ПП;
- 2 этап поверка электрической части ИК с целью определения диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);
 - 3 этап определение и оценка максимальной погрешности ИК.
 - 9.3.1 Для контроля (оценки) ПП:
- 9.3.1.1 Проверить внешний вид, наличие пломб и маркировку ПП не должен иметь видимых внешних повреждений, а пломбирование, маркировка типа и номера ПП должны соответствовать паспорту (этикетке).
- 9.3.1.2 Для каждого ПП проверить действующее свидетельство о поверке и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ.
- 9.3.2 Поверку электрической части каждого ИК выполнить в указанной ниже последовательности:
- 9.3.2.1 Собрать схему поверки в соответствии с рисунком 5, для чего на вход электрической части ИК вместо преобразователя давления подключить калибратор универсальный Н4-7 в режиме воспроизведения напряжения постоянного тока.

Рисунок 5 – Схема поверки ИК абсолютных, избыточных и разности давлений газообразных и жидких сред поэлементным способом

9.3.2.2 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку для поверяемой электрической части соответствующих ИК. При настройке в поле «Контрольные точки» установить значения из поля «Номинальные значения в КТ» таблицы 9.3.1 для соответствующего ИК (можно выбирать другие КТ, но не менее 5 равномерно распределенных по диапазону, включае верхнее и нижнее значения).

Таблица 9.3.1 – Контрольные точки измерения давления и разрежения

Наименование параметра ИК	Обозначения измеряемых параметров ГТД	Размерность	нп ди ик	ВПДИИК	Кол-во КТ	Номинальные значения давления [кгс /см2] (напряжения постоянного тока, соответствующего давлению [В]) в КТ, x
Абсолютное давление газообразных сред	dP.5.1 – dP.5.112	кПа	66,8	135,8	-	поэлементной
Избыточное давление газообразных сред	dP.30.1 – dP.30.112	кПа	0	207	авто 4973	ерке – поверяются ономно (по РТ-МП- 3-443 -2017),
Избыточное давление газообразных сред	dP.100.1 – dP.100.208	кПа	0	690	подключены по цифровому каналу	
Избыточное давление жидкости	Р.6ж	кПа (кгс /см ²)	0 (0)	588,4 (6,0)	6	0; 1,2; 2,4; 3,6; 4,8; 6,0 (0; 2; 4; 6; 8; 10)
Избыточное давление жидкости	Р.4ж.1 — Р.4ж.4	кПа (кгс /см ²)	0 (0)	392,3 (4,0)	6	0; 0,8; 1,6; 2,4; 3,2; 4,0 (0; 2; 4; 6; 8; 10)
Избыточное давление жидкости	Р.2.5ж	кПа (кгс /см ²)	0 (0)	245,2 (2,5)	6	0; 0,5; 1,0; 1,5; 2,0; 2,5 (0; 2; 4; 6; 8; 10)
Абсолютное давление жидкости	Р.2.5ж.абс 1 - Р.2.5ж.абс 2	кПа (кгс /см ²)	0 (0)	245,2 (2,5)	6	0; 0,5; 1,0; 1,5; 2,0; 2,5 (0; 2; 4; 6; 8; 10)
Перепад между статическим давлением в мерном сечении и в контрольным сечении	dP.мс.1 — dP.мс.8	Па (кгс /см ²)	0 (0)	1961 (0,020)	6	0; 0,004; 0,008; 0,012; 0,016; 0,020 (0; 2; 4; 6; 8; 10)
Полное давление- разряжение на входе в РМК	Р.полн 1 - Р.полн 4	Па (кгс /см ²)	мину с 3927 (мину с 0,040)	0 (0)	6	-0,04; -0,032; -0,024; -0,016; -0,008; 0 (0; 2; 4; 6; 8; 10)
Избыточное давление газообразных сред	Р.1.6г.1 — Р.1.6г.17	кПа (кгс /см²)	0 (0)	156,9 (1,6)	11	0; 0,16; 0,24; 0,32; 0,48; 0,64; 0,8; 0,96; 1,12; 1,28; 1,44; 1,6 (0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10)

						and the second s
Наименование параметра ИК	Обозначения измеряемых параметров ГТД	Размерность	нп ди ик	ВПДИИК	Кол-во КТ	Номинальные значения давления [кгс /см2] (напряжения постоянного тока, соответствующего давлению [В]) в КТ, x
Избыточное давление газообразных сред	P.4z.1 – P.4z.2	кПа (кгс /см²)	0 (0)	392,3 (4,0)	11	0; 0,4; 0,8; 1,2; 1,6; 2,0; 2,4; 2,8; 3,2; 3,6; 4,0 (0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10)
Избыточное давление газообразных сред	Р.6г.1 – Р.6г.2	кПа (кгс /см ²)	0 (0)	588,4 (6,0)	11	0; 0,6; 1,2; 1,8; 2,4; 3,0; 3,6; 4,2; 4,8; 5,4; 6,0 (0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10)
Избыточное давление газообразных сред	P.10г.1 — P.10г.30	кПа (кгс /см ²)	0 (0)	980,7 (10,0)	11	0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 (0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10)
Избыточное давление газообразных сред	P.16г.1 — P.16г.24	кПа (кгс /см²)	0 (0)	1569,1 (16,0)	11	0; 1,6; 3,2; 4,8; 6,4; 8,0; 9,6; 11,2; 12,8; 14,4; 16,0 (0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10)
Избыточное давление газообразных сред	P.25г.1 – P.25г.26	кПа (кгс /см²)	0 (0)	2451,7 (25,0)	11	0; 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 17,5; 20,0; 22,5; 25,0 (0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10)
Избыточное давление газообразных сред	P.40г.1 — P.40г.26	кПа (кгс /см²)	0 (0)	3922,7 (40,0)	11	0; 4; 8; 12; 16; 20; 24; 28; 32; 36; 40 (0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10)
Абсолютное давление газообразных сред	Р.2.5г.абс	кПа (кгс /см²)	0 (0)	245,2 (2,5)	11	0; 0,25; 0,5; 0,75; 1,0; 1,25; 1,5; 1,75; 2,0; 2,25; 2,50 (0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10)
Давление воздуха наддува бака НП-177-1, давление воздуха наддува бака НП-177-2	Р.в.гб.нп177.1; Р.в.гб.нп177.2	кПа (кгс /см ²)	0 (0)	640 (6,53)	5	0; 1,306; 2,612; 3,918; 5,224; 6,530 (0; 2; 4; 6; 8; 10)
Давление г/ж на входе НП-177-1, давление г/ж на входе НП-177-2	Р.гж.вх.нп177.1; Р.гж.вх.нп177.2	кПа (кгс /см ²)	0 (0)	600 (6,12)	5	0; 1,224; 2,448; 3,672; 4,896; 6,120 (0; 2; 4; 6; 8; 10)

Наименование параметра ИК	Обозначения измеряемых параметров ГТД	Размерность	нп ди ик	ВПДИИК	Кол-во КТ	Номинальные значения давления [кгс /см2] (напряжения постоянного тока, соответствующего давлению [В]) в KT , x
Давление г/ж на выходе НП-177-1, давление г/ж на выходе НП-177-2	Р.гэк.вых.нп177. 1; Р.гэк.вых.нп177. 2	МПа (кгс /см ²)	0 (0)	35 (356,9)	5	0; 71,380; 142,760; 214,140; 285,520; 356,900 (0; 2; 4; 6; 8; 10)
Давление воздуха при отборе на нормальные и аварийные нужды	Р.г.нужды ЛА	кПа (кгс /см²)	0 (0)	1569,1 (16,0)	1	0; 1,6; 3,2; 4,8; 6,4; 8,0; 9,6; 11,2; 12,8; 14,4; 16,0 (0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10)
Атмосферное давление	Р.атм	кПа (мм рт. ст.)	60 (450)	110 (825)		еряется автономно, лючен по цифровому лу

- 9.3.2.3 Используя ПО «Recorder», поочередно для всех номинальных значений напряжения в КТ, указанных в таблице 9.3.1, провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу.
- 9.3.2.4 Используя указания п.п.7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. Для ИК с нормированной относительной погрешностью, обработка результатов измерений выполняется по формулам (10.1) и (10.2), приведенным в разделе 10 настоящего документа, для ИК с нормированной приведенной погрешностью по формулам (10.1) и (10.4), приведенным в разделе 9 настоящего документа.
- 9.3.3 Результаты поверки ИК абсолютных, избыточных и разности давлений газообразных и жидких сред считать положительными, если:
- 9.3.3.1 ПП ИК имеет действующее свидетельство о поверке и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ;
- 9.3.3.2 Погрешность электрической части ИК не превышает значений, приведенных в приложении А настоящего документа (для ПП с цифровым выходом проводится проверка работоспособности в соответствии с РЭ);
- 9.3.4 Выполнение п.п. 9.3.3.1 и 9.3.3.2 обеспечивает выполнение установленных требований к суммарной погрешности (приведенных в приложении А настоящего документа) для соответствующего ИК.
- 9.3.5 В случае не выполнения условий, указанных в п.9.3.3, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

Поверку каждого ИК комплектным способом выполнить следующим образом:

- 9.3.6 Проверить внешний вид, наличие пломб и маркировку ПП не должен иметь видимых внешних повреждений, а пломбирование, маркировка типа и номера ПП должны соответствовать паспорту (этикетке).
- 9.3.7 Собрать схему поверки в соответствии с рисунком 6, для чего ко входу ПП подключить калибратор давления.

Рисунок 6 — Схема поверки ИК абсолютных, избыточных и разности давлений газообразных и жидких сред комплектным способом

- 9.3.7.1 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку для поверки соответствующих ИК. При настройке в поле «Контрольные точки» установить значения из поля «Номинальные значения давлений в КТ» таблицы 9.3.1 для соответствующего ИК (можно выбирать другие КТ, но не менее 5 равномерно распределенных по диапазону, включае верхнее и нижнее значения).
- 9.3.7.2 Используя ПО «Recorder», поочередно для всех номинальных значений давлений в КТ, провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом давление на входе ИК устанавливать с помощью калибратора давления.
- 9.3.8 Результаты поверки ИК абсолютных, избыточных и разности давлений газообразных и жидких сред считать положительными если погрешность ИК не превышает значений, приведенных в приложении А настоящего документа.
- 9.3.9 В случае не выполнения условий, указанных в п.9.3.8, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.4 Определение погрешностей ИК силы от тяги двигателя

Перечень операций, которые должны проводиться при поверке АИИС 5У, приведен в таблице 9.4.1.

1 аолица 9.4.1— Перечень операции поверки ИК силы от тяги д	ца 9.4.1 – Перечень операций поверки ИК силы от т	гяги двигателя
---	---	----------------

	Номер пункта	Проведение операции при		
Наименование операции	документа по	первичной	периодической	
	поверке	поверке	поверке	
1	2	3	4	
1 Определение коэффициента устойчивости	9.4.1	да	нет	
2 Определение порога чувствительности силоизмерительной системы	9.4.2	да	да	
3 Определение случайной составляющей основной погрешности ИК	9.4.3	да	да	
4 Определение систематической составляющей основной погрешности ИК	9.4.4	да	да	
5 Определение суммарной основной погрешности измерения ИК	9.4.5	да	да	

- 9.4.1 Проверка устойчивости ДМП производится экспериментальным методом:
- 9.4.1.1 Освободить ДМП от связей с СИУ и СГУ и статически уравновесить в исходном рабочем положении: ленты должны находиться в вертикальном положении.
- 9.4.1.2 Установить индикаторы часового типа на переднем и заднем торцах ДМП. Установить индикатор часового типа на связанных с фундаментом, несущим ДМП, неподвижных конструкциях стенда.
- 9.4.1.3 Последовательно приложить к ДМП продольно действующие нагрузки для перемещения ДМП от 0 мм до 3 мм с шагом 0,3 мм. Образцовым динамометром класс АЦД/1Р-20/1И-00 фиксировать приложенные нагрузки.
- 9.4.1.4 Измерить перемещение ДМП относительно ТБК индикатором часового типа, записать полученные данные в таблицу А.6.
 - 9.4.1.5 Считать и записать показания динамометра.
 - 9.4.1.6 Расчет коэффициента устойчивости:

$$K_{y} = \frac{1}{n} \sum_{i=1}^{n} \frac{R_{JIM\Pi i}}{\lambda_{JIMIJi}},$$
 (9.4.1)

где n — общее число экспериментов, выполненных в процессе определения K_y ДМП, n=10; $R_{\rm ДМП}$ — сила, приложенная к ДМП, находящейся в статически уравновешенном положении, при проведении i-го эксперимента, H (кгс); $\lambda_{\rm ДМП}$ — значение зарегистрированного перемещения ДМП в направлении действия силы $R_{\rm ДМП}$ при проведении i-го эксперимента, мм.

- 9.4.1.7 СИС считается выдержавшей проверку, если усилие, приложенного к ДМП для перемещения на 1 мм, не превышает 0.2% от максимальной силы тяги в пределах перемещения \pm 3 мм.
- 9.4.2 Произвести подготовку системы, установив дополнительный канал создания нагрузки, согласно рисунку 7 с использованием ручной МНС и эталонного динамометра, и задать от ПГУ нагрузку 0,1Rmax согласно методике, приведенной в МРКД.2490.0350.100

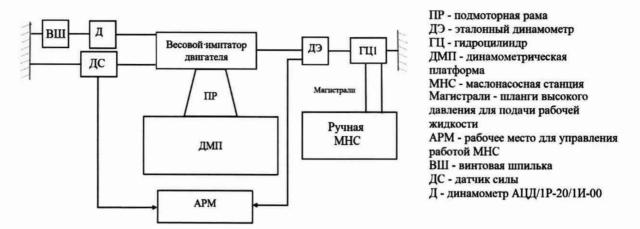


Рисунок 7 – Функциональная схема работы ПГУ

- 9.4.2.1 Задавать дополнительную нагрузку на силоизмерительную систему до момента изменений показаний силоизмерительной системы в младшем значащем разряде канала СИУ (с шагом не более 1 кгс).
 - 9.4.2.2 Зарегистрировать данные и разгрузить систему.
 - 9.4.2.3 Повторить эксперимент 5 раз.
- 9.4.2.4 Задать от СГУ нагрузку $1,0R_{\text{max}}$ согласно методике, приведенной в МРКД.2490.0350.100 РЭ.
 - 9.4.2.5 Повторить пункты 9.4.2.1 9.4.2.3.
- 9.4.2.6 Расчет порога чувствительности силоизмерительной системы при действующей на ДМП контрольной нагрузке (силе), равной 0,1R_{max}, H (кгс):

$$r_{0,1} = \frac{1}{5} \sum_{i=1}^{5} q_{i_{r_{0,1}}}$$
 (9.4.2)

9.4.2.7 Расчет порога чувствительности силоизмерительной системы при действующей на ДМП контрольной нагрузке (силе), равной 1,0R_{max}, H (кгс):

$$r_{1,0} = \frac{1}{5} \sum_{i=1}^{5} q_{i\tau_{1,0}} , \qquad (9.4.3)$$

где R_{max} – максимальная измеряемая СИС сила тяги двигателя, H (кгс);

- i=5 количество проведенных опытов на каждой из указанных контрольных нагрузок (сил);
- $q_{i_{P_{0,1}}}$, $q_{i_{P_{1,0}}}$ дополнительная нагрузка на силоизмерительную систему до момента изменений показаний силоизмерительной системы в младшем значащем разряде канала СИУ, H (кгс);
- $9.4.2.8~{\rm CHC}$ считается выдержавшей проверку в случае, если значение порога чувствительности не превышает $0.02~{\rm \%}~{\rm R}_{\rm max}.$
- 9.4.3 Подготовку системы и нагружение от СГУ проводить согласно методике, приведенной в МРКД.2490.0350.100 РЭ.

- 9.4.3.1 Задать от СГУ контрольные нагрузки, соответствующие 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 % от максимального значения силы, измеряемой силоизмерительной системой при испытании двигателей (прямой ход) и от максимального значения силы до нуля (обратный ход).
- 9.4.3.2 На каждой ступени нагружения произвести регистрацию показаний СИС, данные занести в протокол.
- 9.4.3.3 Случайная составляющая определяется по результатам 10-кратной градуировки системы с помощью стендового градуировочного устройства (СГУ).
- 9.4.3.4 Обработка результатов наблюдения происходит автоматически с помощью ПО СИС БЛИЖ.409801.110.041-01.
- 9.4.3.5 При расчете случайной составляющей погрешности силоизмерительной системы определяют значения средних арифметических показаний для прямого и обратного ходов градуировочной характеристики для каждой из К ступеней нагружения:

$$L_{KH} = \frac{1}{n_{KH}} \sum_{i=1}^{n} l_{i_{KH}} , \qquad (9.4.4)$$

$$L_{KP} = \frac{1}{n_{KP}} \sum_{i=1}^{n} l_{i_{KP}} , \qquad (9.4.5)$$

где L_{KH} – среднее арифметическое из n_{KH} показаний силоизмерительной системы в K-ом ряду измерений при прямом ходе градуировочной характеристики силоизмерительной системы (при нагрузке), единиц отсчета;

 L_{KP} — среднее арифметическое из n_{KP} показаний силоизмерительной системы в K-ом ряду измерений при обратном ходе градуировочной характеристики силоизмерительной системы (при разгрузке), единиц отсчета;

 n_{KH} — общее число наблюдений показаний силоизмерительной системы в K-ом ряду измерений при нагрузке;

 n_{KP} — общее число наблюдений показаний силоизмерительной системы в K-ом ряду измерений при разгрузке;

 $l_{i_{KH}}$ — результат единичного отсчета в K-ом ряду измерений при нагрузке силоизмерительной системы;

 $l_{i_{KP}}$ — результат единичного отсчета в K-ом ряду измерений при разгрузке силоизмерительной системы.

9.4.3.6 Определяют среднее средних значений LK для каждой ступени нагружения:

$$L_K = \frac{L_{KH} + L_{KP}}{2}, (9.4.6)$$

где L_K — среднее арифметическое в K-ом ряду измерений всех показаний силоизмерительной системы, полученных при нагрузке и разгрузке, единиц отсчета. Полученные единичные результаты отсчетов показаний и на каждой из K ступеней прямого и обратного ходов градуировочной характеристики соответственно заносят в протокол.

9.4.3.7 Определяют вариацию a_K и погрешность измерений, обусловленную вариацией для каждой ступени нагружения:

$$a_K = L_{KP} - L_{KH}$$
, (9.4.7)

$$\gamma_{a_K} = \frac{a_K}{2R_K} * 100 \,, \tag{9.4.8}$$

где a_K — вариация (разница между средними арифметическими показаниями силоизмерительной системы, полученными в K-ом ряду при разгрузке и нагрузке);

 γ_{a_K} — погрешность измерения, обусловленная вариацией в K-ом ряду измерений, %; R_K — сила, действующая на ДМП в K-ом ряду измерений, H (кгс).

9.4.3.8 Определяют случайные отклонения в каждом из К рядов измерения,

если
$$\gamma_{a_K \max} \le 5*10^{-4} R_{\max}$$
: $V_{i_{KH}} = i_{i_{KH}} - L_K \ V_{i_{KP}} = i_{i_{KP}} - L_K$, (9.4.9)

если
$$\gamma_{a_K \max} \succ 5*10^{-4} R_{\max}$$
: $V_{i_{KH}} = i_{i_{KH}} - L_{KH} \ V_{i_{KP}} = i_{i_{KP}} - L_{KP}$, (9.4.10)

где $\gamma_{a_K \max}$ — максимальная погрешность измерения, обусловленная вариацией в K-ом ряду измерений, %;

 $V_{i_{K\!H}}$ — случайные отклонения, вычисленные при нагрузке силоизмерительной системы в K- ом ряду измерений;

 $V_{i_{KP}}$ – случайные отклонения, вычисленные при разгрузке силоизмерительной системы в Ком ряду измерений.

- 9.4.3.9 Находят сумму случайных отклонений в каждом ряду измерений (они должны равняться нулю или отличаться от нуля в пределах сделанных округлений среднего арифметического и полученных значений отклонений при вычислениях). Вычисления и округления результатов осуществлять до второго знака после запятой.
- 9.4.3.10 Рассматривая ряды измерений и полученные для них ряды случайных отклонений, следует убедиться, что в них нет резко отличающихся результатов, грубые погрешности отбраковывают, пользуясь критерием Смирнова или Романовского и оценкой грубых погрешностей, приведенных в справочном приложении 5 ОСТ 1 02517-84.
- 9.4.3.11 Возводят в квадрат полученные значения случайных отклонений $V_{i_{KP}}$ и $V_{i_{KP}}$, находят сумму квадратов:

$$\sum_{i=1}^{n_{KH}} V^{2}_{i_{KH}}, \sum_{i=1}^{n_{KP}} V^{2}_{i_{KP}}, \tag{9.4.11}$$

9.4.3.12 Определяют средние квадратические погрешности измерения для каждой ступени нагружения:

$$\sigma_{R_K} = \sqrt{\frac{1}{n_K - 1} \left(\sum_{i=1}^{n_{KH}} V_{i_{KH}}^2 + \sum_{i=1}^{n_{KP}} V_{i_{KP}}^2\right)},$$
(9.4.12)

где σ_{R_K} – абсолютная средняя квадратическая погрешность с силоизмерительной системы, вычисленная для K-го ряда измерений, H(кгс);

 $n_K = n_{KH} + n_{KP}$ — число наблюдений в K-ом ряду измерений, оставшееся после исключения грубых погрешностей.

9.4.3.13 Пользуясь нормированным значением доверительной вероятности P = 0,95 и полученным в каждом ряду числом измерений n_K, по таблице Стьюдента-Фишера (справочное приложение 6 ОСТ 1 02517-84) находят величину квантилей и определяют абсолютное значение случайной составляющей погрешности силоизмерительной системы для каждой ступени нагружения по формуле:

$$\Delta R_{KP} = \sqrt{(\tau_{\alpha} \sigma_{R_K})^2 + (\frac{a_K}{2})_{\text{max}}}$$
, (9.4.13)

где ΔR_{KP} — абсолютная случайная составляющая погрешности силоизмерительной системы, вычисленная для К-го ряда измерений при доверительной вероятности P = 0,95; τ_{α} — квантиль Стьюдента-Фишера при P=0,95.

9.4.3.14 Определяют относительные и приведенные значения случайной составляющей погрешности силоизмерительной системы в каждом ряду измерений:

$$\delta_{R_{KP}} = \frac{\Delta R_{KP}}{R_K} 100$$

$$\gamma_{R_{KP}} = \frac{\Delta R_{KP}}{R_{K_{max}}} 100$$
(9.4.14)

(9.4.15)

где $\delta_{R_{KP}}$ — относительная случайная составляющая погрешности силоизмерительной системы, вычисленная для K -го ряда измерений при доверительной вероятности P=0,95, % от $R_{\text{изм}}$, %

 $\gamma_{R_{KP}}$ — приведенная случайная составляющая погрешности силоизмерительной системы, вычисленная для K-го ряда измерений при доверительной вероятности P=0,95, % от R_{max} , %.

9.4.3.15 Определяют предел допускаемой случайной составляющей основной погрешности силоизмерительной системы для всего диапазона измерения:

$$\overset{0}{\Delta}_{R_p} = \sqrt{(\tau_{\alpha} \overset{0}{\sigma}_{R_p})^2 + (\frac{a_K}{2})_{\text{max}}^2} , \qquad (9.4.16)$$

где $\overset{0}{\Delta_{R_p}}$ — предел допускаемой случайной составляющей погрешности силоизмерительной системы для всего диапазона измерений, $H(\kappa rc)$;

 $\sigma_{R_p}^0$ абсолютная средняя квадратическая погрешность силоизмерительной системы для каждой ступени нагружения, вычисленная для генеральной совокупности (всего диапазона измерений) единичных измерений при числе результатов единичных отсчетов $n \ge 200$, Н (кгс)

$$n = \sum_{K=1}^{K} (n_{KH} + n_{KP}), \qquad (9.4.17)$$

если
$$K \ge 10$$
 $(n_{KH} + n_{KP}) = 20, mo \ n \ge 200$ (9.4.18)

К – общее количество рядов измерений.

9.4.3.16 Определяют среднюю квадратическую погрешность результатов единичных измерений для всего диапазона измеряемых усилий, т.е. для генеральной $(n \ge 200)$ совокупности измерений:

$$\sigma_{R_p} = \sqrt{\frac{1}{n - K} \sum_{K=1}^{K} \left[\left(\sum_{i=1}^{n_{KH}} V_{i_{KH}}^2 + \sum_{i=1}^{n_{KP}} V_{i_{KP}}^2 \right) \right]}, \qquad (9.4.19)$$

9.4.3.17 Определяют предел допускаемых относительных и приведенных случайных составляющих погрешности силоизмерительной системы:

$$\sigma_{R_{KP}}^{0} = \frac{\Delta R_{P}}{R_{K}} 100
\gamma_{R_{P}}^{0} = \frac{\Delta R_{P}}{R_{K} \max} 100$$
(9.4.20)

(9.4.21)

- где $\sigma_{R_{KP}}^{0}$ предел допускаемой относительной случайной составляющей погрешности силоизмерительной системы для всего диапазона измерений, % от $R_{\text{изм}}$, %;
- $\gamma_{R_p}^0$ предел допускаемой приведенной случайной составляющей погрешности силоизмерительной системы для всего диапазона измерений, % от 0,5 R_{max} , %.
- 9.4.3.18 Силоизмерительную систему испытательного стенда считают удовлетворительно работающей и пригодной для применения по назначению, если полученные значения приведенных и относительных случайных погрешностей измерения

на стенде не превышают 0,15 %, то есть $\sigma_{\mathit{KP}} \leq 0,15\%$ и $\gamma_{0,5\mathit{R}_p} \leq 0,15\%$.

- 9.4.4 Произвести подготовку системы и выполнить 10-кратное нагружение с помощью ПГУ с применением эталонного динамометра по линии действия силы тяги двигателя в течение 8-10 часов. Интервалы времени между отдельными видами градуировки должны быть не более 1 часа. Методика нагружения от ПГУ приведена в МРКД.2490.0350.100 РЭ.
- 9.4.4.1 Нагружение системы проводить по ступеням $0.1R_{max}$ в диапазоне $(0.1 \div 1.0)$ R_{max} .
 - 9.4.4.2 Результаты на каждой ступени нагружения регистрировать в протоколе.
- 9.4.4.3 Одновременно с записью показаний системы произвести измерение и запись температур, установившихся в боксе. Значения установившейся в боксе температуры за период градуировки, проводимой для определения систематической погрешности системы, не должны изменяться более чем на $\pm 2^{\,0}\,C$.
- 9.4.4.4 Определение систематической составляющей погрешности силоизмерительной системы производится путем сличения показаний силоизмерительной системы, полученных в нормальных статических условиях при ее градуировке СГУ (см. п. 9.4.3) с показаниями, полученными при нагружении силоизмерительной системы усилиями, воспроизводимыми ПГУ.

Обработка результатов наблюдения происходит в ПО Recorder.

9.4.4.5 Систематическую составляющую основной погрешности измерений определяют по формуле:

$$\Delta R_{CK} = \frac{1}{n_{KP}} \left(\sum_{i=1}^{n_{KH}} l_{l_{KHd}} - \sum_{i=1}^{n_{KH}} R_{l_{KHd}} \right), \tag{9.4.22}$$

где ΔR_{CK} — систематическая составляющая погрешности силоизмерительной системы, определяемая как разность между показаниями силоизмерительной системы и показаниями при нагружении от ПГУ в K-ом ряду измерений;

 $l_{l_{\mathit{KHd}}}$ — единичный результат отсчета показаний силоизмерительной системы в K-ом ряду измерений при непосредственном нагружении силоизмерительной системы с помощью ПГУ, единиц отсчета;

 $R_{l_{\mathit{KHd}}}$ — единичные контрольные усилия, воспроизводимые в K-ом ряду измерений по показаниям образцового динамометра, H (кгс).

9.4.4.6 Определяют относительные значения основной систематической составляющей погрешности измерений:

$$\delta_{R_{CK}} = \frac{\Delta R_{CK}}{R_{KHd}} 100, \qquad (9.4.23)$$

где $\delta_{R_{CK}}$ – относительная систематическая составляющая погрешности измерений, %.

9.4.4.7 Определяют приведенное значение основной систематической составляющей погрешности измерений:

$$\gamma_{R_{CK}} = \frac{\Delta R_{CK}}{R_{d \max}} 100,$$
(9.4.24)

где $\gamma_{R_{CK}}$ — приведенная систематическая составляющая измерений, %.

9.4.4.8 Результаты измерений силоизмерительной системы считаются правильными, если полученные значения приведенных и относительных систематических погрешностей

измерения на стенде не превышают 0,15 %, то есть и $\gamma_{R_{CK}} \le 0,15\%$ $\delta_{Rck} \le 0,15\%$.

- 9.4.4.9 Если $|\gamma_{R_{CK}}|_{>0,15\%}$, то необходимо найти и устранить причину неправильных показаний силоизмерительной системы, а при невозможности ее устранения решают вопрос о внесении в результаты измерений соответствующих поправок и величине неисключенной систематической погрешности СИС.
- 9.4.5 Основная абсолютная погрешность силоизмерительной системы определяется на К-ой ступени нагружения определяется по формуле:

$$\Delta_K = \Delta R_{Kp} + \left| \Delta R_{CK} \right| \tag{9.4.25}$$

9.4.5.1 Основная относительная погрешность силоизмерительной системы на K-ой ступени нагружения определяется по формуле:

$$\delta_K = \frac{\Delta_K}{R_K} 100\%, \tag{9.4.26}$$

9.4.5.2 Основная погрешность силоизмерительной системы, приведенная к нагрузке 0,5R_{max} определяется на K-ой ступени нагружения по формуле:

$$\gamma_K = \frac{\Delta_K}{0.5R_{\text{max}}} 100\%, \tag{9.4.27}$$

9.4.5.3 Силоизмерительная система считается прошедшей проверку, если основная относительная погрешность не превышает 0.3 % для каждой ступени нагружения в диапазоне от 0.5 R_{max} , а основная приведенная погрешность не превышает 0.3 % в диапазоне от 0.5 R_{max} .

9.5 Определение погрешностей ИК температуры и относительной влажности воздуха в боксе

Поверку каждого ИК выполнить в 3 этапа поэлементным способом:

- 1-й этап контроль (оценка) состояния и МХ ПП;
- 2-й этап поверка электрической части ИК относительной влажности атмосферного воздуха с целью определения диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);
 - 3-й этап определение и оценка максимальных погрешностей ИК.
 - 9.5.1 Для контроля (оценки) ПП отсоединить его от линии интерфейса RS-232.
- 9.5.1.1 Проверить внешний вид, наличие пломб и маркировку ПП не должен иметь видимых внешних повреждений, пломбирование, маркировка типа и номера ПП согласно паспорту (этикетке).
- 9.5.1.2 Для ПП проверить действующее свидетельство о поверке и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ.
- 9.5.1.3 После контроля (оценки) состояния и MX установить ПП на штатное место, закрепить, подключить кабель соединения ПП с линией интерфейса RS-232.
- 9.5.2 Провести проверку работоспособности ИК в соответствии с руководством по эксплуатации системы.
- 9.5.3 Так как первичный преобразователь температуры атмосферного воздуха «Измеритель влажности и температуры ИВТМ» на выходе выдает сигнал в цифровом виде по протоколу RS232, то абсолютная погрешность ИК температуры и влажности атмосферного воздуха принимается равной абсолютной погрешности первичного преобразователя.
- 9.5.3.1 Результаты поверки ИК температуры и ИК относительной влажности атмосферного воздуха считать положительными, если:
- 9.5.3.2 Используемый в системе ПП (ИВТМ) поверен, имеет дейсвующее свидетельство о поверке и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ.
 - 9.5.3.3 ИК проходит проверку работоспособности.
- 9.5.4 При не выполнении перечисленных в п.9.5.3 условий, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.6 Определение погрешностей ИК массового расхода топлива

Поверку ИК выполнять в 3 этапа поэлементным способом:

- 1-й этап контроль (оценка) состояния и МХ ПП;
- 2-й этап поверка электрической части ИК с целью определения диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);
 - 3-й этап определение и оценка максимальных погрешностей ИК.
 - 9.6.1 Для контроля (оценки) состояния и МХ ПП:
- 9.6.1.1 Отсоединить его от электрической части ИК. Проверить внешний вид, наличие пломб и маркировку ПП не должен иметь видимых внешних повреждений, пломбирование должно соответствовать сборочному чертежу, а маркировка типа и номера ПП паспорту.
- 9.6.1.2 Проверить наличие действующего свидетельства о поверке (первичной или периодической), значение относительной погрешности ПП, указанное в свидетельстве, должно находиться в допускаемых пределах и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ.

Примечание - В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данными $\Pi\Pi$.

- 9.6.2 Поверку электрической части ИК выполнить в указанной ниже последовательности:
- 9.6.2.1 Собрать схему поверки электрической части ИК в соответствии с рисунком 8, для чего на вход электрической части ИК, вместо ПП, подключить генератор ГЗ-110.

Рисунок 8 – Схема поверки ИК объемного расхода (прокачки) жидкостей

- 9.6.2.2 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку на поверку соответствующего канала в рабочей конфигурации «Recorder».
- 9.6.2.3 Используя ПО «Recorder» для поверки электрической части ИК параметра, поочередно для всех номинальных значений расхода, указанных в таблице 9.6.1, провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом каждое номинальное значение массового расхода топлива в КТ задавать путём установки частоты переменного тока (Γ ц) на выходе генератора Γ 3-110, соответствующей номинальному значению массового расхода топлива в КТ.

Таблица 9.6.1 – Контрольные точки измерения расхода жидкостей

Наименование ИК	Измеряемый параметр	Размерность	нп ди ик	вп ди ик	Количество КТ на ДИ ИК,	Номинальные значения расхода в KT, x_k
Массовый расход топлива	<i>G.топл</i>	кг/ч	200	400	7	200; 400; 4000; 8000; 12000; 16000; 20000
		KI/ I	400	20000		

Примечание — Номинальные значения расхода в КТ носят рекомендательный характер, возможно выбирать другие КТ (не менее 5 и равномерно распределенные по диапазону измерения, включая верхнее и нижнее значения поддиапазонов).

9.6.2.4 Используя указания п.п.7 – 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. ПО

«Recorder» будет выполнена обработка результатов измерений для электрических частей ИК по формулам (10.1) и (10.2), приведенным в разделе 10 настоящего документа.

- 9.6.3 Результаты поверки ИК массового расхода топлива считать положительными если:
- 9.6.3.1 ПП ИК поверен, имеет действующее свидетельство о поверке и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ, фактическая максимальная погрешность измерений ПП находится в пределах допускаемой;
- 9.6.3.2 Погрешность электрической части ИК не превышает значений, приведенных в приложении А настоящего документа;
- 9.6.3.3 Выполнение п.п. 9.6.3.1 и 9.6.3.2 обеспечивает выполнение установленных требований к суммарной погрешности (приведенных в приложении А настоящего документа) для всего ИК.
- 9.6.4 При невыполнении перечисленных в п. 9.6.3 условий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.7 Определение погрешностей ИК объемного расхода жидкостей

Поверку каждого ИК выполнять в 3 этапа поэлементным способом:

- 1-й этап контроль (оценка) состояния и МХ ПП;
- 2-й этап поверка электрической части ИК целью определения диапазона измерений и МХ (индивидуальной функции преобразования и погрешности измерений);
 - 3-й этап определение и оценка максимальных погрешностей ИК.
 - 9.7.1 Для контроля (оценки) состояния и МХ ПП:
- 9.7.1.1 Отсоединить его от электрической части ИК. Проверить внешний вид, наличие пломб и маркировку ПП не должен иметь видимых внешних повреждений, пломбирование должно соответствовать сборочному чертежу, а маркировка типа и номера ПП паспорту.
- 9.7.1.2 Проверить наличие действующего свидетельства о поверке (первичной или периодической), значение относительной погрешности ПП, указанное в свидетельстве, должно находиться в допускаемых пределах и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ.

Примечание - В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данными $\Pi\Pi$.

- 9.7.2 Поверку электрической части каждого ИК выполнить в указанной ниже последовательности:
- 9.7.2.1 Собрать схему поверки электрической части ИК в соответствии с рисунком 9, для чего на вход электрической части ИК, вместо ПП (турбинного преобразователя расхода), подключить генератор Γ 3-110.

Рисунок 9 – Схема поверки ИК объемного расхода (прокачки) жидкостей

- 9.7.2.2 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку на поверку соответствующего канала в рабочей конфигурации «Recorder».
- 9.7.2.3 Используя ПО «Recorder» для поверки электрической части ИК параметра, поочередно для всех номинальных значений расхода, указанных в таблице 9.7.1, провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом каждое номинальное значение объемного расхода (прокачки) жидкостей в КТ задавать путём установки частоты переменного тока (Гц) на выходе генератора ГЗ-110, соответствующей номинальному значению объемного расхода (прокачки) жидкостей в КТ. Значения частоты переменного тока, соответствующие номинальным значениям расхода рабочей жидкости для каждой КТ, брать из последнего действующего протокола очередной или внеочередной поверки турбинного преобразователя расхода, используемого в данном ИК, с точностью до 3-го знака после запятой.

Таблица 9.7.1 – Контрольные точки измерения расхода жидкостей

Tuomique 7111 Teorifosibilité le mai nontépenni paese que misque en							
Наименование ИК	Измеряемый параметр	Размерность	нп ди ик	ВП ДИ ИК	Количество КТ на ДИ ИК,	Номинальные значения расхода в KT , x_k (см. Примечание к таблице 13)	
ИК прокачки масла через двигатель	<i>Q.</i> м		24	240	5	24; 81,6; 134,4; 187,2; 240	
ИК прокачки масла через опору турбины	<i>Q.м.ОТ</i>		7,2	36	5	7,2; 14,4; 21,6; 28,8; 36,0	
ИК прокачки НП-177-1 минимальная, прокачки НП-177-2 минимальная	Q.гэк.тiп.нn177 .I, Q.гэк.тiп.нn177 .2	л/мин	7,2	36	5	7,2; 14,4; 21,6; 28,8; 36,0	
ИК прокачки НП-177-1, прокачка НП-177-2	Q.гж.нп177.1, Q.гж.нп177.2		36	360	5	36; 117; 198; 279; 360	

Примечание — Номинальные значения расхода в КТ носят рекомендательный характер, возможно выбирать другие КТ (не менее 5 и равномерно распределенные по диапазону измерения, включая верхнее и нижнее значения).

- 9.7.2.4 Используя указания п.п.7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. ПО «Recorder» будет выполнена обработка результатов измерений для электрических частей ИК по формулам (10.1) и (10.2), приведенным в разделе 10 настоящего документа.
- 9.7.3 Результаты поверки ИК объемного расхода (прокачки) жидкостей считать положительными если:
- 9.7.3.1 ПП ИК поверены, имеют действующие свидетельства о поверке и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ, фактическая максимальная погрешность измерений для каждого из ПП находится в пределах допускаемой погрешности;
- 9.7.3.2 Погрешность электрической части ИК не превышает значений, приведенных в приложении А настоящего документа
- 9.7.3.3 Выполнение п.п. 9.7.3.1 и 9.7.3.2 обеспечивает выполнение установленных требований к суммарной погрешности (приведенных в приложении А настоящего документа) для соответствующего ИК.
- 9.7.4 При невыполнении перечисленных в п. 9.7.3 условий соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.8 Определение погрешности измерений напряжения переменного тока генератора

Поверку ИК напряжения переменного трехфазного тока поэлементным способом выполнять в 3 этапа:

1-й этап – контроль (оценка) состояния и МХ ПП;

2-й этап — поверка электрической части ИК с целью определения диапазона измерений и погрешности измерений;

3-й этап – определение и оценка максимальной погрешности ИК.

- 9.8.1 Для контроля (оценки) ПП:
- 9.8.1.1 Проверить внешний вид, наличие пломб и маркировку ПП не должен иметь видимых внешних повреждений, а пломбирование, маркировка типа и номера ПП должны соответствовать паспорту (этикетке).
- 9.8.1.2 Для каждого ПП проверить наличие действующего свидетельства о поверке (или определении метрологических характеристик) и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ.

Примечание — В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данным $\Pi\Pi$.

- 9.8.2 Поверку электрической части каждого ИК выполнить в следующем порядке:
- 9.8.2.1 Собрать схему поверки в соответствии с рисунком 10. Отключить ПП и вместо него на вход электрической части ИК подключить калибратор Н4-7 в режиме воспроизведения напряжения постоянного тока в диапазоне от 0 до 10 В.

Рисунок 10 — Схема поверки электрической части ИК напряжения переменного тока генератора

- 9.8.2.2 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку на поверку электрической части ИК. В поле «Контрольные точки» установить номинальные значения действующего напряжения, указанные в поле таблицы 9.8.1 «Номинальные значения действующего напряжения в КТ».
- 9.8.2.3 Используя ПО «Recorder», поочередно для всех номинальных значений действующего напряжения в КТ, указанных в таблице 9.8.1, провести поверку электрической части выбранного ИК в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом номинальные значения действующего напряжения в КТ на входе электрической части исследуемого ИК устанавливать с помощью калибратора Н4-7 в вольтах в соответствии с полем «Номинальные значения действующего напряжения в КТ на выходе ПП» таблицы 8.10.1.
- 9.8.2.4 Используя указания п.п.7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. ПО «Recorder» будет выполнена обработка результатов измерений по формулам (10.1) и (10.4), приведенным в разделе 10 настоящего документа.

Таблица 9.8.1 – Контрольные точки измерения напряжения переменного тока

Наименование ИК	Обозначе- ние канала / параметр	Размерность	нп ди ик	вп ди ик	Количе ство КТ на ДИ ИК, п	Номинальные значения действующег о напряжения в КТ,	Номинальные значения напряжения в КТ на выходе ПП, х _k
Напряжение переменного тока	U.гт120.1.f1						
Напряжение переменного тока	U.zm120.1.f2						
Напряжение переменного тока	U.гm120.1.f3	D	- 10	+10	11	-200; -160; -120; -80; -40;	-10; -8; -6; -4; -2; 0; 2; 4; 6; 8;
Напряжение переменного тока	U.гm120.2.f1	em120.2.f1 B		+10	11	0; 40; 80; 120; 160; 200	10
Напряжение переменного тока	U.гm120.2.f2						*
Напряжение переменного тока	U.rm120.2.f3					A1	

Наименование ИК	Обозначе- ние канала / параметр	Размерность	нп ди ик	вп ди ик	Количе ство КТ на ДИ ИК, п	Номинальные значения действующег о напряжения в КТ,	Номинальные значения напряжения в КТ на выходе ПП, х _k
Напряжение переменного тока	U.гm120.3.f1						
Напряжение переменного тока	U.гm120.3.f2						
Напряжение переменного тока	U.2m120.3.f3						
Напряжение переменного тока	U.em120.1.f1						

- 9.8.3 Результаты поверки ИК напряжения переменного тока считать положительными, если:
- 9.8.3.1 ПП ИК поверены, имеют действующие свидетельства о поверке и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ, фактическая максимальная погрешность измерений для каждого из ПП находится в пределах допускаемой погрешности, определенной его паспортом;
- 9.8.3.2 Погрешность электрической части ИК не превышает значений, приведенных в приложении A настоящего документа;
- 9.8.3.3 Выполнение п.п. 9.8.3.1 и 9.8.3.2 обеспечивает выполнение установленных требований к суммарной погрешности (приведенных в приложении А настоящего документа) для соответствующего ИК.
- 9.8.4 При не выполнении перечисленных в п.9.8.3 условий, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

Поверку каждого ИК комплектным способом выполнять следующим образом:

- 9.8.5 Проверить внешний вид, наличие пломб и маркировку ПП не должен иметь видимых внешних повреждений, а пломбирование, маркировка типа и номера ПП должны соответствовать паспорту (этикетке).
- 9.8.6 Собрать схему поверки в соответствии с рисунком 11, для чего ко входу ПП подключить калибратор H4-7.

Рисунок 11 — Схема поверки ИК напряжения переменного тока генератора комплектным способом

- 9.8.6.1 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку для поверки соответствующих ИК. При настройке в поле «Контрольные точки» установить значения из поля «Номинальные значения действующего напряжения в КТ» таблицы 9.8.1 для соответствующего ИК (можно выбирать другие КТ, но не менее 5 равномерно распределенных по диапазону, включае верхнее и нижнее значения).
- 9.8.6.2 Используя ПО «Recorder», поочередно для всех номинальных значений напряжения в КТ, провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу.
- 9.8.7 Результаты поверки ИК напряжения переменного тока генератора считать положительными если погрешность ИК не превышает значений, приведенных в приложении А настоящего документа.
- 9.8.8 В случае не выполнения условий, указанных в п.9.8.7, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.9 Определение погрешностей ИК силы переменного тока генератора

Поверку ИК силы переменного тока выполнять следующим способом:

- 1-й этап контроль (оценка) состояния и МХ ПП;
- 2-й этап поверка электрической части ИК с целью определения диапазона измерений и погрешности измерений;
 - 3-й этап определение и оценка максимальной погрешности ИК.
 - 9.9.1 Для контроля (оценки) ПП:
- 9.9.1.1 Проверить внешний вид, наличие пломб и маркировку каждый ПП не должен иметь видимых внешних повреждений, а его пломбирование, маркировка типа и номера ПП соответствовать паспорту (этикетке).
- 9.9.1.2 Для каждого ПП проверить наличие действующего свидетельства о поверке и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ.

Примечание — В случае, если в свидетельстве о поверке не указано значение экспериментально определенной погрешности, а приведено слово «Соответствует», воспользоваться паспортными данным $\Pi\Pi$.

- 9.9.2 Поверку электрической части каждого ИК выполнять в следующем порядке:
- 9.9.2.1 Собрать схему поверки в соответствии с рисунком 12, для чего отключить ПП и вместо него на вход электрической части ИК подключить калибратор Н4-7 в режиме воспроизведения напряжения постоянного тока в диапазоне от 0 до 5 В. Место для отключения/подключения выбирать на основе сведений из таблицы 9.9.1.

Рисунок 12 – Схема поверки электрической части ИК силы переменного тока

- 9.9.2.2 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку на поверку электрической части ИК. В поле «Контрольные точки» установить номинальные значения тока, указанные в поле «Номинальные значения напряжения постоянного тока в КТ, В» таблицы 9.9.1.
- 9.9.2.3 Используя ПО «Recorder», поочередно для всех номинальных значений в КТ, указанных в таблице 9.9.1, провести измерения в электрической части выбранного ИК в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом номинальные значения напряжения постоянного тока в КТ на входе электрической части исследуемого ИК устанавливать с помощью калибратора Н4-7 в соответствии с полем «Номинальные значения напряжения постоянного тока в КТ, В на выходе ПП» таблицы 9.9.1.
- 9.9.2.4 Используя указания п.п.7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. ПО «Recorder» будет выполнена обработка результатов измерений по формулам (10.1) и (10.4), приведенным в разделе 10 настоящего документа.

Таблица 9.9.1 – Контрольные точки измерения силы переменного тока

Наименование ИК	Обозначе- ние канала /параметр	Размерность	нп ди ик	вп ди ик	Количество КТ на ДИ ИК, п	Номинальны е действующи е значения тока в КТ	Номинальные значения напряжения постоянноготок а в КТ, В на выходе ПП, x_k
Сила переменного тока	I.em120.1.f1 I.em120.1.f2 I.em120.1.f3 I.em120.2.f1 I.em120.2.f2 I.em120.2.f3 I.em120.3.f1 I.em120.3.f2 I.em120.3.f3	A	0	750		0; 150; 300; 450; 600; 750	0; 1; 2; 3; 4; 5

- 9.9.3 Результаты поверки ИК силы переменного тока считать положительными, если:
- 9.9.3.1 ПП ИК поверены, имеют действующие свидетельства о поверке и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ, фактическая максимальная погрешность измерений для каждого из ПП находится в пределах допускаемой погрешности, определенной его паспортом;
- 9.9.3.2 Погрешность электрической части ИК не превышает значений, приведенных в приложении А настоящего документа;

- 9.9.3.3 Выполнение п.п. 9.9.3.1 и 9.9.3.2 обеспечивает выполнение установленных требований к суммарной погрешности (приведенных в приложении А настоящего документа) для соответствующего ИК.
- 9.9.4 При не выполнении любого из перечисленных в п.9.9.3 условий, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.10 Определение погрешностей ИК частоты переменного тока генератора

- 9.10.1 Поверку ИК частоты переменного тока провести в следующим образом:
- 9.10.1.1 Собрать схему поверки в соответствии с рисунком 13, для чего от входа электрической части ИК отключить ПП напряжения переменного тока, используемый в канале измерения частоты переменного тока генератора, и подключить вместо него генератор сигналов Г3-110.

Рисунок 13 – Схема поверки ИК частоты переменного тока

- 9.10.1.2 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку на поверку электрической части ИК. В поле «Контрольные точки» установить номинальные значения частоты, указанные в поле «Номинальные значения частоты в КТ» таблицы 9.10.1.
- 9.10.1.3 Используя ПО «Recorder», поочередно для всех номинальных значений частоты в КТ, указанных в таблице 9.10.1, провести измерения в электрической части ИК в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом номинальные значения частоты в КТ на входе электрической части исследуемого ИК устанавливать с помощью генератора ГЗ-110 в герцах в соответствии с таблицей 9.10.1. Действующее значение напряжения на выходе генератора устанавливать равным 6 Вольтам.
- 9.10.1.4 Используя указания п.п.7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. ПО «Recorder» будет выполнена обработка результатов измерений по формулам (10.1) и (10.2), приведенным в разделе 10 настоящего документа.

Таблица 9.10.1 – Контрольные точки измерения частоты переменного тока

Наименование ИК (измеряемого параметра)	Размерность	нп ди ик	ВПДИИК	Количество КТ на ДИ ИК, п	Номинальные значения частоты в KT , Γ ц x_k
Частота напряжения генератора переменного тока (Параметры: f.rm120.1 - f.rm120.3)	Гц	1,	10000	5	1; 2500; 5000; 7500; 10000

- 9.10.2 Результаты поверки ИК частоты переменного тока считать положительными, если:
- 9.10.2.1 ПП ИК поверен, имеет действующее свидетельство о поверке и/или наличие сведений о положительных результатах поверки в ФИФ ОЕИ.
- 9.10.2.2 Максимальное значение относительной погрешности измерений электрической части ИК по результатам поверки находится в допускаемых пределах (приведенных в приложении А настоящего документа).
- 9.10.3 При не выполнении любого из перечисленных в п.9.10.2 условий, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.11 Определение погрешностей ИК сигналов от датчиков температуры (ТЭДС термопар, соответствующих температуре)

Допускается проводить поверку ИК сигналов от датчиков температуры (ТЭДС термопар, соответствующих температуре) автономно – в этом случае поверка (комплексов МІС-140) производится согласно документу: «Комплексы измерительные магистрально-модульные МІС-М. Методика поверки. БЛИЖ. 422212.001.001 МП».

- 9.11.1 Поверку ИК сигналов от датчиков температуры (ТЭДС термопар, соответствующих температуре) выполнить следующим образом:
- 9.11.1.1 Собрать схему поверки в соответствии с рисунком 14, для чего на вход электрической части ИК вместо ПП подключить калибратор H4-7 в режиме воспроизведения напряжения постоянного тока в диапазоне от 3 до +67 мВ.

Рисунок 14 — Схема поверки ИК сигналов от датчиков температуры (ТЭДС термопар, соответствующих температуре)

- 9.11.1.2 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку на поверку электрической части ИК. В поле «Контрольные точки» установить значения из таблицы 9.11.1 для соответствующего ИК.
- 9.11.1.3 Используя ПО «Recorder», поочередно для всех номинальных значений напряжения в КТ, указанных в таблице 9.11.1, провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом номинальные значения напряжения на входе ИК устанавливать с помощью калибратора Н4-7.
- 9.11.1.4 Используя указания п.п.7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. Для всех ИК ПО «Recorder» будет выполнена обработка результатов измерений по формулам (10.1) и (10.4), приведенным в разделе 10 настоящего документа.

Таблица 9.11.1 – Контрольные точки ИК сигналов от датчиков температуры (ТЭДС термопар, соответствующих температуре)

Наименование ИК (измеряемого параметра)	Размерность	нп ди ик	вп ди ик	Количество КТ на ДИ ИК, п	Номинальные значения напряжения в KT , x_k
Напряжение постоянного тока, соответствующее значениям температуры в диапазоне преобразований ПП термоэлектрического типа: ТХА (К), ТХК(L), ТМК(Т), ТПР(В) (Параметры: $t.XK.1 - t.XK.767$)	мВ	-3,005	+66,466	11	-3,0; -2,0; -1,0; 0; 10,0; 20,0; 30,0; 40,0; 50,0; 60,0; 66,466

Примечание — Номинальные значения напряжения в KT носят рекомендательный характер, возможно выбирать другие KT (не менее 11 и равномерно распределенные по диапазону измерения, включая верхнее и нижнее значения).

- 9.11.2 Результаты поверки ИК сигналов от датчиков температуры (ТЭДС термопар, соответствующих температуре) считать положительными, если максимальные значения приведенных (к ДИ) погрешностей измерений напряжения находится в допускаемых пределах (приведенных в приложении А настоящего документа).
- 9.11.3 В случае не выполнения условий, указанных в п.9.11.2, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.12 Определение погрешностей ИК частоты переменного тока, соответствующей значениям частоты вращения ротора

- 9.12.1 Поверку ИК частоты переменного тока, соответствующего частоте вращения ротора, выполнить в следующим образом:
- 9.12.1.1 Собрать схему поверки электрической части ИК в соответствии с рисунком 15, для чего отсоединить линии от первичного преобразователя и подключить генератор Г3-110.

Рисунок 15 — Схема поверки ИК частоты переменного тока, соответствующей частоте вращения ротора

- 9.12.1.2 Запустить ПО «Recorder» и выполнить его настройку на поверку ИК.
- 9.12.1.3 Используя ПО «Recorder» поочередно для всех значений частот, указанных в таблице 9.12.1 провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом номинальные значения частоты вращения в КТ задавать с помощью генератора в единицах измерения частоты переменного тока (Γ ц), а амплитуду сигнала на выходе генератора установить равной 1 В.
- 9.12.1.4 Используя указания п.п.7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. ПО «Recorder» будет выполнена обработка результатов измерений по формулам (10.1) и (10.2), приведенным в разделе 10 настоящего документа.

Таблица 9.12.1 – Контрольные точки измерения частоты

Наименование ИК (измеряемого параметра)	Размерность	нп ди ик	вп ди ик	Количество КТ на ДИ ИК, п	Номинальные значения частоты переменного тока в KT , x_k
Частота переменного тока, соответствующая значениям частоты вращения роторов (НД, СД и ВД) (Параметры: п.нд; п.сд; п.вд)	Гц	1	10000	5	1; 2500; 5000; 7500; 10000

- 9.12.2 Результаты поверки ИК частоты переменного тока, соответствующей значениям частоты вращения ротора, считать положительными, если максимальные значения относительных погрешностей частоты находится в допускаемых пределах (приведенных в приложении А настоящего документа).
- 9.12.3 В случае не выполнения условий, указанных в п.9.12.2 соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.13 Определение погрешностей ИК относительного напряжения тензодатчиков

9.13.1 Поверку ИК относительного напряжения тензодатчиков выполнить следующим образом:

9.13.1.1 Собрать схему поверки в соответствии с рисунком 16.

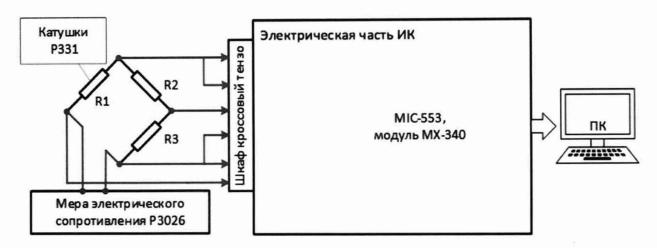


Рисунок 16 - Схема поверки ИК относительного напряжения тензодатчиков

- 9.13.1.2 Включить питание системы и загрузить операционную систему Windows. Запустить ПО «Recorder» и выполнить её настройку на поверку электрической части ИК. В поле «Контрольные точки» установить значения из таблицы 9.13.1 для соответствующего ИК.
- 9.13.1.3 Используя ПО «Recorder», поочередно для всех номинальных значений относительного напряжения в КТ, указанных в таблице 9.13.1, провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом значения сопротивления, соответствующие разбалансу мостовой схемы для номинальных значений относительного напряжения, установить с помощью меры сопротивления Р3026.
- 9.13.1.4 Используя указания п.п.7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. Для всех ИК ПО «Recorder» будет выполнена обработка результатов измерений по формулам (10.1) и(10.3), приведенным в разделе 10 настоящего документа.

Таблица 9.13.1 – Контрольные точки ИК относительного напряжения тензодатчиков

Наименование ИК (измеряемого параметра)	Размерность	ди ик	Количество КТ на ДИ ИК, п	Номинальны е значения относительн ого напряжения в КТ, x_k
Относительное напряжение $\frac{1}{2}$ и $\frac{1}{4}$ моста тензодатчиков до 96 к Γ ц (Параметры: dU .tenzo.1 – dU .tenzo.112)	мВ/В	±2	11	-2; -1,6; -1,2; - 0,8; -0,4; 0; 0,4; 0,8; 1,2; 1,6; 2

Наименование ИК (измеряемого параметра)	Размерность	ДИ ИК	Количество КТ на ДИ ИК, п	Номинальны е значения относительн ого напряжения в КТ, x_k
Относительное напряжение $\frac{1}{2}$ моста и полного моста тензо-датчиков до 96 к Γ ц (Параметры: $dU.tenzo.113 - dU.tenzo.128$)		±20		-20; -16; -12; - 8; -4; 0; 4; 8; 12; 16; 20

Примечание – Номинальные значения относительного напряжения в КТ носят рекомендательный характер, возможно выбирать другие КТ (не менее 11 и равномерно распределенные по диапазону измерения).

- 9.13.2 Результаты поверки ИК относительного напряжения считать положительными, если максимальные значения приведенных (к ДИ) погрешностей измерений находятся в допускаемых пределах (приведенных в приложении А настоящего документа).
- 9.13.3 В случае не выполнения условий, указанных в п.9.13.2, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.14 Определение погрешностей ИК напряжений постоянного и переменного тока, соответствующего вибрациям, пульсациям давления и заряду пьезоэлектрических датчиков

- 9.14.1 Поверку ИК напряжения постоянного и переменного тока, соответствующего вибрациям, пульсациям давления и заряду пьезоэлектрических датчиков, выполнить в следующим образом:
- 9.14.1.1 Собрать схему поверки ИК в соответствии с рисунком 17, для чего отсоединить линии от первичного преобразователя и подключить калибратор Н4-7.

Рисунок 17 — Схема поверки ИК напряжения постоянного и переменного тока, соответствующего вибрациям и пульсациям давления

- 9.14.1.2 Запустить ПО «Recorder» и выполнить его настройку на поверку ИК.
- 9.14.1.3 Используя ПО «Recorder» поочередно для всех значений напряжения постоянного (или переменного тока), указанных в таблице 9.14.1 провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом номинальные

значения напряжения в КТ задавать с помощью калибратора Н4-7, частоту опроса модуля выбрать равной 216 кГц.

9.14.1.4 Используя указания п.п.7 — 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и формирование протокола поверки. ПО «Recorder» будет выполнена обработка результатов измерений по формулам (10.1) и (10.3), приведенным в разделе 10 настоящего документа.

Таблица 9.14.1 — Контрольные точки ИК напряжений постоянного и переменного тока, соответствующего вибрациям, пульсациям давления и заряду пьезоэлектрических датчиков

Наименование ИК (измеряемого параметра)	Размерность	нп ди ик	ВП ДИ ИК	Количество КТ на ДИ ИК, п	Номинальные значения напряжения в КТ (амплитудные значения для напряжения переменного тока), x_k
Постоянное и переменное напряжение до 45 кГц (Параметры: U.d.1 – U.d.26; U.ks)		-10	10	11	-10; -8; -6; -4; -2; 0; 2; 4; 6; 8; 10 (0; 2; 4; 6; 8; 10)
Напряжение переменного тока, соответствующее пульсациям давления (Параметры: U.ps.1 – U.ps.5, U.ks)	В	-11	11	11	-11; -8; -6; -4; -2; 0; 2; 4; 6; 8; 11 (0; 2; 4; 6; 8; 11)
Напряжение переменного тока, соответствующее заряду пьезоэлектрических датчиков (Параметры: q.d.13 – q.d.24)		-10	10	11	-10; -8; -6; -4; -2; 0; 2; 4; 6; 8; 10 (0; 2; 4; 6; 8; 10)

Примечание – Номинальные значения напряжения в КТ носят рекомендательный характер, возможно выбирать другие КТ (не менее 11 и равномерно распределенные по диапазону измерения).

- 9.14.2 Результаты поверки ИК напряжения постоянного и переменного тока, соответствующего вибрациям, пульсациям давления и заряду пьезоэлектрических датчиков, считать положительными, если максимальные значения приведенных погрешностей измерения напряжения находится в допускаемых пределах (приведенных в приложении А настоящего документа).
- 9.14.3 В случае не выполнения условий, указанных в п.9.14.2, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.15 Определение погрешностей ИК заряда пьезоэлектрических датчиков

- 9.15.1 Поверку ИК заряда пьезоэлектрических датчиков выполнить в следующим образом:
- 9.15.1.1 Собрать схему поверки ИК в соответствии с рисунком 18, для чего отсоединить линии от первичного преобразователя и подключить калибратор Н4-7 и магазин емкости Р583.

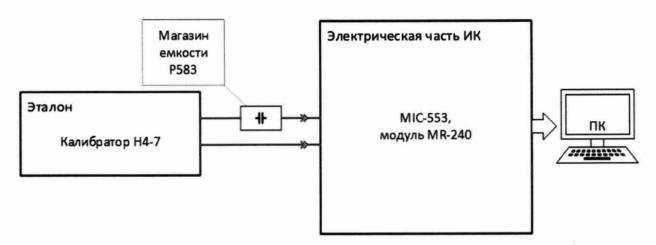


Рисунок 18 - Схема поверки ИК заряда пьезоэлектрических датчиков

- 9.15.1.2 Запустить ПО «Recorder» и выполнить его настройку на поверку ИК.
- 9.15.1.3 Используя ПО «Recorder» поочередно для всех значений напряжения постоянного (или переменного тока), указанных в таблице 9.15.1 провести измерения в соответствии с п.п.1 6 Приложения Б к настоящему документу. При этом номинальные значения заряда в КТ задавать с помощью калибратора и магазина емкостей ($q = C \cdot U$, где C емкость установленная на магазине, U амплитудное значение напряжения переменного тока на калибраторе), частоту напряжения переменного тока на калибраторе установить равной 100 к Γ ц, частоту опроса модуля 216 к Γ ц.
- 9.15.1.4 Используя указания п.п.7 12 Приложения Б к настоящему документу, выполнить обработку результатов измерений и сформировать протокол поверки. ПО «Recorder» будет выполнена обработка результатов измерений по формулам (10.1) и (10.3), приведенным в разделе 10 настоящего документа.

Таблица 9.15.1 — Контрольные точки ИК напряжений постоянного и переменного тока, соответствующего вибрациям, пульсациям давления и заряду пьезоэлектрических датчиков

Наименование ИК (измеряемого параметра)	Размерность	ди ик	Количество КТ на ДИ ИК,	Номинальные значения заряда в KT, x_k
Заряд пьезоэлектрических датчиков до 96 к Γ ц (Параметры: $q.d.1-q.d.12$)	пКл	±1000	6	0; 200; 400; 600; 800; 1000

Примечание – Номинальные значения заряда в КТ носят рекомендательный характер, возможно выбирать другие КТ (не менее 11 и равномерно распределенные по диапазону измерения).

9.15.2 Результаты поверки ИК заряда пьезоэлектрических датчиков считать положительными, если максимальные значения приведенных погрешностей измерения

напряжения находится в допускаемых пределах (приведенных в приложении А настоящего документа).

9.15.3 В случае не выполнения условий, указанных в п.9.15.2, соответствующий ИК бракуется и направляется на ремонт. После ремонта ИК подлежит внеочередной поверке в соответствии с данной МП.

9.16 Определение погрешности канала генератора импульсов синхронизации

- 9.16.1 Поверку канала генератора импульсов синхронизации выполнить в следующим образом:
- 9.16.1.1 Собрать схему поверки канала в соответствии с рисунком 19, для чего подключить частотомер к выходу 10 МГц модуля МЕ-020.

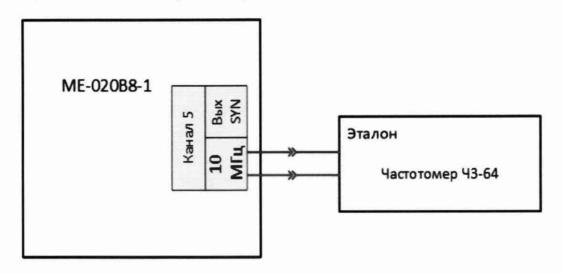


Рисунок 19 — Схема поверки канала генератора импульсов синхронизации

- 9.16.1.2 Используя частотомер в режиме измерения частоты переменного тока выполнить замеры сигнала 10 МГц с модуля МЕ-020 в течении 1 минуты. Записать в протокол не менее 10 значений измерений.
- 9.16.1.3 Обработку результатов измерений выполнять по формулам (10.1) и (10.2), приведенным в разделе 10 настоящего документа.
- 9.16.2 Результаты поверки канала генератора импульсов синхронизации считать положительными, если максимальное значение относительной погрешности генератора находится в допускаемых пределах (приведенных в приложении А настоящего документа).
- 9.16.3 В случае не выполнения условий, указанных в п.9.16.2, канал бракуется и направляется на ремонт. После ремонта канал подлежит внеочередной поверке в соответствии с данной МП.

10 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

10.1 Обработка результатов измерений

10.1.1 Расчет абсолютной погрешности электрической части ИК Значение абсолютной погрешности измерений в *j*-той точке определить по формуле:

$$\Delta A_i = \pm |A_i - A_{i3}| \tag{10.1}$$

где: A_j — измеренное значение физической величины в j-той точке; A_{j_3} — значение физической величины, установленное рабочим эталоном в j-той точке.

10.1.2 Определение относительной погрешности электрической части ИК Значение относительной погрешности измерений в j-той точке определить по формуле:

$$\delta_j = \pm \left| \frac{\Delta A_j}{A_{j_3}} \right| \cdot 100\% \tag{10.2}$$

10.1.3 Расчет значения приведенной (к ДИ) погрешности электрической части ИК Значения приведенной (к ДИ) погрешности измерений физической величины для каждой точки проверки определить по формуле:

$$\gamma_{j,\text{H}} = \pm \frac{\Delta A_j}{|P_{\text{B}} - P_{\text{H}}|} \cdot 100\% \tag{10.3}$$

где: $P_{\rm B}$ — значение верхнего предела измерений; $P_{\rm H}$ — значение нижнего предела измерений.

10.1.4 Расчет значения приведенной (к ВП) погрешности электрической части ИК Значения приведенной к верхнему пределу погрешности измерений физической величины для каждой точки проверки определить по формуле:

$$\gamma_{j_{\rm B}} = \pm \frac{\Delta A_j}{P_{\rm B}} \cdot 100\% \tag{10.4}$$

10.1.5 Расчет значения максимальной суммарной с ПИП погрешности ИК Значение максимальной, суммарной с ПИП, (абсолютной, относительной или приведенной) погрешности ИК, определить по формуле:

$$\theta_c = \pm \left(|\theta_{\Pi\Pi}| + |\widehat{\theta A}| \right) \tag{10.5}$$

где: θ_{nn} — значение погрешности (абсолютной, относительной или приведенной) первичного преобразователя, взятое из протокола определения действительных метрологических характеристик, прилагаемого к свидетельству о поверке, а при его отсутствии, из паспорта первичного преобразователя или описания типа;

- $\widehat{\theta A}$ максимальное значение погрешности (абсолютной, относительной или приведенной) измерений электрической части ИК.
- 10.1.6 Значения погрешностей по соотношениям (10.1) (10.4) вычисляются программой Recorder при выполнении последовательности действий, описанных в п.п.7 12 Приложения Б.
- 10.2 Критерии принятия решения по подтверждению соответствия системы метрологическим требованиям
- 10.2.1 Результаты поверки ИК АИИС 5У считать положительными, если границы погрешности измерений ИК по результатам поверки находятся в допускаемых пределах, указанных в Приложении А.

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 11.1 Результаты поверки оформляют протоколом поверки, рекомендуемая форма которых приведена в Приложениях В, Г.
- 11.2 Сведения о результатах поверки передаются в федеральный информационный фонд по обеспечению единства измерений.
- 11.3 При положительных результатах поверки ИК системы оформляется свидетельство о поверке, если поверка проводилась не в полном объеме, в свидетельстве о поверке перечисляются только ИК, по которым производилась проверка.
- 11.4 При отрицательных результатах поверки ИК система не допускается к проведению испытаний, о чем делается запись в паспорте стенда и оформляется извещение о непригодности их к применению.
- 11.5 После устранения причин неисправности ИК проводится повторная поверка в соответствии с требованиями настоящей методики.
- 11.6 Защита от несанкционированного доступа к компонентам системы обеспечивается: запиранием ключом замков на дверях элементов системы (стоек приборных, шкафов кроссовых и т.д.) и пломбирующими наклейками на панелях, открывающих доступ к элементам электрической схемы устройств.

Главный метролог, начальник отдела ФАУ «ЦИАМ им. П.И. Баранова»

Заместитель начальника отдела

Ведущий инженер

Б.И. Минеев

Р.Г. Павлов

М.В. Корнеев

Приложение А

(обязательное)

Метрологические характеристики АИИС 5У

Таблица А1 – Метрологические характеристики системы

Физические	погические ларактерие	Пределы допускаемой погрешности				
параметры (обозначение)	Диапазон измерения	Электрическ ой части ИК	Первичного Преобразова теля	Суммарная	Кол-во каналов	
1	2	3	4	5	6	
Температура воздуха в боксе (Параметр: t.бокс)	от -45 до +60 °C	_	Δ: ±0,5 °C (поверяется автономно)	Δ: ±0,5 °C	1	
Температура воздуха при отборе на нормальные и	от 400 до 770К	Δ: 4Κ-Δηη	(до 606 K) Δ: ±1,5 K	Δ: ±4 K	1	
аварийные нужды ЛА (Параметр: t.г.нужды ЛА)	(от 126 до 500°С)		Δ. 4Κ Διμι	(свыше 606 К) ∆: ±0.4%·Т	δ: ±0,3 % от ИЗ	•
Температура воздуха на входе ВЗУ (Параметры: t.н.1 – t.н.13)	от 223 до 323 К (от -50 до +50 °C)	δ: ±0,19 % от ИЗ	Δ : \pm (0,15 + 0,002 t) (поверяется автономно)		13	
Температура топлива на входе в изделие (Параметр: t.т.вх)	от -50 до +50 °C	ү: ±0,50 % от ВП	Δ : $\pm (0,15 + 0,002 t)$ (поверяется автономно)	у: ±1,0 % от ВП	1	
Температура масла на входе в изделие (Параметр: t.м.вх)	от -50 до +250 °C	γ: ±0,74 % от ВП	Δ: ±(0,15 + 0,002 t) (поверяется автономно)	γ: ±1,0 % от ВП	1	
Температура масла на выходе из изделия (Параметр: t.м.вых)	от -50 до +250 °C	γ: ±0,74 % от ВП	Δ : \pm (0,15 + 0,002 t) (поверяется автономно)	γ: ±1,0 % от ВП	1	
Температура масла в ОТ (опоры турбины) (Параметр: t.м.ОТ)	от -50 до +250 °C	γ: ±0,74 % от ВП	Δ : ±(0,15 + 0,002 t) (поверяется автономно)	γ: ±1,0 % от ВП	1	
Температура г/ж в баке НП-177-1, температура г/ж в баке НП-177-2 (Параметры: t.гж.нп177.1; t.гж.нп177.2)	от -50 до +120 °C	γ: ±0,25 % от ВП	Δ: ±(0,3 + 0,005 t) (поверяется автономно)	γ: ±1,0 % от ВП	2	

Продолжение таблиг	цы Ат				
Температура г/ж на входе НП-177-1, температура г/ж на входе НП-177-2 (Параметры: t.гж.вх.нп177.1; t.гж.вх.нп177.2)	от -50 до +120 °C	γ: ±0,25 % от ВП	Δ : \pm (0,3 + 0,005 t) (поверяется автономно)	γ: ±1,0 % от ВП	2
Температура г/ж на выходе НП-177-1, температура г/ж на выходе НП-177-2 (Параметры: t.гж.вых.нп177.1; t.гж.вых.нп177.2)	от -50 до +120 °C	γ: ±0,25 % от ВП	Δ: ±(0,3 + 0,005 t) (поверяется автономно)	γ: ±1,0 % от ВП	2
Температура г/ж на выходе т/о НП-177-1, температура г/ж на выходе т/о НП-177-2 (Параметры: t.гж.то.нп177.1; t.гж.то.нп177.2)	от -50 до +120 °C	γ: ±0,25 % от ВП	Δ: ±(0,3 + 0,005 t) (поверяется автономно)	γ: ±1,0 % от ВП	2
Абсолютное давление газообразных сред 5 psi (Параметры: dP.5.1 – dP.5.112)	от 66,8 до 135,8 кПа	-	ү: ±0,05 % от ДИ ПП (поверяется автономно)	δ: ±0,3 % от ИЗ	112
Избыточное давление газообразных сред 30 psi (Параметры: dP.30.1 – dP.30.112)	от 0 до 137 кПа от 137 до 207 кПа	_	ү: ±0,05 % от ДИ ПП (поверяется автономно)	γ: ±0,3 % от ΒΠ δ: ±0,3 % от ИЗ	112
Избыточное давление газообразных сред 100 psi (Параметры: dP.100.1 – dP.100.208)	от 0 до 343 кПа от 343 до 690 кПа	_	γ: ±0,05 % от ДИ ПП (поверяется автономно)	γ: ±0,3 % от ВП δ: ±0,3 % от ИЗ	208
Избыточное давление жидкости 6 кгс/ см ² (Параметр: Р.6ж)	от 0 до 588,4 кПа (от 0 до 6 кгс/см ²)	γ: ±0,9 % от ВП	γ: ±0,1 % от ВП ПП (поверяется автономно)	ү: ±1,0 % от ВП	1
Избыточное давление жидкости 4 кгс/ см ² (Параметры: Р.4ж.1 – Р.4ж.4)	от 0 до 392,3 кПа (от 0 до 4 кгс/см²)	γ: ±0,9 % от ВП	γ: ±0,1 % от ВП ПП (поверяется автономно)	γ: ±1,0 % от ВП	4

Продолжение таблиг	цы А1				
Избыточное давление жидкости 2,5 кгс/ см ² (Параметр: Р.2.5ж)	от 0 до 245,2 кПа (от 0 до 2,5 кгс/см²)	γ: ±0,9 % от ВП	γ: ±0,1 % от ВП ПП (поверяется автономно)	γ: ±1,0 % от ВП	1
Абсолютное давление жидкости 2,5 кгс/ см² (Параметры: Р.2.5ж.абс 1; Р.2.5ж.абс 2)	от 0 до 245,2 кПа (от 0 до 2,5 кгс/см ²)	γ: ±0,9 % от ВП	γ: ±0,1 % от ВП ПП (поверяется автономно)	γ: ±1,0 % от ВП	2
Перепад между статическим давлением в мерном сечении и в контрольным сечении (Параметры: dP.мс.1 – dP.мс.8)	от 0 до 1961 Па (от 0 до 0,02 кгс/см ²)	γ: ±0,5 % от ВП	ү: ±0,5 % от ДИ ПП (поверяется автономно)	Δ: ±20 Па	8
Полное давлениеразряжение на входе в РМК (Параметры: Р.полн1 – Р.полн4)	от -3927 до 0 Па (от -0,04 до 0 кгс/см ²)	γ: ±0,27 % от ВП	γ: ±1 % от ДИ ПП (поверяется автономно)	Δ: ±50 Па	4
Избыточное давление газообразных сред 1,6	от 0 до 78,4 кПа (от 0 до 0,8 кгс/см ²)	γ: ±0,1 % от ВП	γ: ±0,1 % от ВП ПП	γ: ±0,3 % от ВП	
кгс/см ² (Параметры: Р.1.6г.1 – Р.1.6г.17)	от 78,4 до 156,9 кПа (от 0,8 до 1,6 кгс/см²)	δ: ±(0,3 – 0,1·Р _{ВП} /Р _{ИЗ}) % от ИЗ	(поверяется автономно)	δ: ±0,3 % от ИЗ	17
Избыточное давление газообразных сред 4	от 0 до 196,1 кПа (от 0 до 2 кгс/см ²)	γ: ±0,1 % от ВП	γ: ±0,1 % от ВП ПП	γ: ±0,3 % от ВП	
кгс/см ² (Параметры: Р.4г.1 – Р.4г.2)	от 196,1 до 392,3 кПа (от 2 до 4 кгс/см ²)	δ: ±(0,3 – 0,1·P _{BΠ} /P _{ИЗ}) % от ИЗ	(поверяется автономно)	δ: ±0,3 % от ИЗ	2
Избыточное давление газообразных сред 6	от 0 до 294,1 кПа (от 0 до 3 кгс/см ²)	γ: ±0,1 % от ВП	γ: ±0,1 % от ВП ПП	γ: ±0,3 % от ΒΠ	
кгс/см ² (Параметры: Р.6г.1 – Р.6г.2)	от 294,1 до 588,4 кПа (от 3 до 6 кгс/см ²)	δ: ±(0,3 – 0,1·Р _{ВП} /Р _{ИЗ}) % от ИЗ	(поверяется автономно)	δ: ±0,3 % от ИЗ	2
Избыточное давление газообразных сред 10	от 0 до 490,3 кПа (от 0 до 5 кгс/см ²)	γ: ±0,1 % от ВП	γ: ±0,1 % от ВП ПП	γ: ±0,3 % от ВП	
кгс/см ² (Параметры: Р.10г.1 – Р.10г.30)	от 490,3 до 980,7 кПа (от 5 до 10 кгс/см ²)	δ: ±(0,3 – 0,1·Р _{ВП} /Р _{ИЗ}) % от ИЗ	(поверяется автономно)	δ: ±0,3 % от ИЗ	30
Избыточное давление газообразных сред 16	от 0 до 784,5 кПа (от 0 до 8 кгс/см²)	γ: ±0,1 % от ΒΠ	γ: ±0,1 % от ВП ПП	γ: ±0,3 % от ΒΠ	
кгс/см ² (Параметры: Р.16г.1 – Р.16г.24)	от 784,5 до 1569,1 кПа (от 8 до 16 кгс/см ²)	δ: ±(0,3 – 0,1·P _{BΠ} /P _{ИЗ}) % от ИЗ	(поверяется автономно)	δ: ±0,3 % от ИЗ	24

Продолжение таблиг	цы А1				
Избыточное давление	от 0 до 1225,8 кПа	γ: ±0,1 % от	0.1.07	у: ±0,3 % от	
газообразных сред 25	(от 0 до 12,5 кгс/см ²)	ВП	γ: ±0,1 % от ΒΠ ΠΠ	ВП	
кгс/см2	от 1225,8 до 2451,7 кПа	δ: ±(0,3 –	(поверяется	δ: ±0,3 % от	26
(Параметры: Р.25г.1 –	(от 12,5 до 25	$0,1 \cdot P_{B\Pi}/P_{IJ3}$	автономно)	ИЗ	1
Р.25г.26)	кгс/см ²)	% от ИЗ			
Избыточное давление	от 0 до 1961,3 кПа	ү: ±0,1 % от	у: ±0,1 % от	у: ±0,3 % от	
газообразных сред 40	(от 0 до 20 кгс/см ²)	ВП	ВППП	ВП	26
Krc/cm ²	от 1961,3 до 3922,7	$\delta: \pm (0,3 - 0.1)$	(поверяется	δ: ±0,3 % от	26
(Параметры: Р.40г.1 – Р.40г.26)	кПа (от 20 до 40 кгс/см ²)	0,1·Р _{ВП} /Р _{ИЗ}) % от ИЗ	автономно)	ИЗ	
F.401.20)	от 0 до 127,4 кПа	γ: ±0,1 % от		у: ±0,3 % от	
Абсолютное давление	(от 0 до 1,3 кгс/см ²)	ВП	γ: ±0,1 % от	ВП	
газообразных сред 2,5		δ: ±(0,3 –	ВППП	\$ 10.2.0/	1
кгс/см ² (Параметр: Р.2.5г.абс)	от 127,4 до 245,2 кПа (от 1,3 до 2,5 кгс/см ²)	$0,1 \cdot P_{B\Pi}/P_{И3})$	(поверяется автономно)	δ: ±0,3 % от ИЗ	
(Параметр. 1.2.31.aoc)	(01 1,5 d0 2,5 kic/cm)	% от ИЗ	автономној	113	
Давление воздуха					
наддува бака НП-177-			w ±0.1.9/ oπ		
1, давление воздуха наддува бака НП-177-	от 0 до 640 кПа	у: ±0,9 % от	γ: ±0,1 % от ΒΠ ΠΠ	у: ±1 % от	
2	(от 0 до 6,53 кгс/см ²)	ВП	(поверяется	ВП	2
(Параметры:	()		автономно)		
Р.в.гб.нп177.1;					
Р.в.гб.нп177.2)					
Давление г/ж на входе					
HП-177-1, давление	0 (00 П	10.00/	γ: ±0,1 % от	11.0/	
г/ж на входе НП-177-2 (Параметры:	от 0 до 600 кПа (от 0 до 6,12 кгс/см ²)	γ: ±0,9 % от ВП	ВП ПП	γ: ±1 % от ΒΠ	2
Р.гж.вх.нп177.1;	(01 0 до 0,12 кгс/см)	DII	(поверяется автономно)	DII	
Р.гж.вх.нп177.2)			ubronomio)		
Давление г/ж на					
выходе НП-177-1,			у: ±0,1 % от		
давление г/ж на	от 0 до 35 МПа	у: ±0,9 % от	ВП ПП	у: ±1 % от	
выходе НП-177-2	(от 0 до 356,9	ВП	(поверяется	ВП	2
(Параметры:	кгс/см ²)	595 324.55	автономно)		
Р.гж.вых.нп177.1; Р.гж.вых.нп177.2)					
	om 0 no 794 5 will-			10 2 0/ -	
Давление воздуха при отборе на нормальные	от 0 до 784,5 кПа (от 0 до 8 кгс/см ²)	γ: ±0,1 % от ВП	у: ±0,1 % от	γ: ±0,3 % от ΒΠ	
и аварийные нужды			ВП ПП	DII	1
(Параметр: Р.г.нужды	от 784,5 до 1569,1 кПа	$δ: ±(0,3 - 0,1 \cdot P_{B\Pi}/P_{И3})$	(поверяется	δ: ±0,3 % от	
ЛА)	(от 8 до 16 кгс/см ²)	% от ИЗ	автономно)	И3	
	()			L	

Продолжение таблиц	цы А1				
Атмосферное	от 60 до 110 кПа		Δ: ±33 Па		
давление	(от 450 до 825 мм		(поверяется	Δ: ±67 Πa	1
(Параметр: Р.атм)	рт.ст.)		автономно)	γ: ±0,3 % от	
C	от 0 до 122,6 кН (от 0 до 12500 кгс)			у. ±0,5 % 01 ВП	
Сила от тяги	от 122,6 до 245,2 кН	Скрозная п	оверка ИК	DII	1
двигателя (Параметр: R)	(от 12500 до 25000	Сквозная п	оверка их	δ: ±0,3 % от	1
(Параметр. К)	(01 12500 до 25000 кгс)			И3	
Относительная	KIC)				
влажность воздуха в			Δ: ±2 %		
боксе	от 0 до 99 %	-	(поверяется	Δ: ±2 %	1
(Параметр: п.бокс)			автономно)		
(111)			δ: ±0,4 % от		
	200 400/-		ИЗ	δ: ±0,5 % от	
M	от 200 до 400 кг/ч		(поверяется	ИЗ	
Массовый расход		δ: ±0,1 % от	автономно)		1
топлива (Параметр: С.топл)		ИЗ	δ: ±0,2 % от		1
(Hapamerp. G.10Hh)	от 400 до 20000 кг/ч		ИЗ (поверя-	δ: ±0,3 % от	
	01 400 до 20000 к1/4		ется авто-	ИЗ	
			номно)		
Прокачка масла через			$δ: \pm 0,4 \%$ от		
опору турбины	от 0,12 до 0,6 л/с	$δ: \pm 0,6 \%$ от	И3	δ: ±1 % от	1
(Параметр: Q.м.ОТ)	(от 7,2 до 36 л/мин)	И3	(поверяется	ИЗ	
(-11)			автономно)		
Прокачка масла через	0.44 -/-	S. 1060/ am	$\delta: \pm 0.4 \% \text{ ot}$	δ: ±1 % от	
двигатель	от 0,4 до 4 л/с	δ: ±0,6 % от ИЗ	ИЗ	0: ±1 % 01	1
(Параметр: Q.м)	(от 24 до 240 л/мин)	ИЗ	(поверяется автономно)	ИЗ	
Прокачка НП-177-1			автономној		
минимальная,					
прокачка НП-177-2		_	$δ: \pm 0,4 \%$ от		
минимальная	от 0,12 до 0,6 л/с	δ: ±0,6 % от	И3	δ: ±1 % от	2
(Параметры:	(от 7,2 до 36 л/мин)	ИЗ	(поверяется	ИЗ	
Q.гж.min.нп177.1;			автономно)		
Q.гж.min.нп177.2)					
Прокачка НП-177-1,			δ: ±0,4 % от		
прокачка НП-177-2	от 0,6 до 6,0 л/с	δ: ±0,6 % от	ИЗ	δ: ±1 % от	
(Параметры:	(от 36 до 360 л/мин)	ИЗ	(поверяется	ИЗ	2
Q.гж.нп177.1;	(01 30 до 300 л/мин)	113	автономно)	113	
Q.гж.нп177.2)			автопомно)		
Напряжение					
генератора					
переменного тока №1	200	γ: ±0,025 %	у: ±2 % от	у: ±2 % от	
фаза 1, фаза 2, фаза 3	от -200 до +200 В	от ВП	ВП	ВП	3
(Параметры:					
U.rr120.1.f1 -					
U.гт120.1.f3)					

Продолжение таблиг	цы А1				
Напряжение генератора переменного тока №2		γ: ±0,025 %	ү: ±2 % от	γ: ±2 % от	
фаза 1, фаза 2, фаза 3 (Параметры: U.гт120.2.f1 – U.гт120.2.f3)	от -200 до +200 В	от ВП	ВП	ВП	3
Напряжение генератора переменного тока №3 фаза 1, фаза 2, фаза 3 (Параметры: U.гт120.3.f1 – U.гт120.3.f3)	от -200 до +200 В	γ: ±0,025 % от ВП	γ: ±2 % от ВП	ү: ±2 % от ВП	3
Сила тока генератора переменного тока №1 фаза 1, фаза 2, фаза 3 (Параметры: I.гт120.1.f1 – I.гт120.1.f3)	от 0 до 750 А	γ: ±1,5 %	γ: ±0,5 % от ВП ПП(поверяе тся автономно)	γ: ±2 % от ВП	3
Сила тока генератора переменного тока №2 фаза 1, фаза 2, фаза 3 (Параметры: I.гт120.2.f1 – I.гт120.2.f3)	от 0 до 750 А	γ: ±1,5 %	γ: ±0,5 % от ВП ПП(поверяе тся автономно)	γ: ±2 % от ВП	3
Сила тока генератора переменного тока №3 фаза 1, фаза 2, фаза 3 (Параметры: I.гт120.3.f1 – I.гт120.3.f3)	от 0 до 750 А	γ: ±1,5 %	γ: ±0,5 % от ВП ПП(поверяе тся автономно)	γ: ±2 % от ВП	3
Частота напряжения генератора переменного тока №1, №2, №3 (Параметры: f.гт120.1 – f.гт120.3	от 1 до 10000 Гц	δ: ±0,5 % от ИЗ	ПП не вносит дополнитель ной погрешност и	δ: ±0,5 % от ВП	3

Продолжение таблиг	цы А1				
Напряжение					
постоянного тока,					
соответствующее					
значениям					
температуры в					
диапазоне	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				
преобразований ПП	от -3,005 до +66,466	γ: ±0,05 %	_	γ: ±0,05 %	767
термоэлектрического	мВ	ДИ		ДИ	
типа: ТХА (К),					
TXK(L), TMK(T),					
TIIP(B)					
(Параметры: t.XК.1 –					
t. XK.767)					
Частота переменного					
тока,					
соответствующая					
значениям частоты	от 1 до 10000 Гц	δ: ±0,1 %		$δ: \pm 0,1 \%$ от	3
вращения роторов	от т до тоооот ц	ИЗ	-	И3	3
(НД, СД и ВД)					
(Параметры: п.нд;					
п.сд; п.вд)					
Относительное					
напряжение 1/2 и 1/4					
моста тензодатчиков					
до 96 кГц	±2 мВ/В	γ: ±1 % от	_	у: ±1 % от	112
(Параметры:		ДИ		ДИ	112
dU.tenzo.1 –					
dU.tenzo.112					
Относительное					
напряжение 1/2 моста					
тензодатчиков до 96	±20 мВ/В	у: ±1 % от		у: ±1 % от	
кГц		' ди	-	ДИ	16
(Параметры:		0			
dU.tenzo.113 -					
dU.tenzo.128					
Постоянное и					
переменное		ү: ±0,5 % от		w ±0.5.94 am	
напряжение до 45 кГц	от -10 до +10 В		-	γ: ±0,5 % от	27
(Параметры: U.d.1 –		ДИ		ДИ	
U.d.26, U.ks)					
Напряжение					
переменного тока,					
соответствующее		ү: ±0,5 % от		γ: ±0,5 % от	
пульсациям давления	от -11 до +11 В	ДИ	-	ди	5
(Параметры: U.ps.1 –		· · ·		~	
U.ps.5)					

1 /					
Заряд пьезоэлектрических датчиков до 96 кГц (Параметры: q.d.1 – q.d.12)	±1000 пКл	γ: ±2 % от ДИ	-	γ: ±2 % от ДИ	12
Напряжение переменного тока, соответствующее заряду пьезоэлектрических датчиков (Параметры: q.d.13 – q.d.24)	от -10 до +10 В	γ: ±2 % от ДИ	-	ү: ±0,5 % от ДИ	12
Канал формирователя импуль-сов синхронизации (частота переменного тока) (Параметр: Т.1)	10 МГц	-		δ: ±1·10 ⁻⁶	1

Примечания:

- 1 ВП верхний предел измерения;
- 2 ИЗ измеряемое значение;
- 3 ДИ диапазон измерений;
- γ приведенная погрешность, %;
- δ относительная погрешность, %;
- Δ абсолютная погрешность в единицах измеряемой величины.

Приложение Б

(обязательное)

Выполнения поверки ИК и формирование протокола поверки ИК в ПО «Recorder»

1. После выполнения настроек ПО "Recorder" на поверку выбранного ИК системы (см. руководство пользователя ПО «Система испытаний авиационных моторов» БЛИЖ.409801.100.161-01 (ПО СИАМ), нажатием кнопки «Проверка» в окне «Параметры проверки (канальная)» (рисунок 10) открывается диалоговое окне «Настройка завершена», вид которого представлен на Рисунок Б1.



Рисунок Б1 – Вид диалогового окна «Настройка завершена»

2. По нажатию в окне рисунок Б1 кнопки «Проверка» открывается диалоговое окно «Измерение», вид которого представлен на рисунке Б2.



Рисунок Б2 – Вид диалогового окна «Измерение»

- 3. В окне рисунок Б2 в поле «Заданное значение сигнала» выводится значение сигнала на входе электрической части ИК, формируемое соответствующим средством поверки. Путем управления средством поверки и используя средства индикации средства поверки, необходимо установить значение параметра на входе ИК (или электрической части ИК), соответствующее значению поля «Установите значение сигнала» в окне рисунок Б2. В поле «Установите значение сигнала» ПО «Recorder» перед каждыми измерениями в очередной контрольной точке последовательно программно задаются значения из поля «Контрольные точки» окна «Параметры поверки (канальная)».
- 4. Измерение заданного сигнала для одной контрольной точки выполняется при нажатии кнопки «Следующее» в окне рисунок Б2. При этом до начала собственно измерений в контрольной точке происходит отработка заданной паузы. Пример представлен на рисунке Б3. При необходимости можно остановить таймер отсчета времени до начала измерений нажатием кнопки «Остановить таймер» в окне рисунок Б3. При этом окно рисунок Б3 возвращается к виду, представленному на рисунке Б2.



Рисунок Б3 – Начало измерений в контрольной точке

5. После проведения измерений для последней контрольной точки открывается диалоговое окно «Измерение завершено», представленное на рисунке Б4.

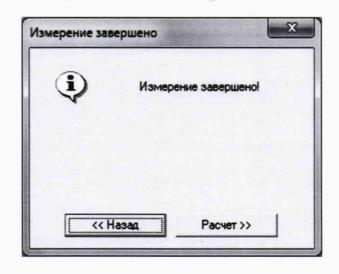


Рисунок Б4 – Диалоговое окно «Измерение завершено»

6. По нажатию в окне рисунок Б4 кнопки «Расчет» открывается диалоговое окно «Обработка и просмотр измеренных данных», пример которого представлен на рисунке Б5.



Рисунок Б5 – Пример окна «Обработка и просмотр измеренных данных»

- 7. Результаты измерений, представленные в окне рисунок Б5, могут быть использованы для ручного расчета оценок погрешностей измерений и ручного формирования протокола поверки по форме, представленной в Приложении В.
- 8. ПО «Recorder» предоставляет возможность автоматической обработки результатов измерений с формированием протокола, содержание которого может быть задано перед формированием. Для этого необходимо нажать в окне рисунок Б5 кнопку «Сформировать отчет». При этом будет открыто окно «Настройка параметров протокола», пример которого приведен на рисунке Б6.
- 9. Содержание протокола, включая и рассчитываемые необходимые виды оценок погрешностей измерений, задаётся путём установки соответствующих параметров во вкладке «Настройка протокола» (окно рисунок Б6).
- 10. В протокол могут быть внесены дополнительные сведения о параметрах окружающей среды, зафиксированных вербальными методами. Для этого необходимо открыть и заполнить вкладку «Дополнительно» окна «Настройка параметров протокола», пример которой приведен на рисунке Б7.
- 11. По нажатию кнопки «ОК» в окне рисунок Б6 вызывается стандартная для ОС Windows процедура сохранения файла протокола (требуется указать папку и имя протокола). После сохранения открывается окно программы MS Office Word для просмотра протокола, в котором возможно форматирование и редактирование результатов поверки ИК. Форма протокола приведена в Приложении Г.
- 12. Для завершения поверки ИК необходимо нажать кнопку «ОК» в диалоговом окне «Настройка канала» (рисунок 8 в разделе 7 настоящего документа).

 ✓ Дата, время ✓ Информация о диапазоне Наименование эталона Наименование эталона: 	 ✓ Информация о модуле ✓ Информация о канале ✓ Список контрольных точек
Шапка страницы ☑ Дата, speмя	Подвал страницы Номер страницы ФИО оператора: Иванов И.И.
Параметры формирования таблиц Гоченка нелинейности каналов Габлицы ГХ/КХ Отдельная таблица по каждому каналу Автоматический формат чисел Количество знаков: Относительная погрешность Отдельная положе для прякого и обрать Охачки измерительной величины	
Г Допусковый контроль Погрешность: Приведенная	Допустимое значение: 0.001 %
Шаблон настроек отчета	Загрузить Сохранить

Рисунок Б6 — Окно «Настройка параметров протокола» Вкладка «Настройка протокола»

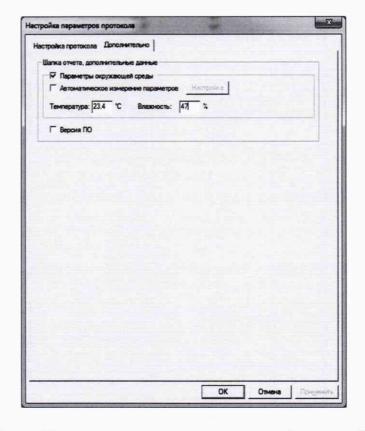


Рисунок Б7 — Окно «Настройка параметров протокола». Вкладка «Дополнительно»

Приложение В

(справочное)

Форма протокола поверки при расчетном способе поверки

протокол

Результаты замеров поверяемых каналов системы

Наименование параметра			Значени	е параме	тра	
Номинальные значения						
параметра						
Измеренные значения						
параметра первого канала						
Измеренные значения						
параметра второго канала						
Измеренные значения						
параметра третьего канала						
Максимальное значе	ние (относител	ьной, прив	еденной к	ВП, при	веденной Д	ĮИ,
солютной) погрешности, п	ервого канала:					
				-		
Максимальное значе	ние (относител	ьной, прив	еденной к	ВП, при	веденной Д	ĮИ,
солютной) погрешности, в	горого канала:					
Максимальное знане						
	ние (относител	_	еденной к	ВП, при	веденной Д	ĮИ,
		_	еденной к ——	ВП, при	веденной Д	ĮИ,
бсолютной) погрешности, тр	етьего канала	:		ВП, при	веденной Д	ЦИ,
	етьего канала	:		ВП, при	веденной Д	ци,
бсолютной) погрешности, тр	етьего канала	:	аметра)	ВП, прип		ЦИ,
бсолютной) погрешности, тр Таблица В2 – (наиме Наименование параметра	етьего канала	:	аметра)			ци,
бсолютной) погрешности, тр Таблица В2 – (наиме Наименование параметра Номинальные значения	етьего канала	:	аметра)			ци,
Бсолютной) погрешности, тр Таблица В2 – (наиме Наименование параметра Номинальные значения параметра	етьего канала	:	аметра)			ци,
Таблица В2 – (наиме Наименование параметра Номинальные значения параметра Измеренные значения	етьего канала	:	аметра)			ци,
бсолютной) погрешности, тр Таблица В2 – (наиме	етьего канала	:	аметра)			ци,
Таблица В2 – (наиме Наименование параметра Номинальные значения параметра Измеренные значения параметра параметра первого канала	етьего канала	:	аметра)			ци,
Таблица В2 – (наиме Наименование параметра Номинальные значения параметра Измеренные значения параметра первого канала Измеренные значения	етьего канала	:	аметра)			ци,
Таблица В2 – (наиме Наименование параметра Номинальные значения параметра Измеренные значения параметра параметра первого канала Измеренные значения	етьего канала	:	аметра)			ци,
Таблица В2 — (наиме Наименование параметра Номинальные значения параметра Измеренные значения параметра первого канала Измеренные значения параметра второго канала	нование измер	яемого пар	аметра) Значени	е параме	гра	
Таблица В2 — (наиме Наименование параметра Номинальные значения параметра Измеренные значения параметра первого канала Измеренные значения	нование измер	яемого пар	аметра) Значени	е параме	гра	
Таблица В2 — (наиме Наименование параметра Номинальные значения параметра Измеренные значения параметра первого канала Измеренные значения параметра второго канала Максимальное значения	нование измер	яемого пара	аметра) Значени	е параме	гра	
Таблица В2 — (наиме Наименование параметра Номинальные значения параметра Измеренные значения параметра первого канала Измеренные значения параметра второго канала Максимальное значеноболютной) погрешности, по	нование измер	яемого паравной, прив	аметра) Значени	в параме	гра веденной Д	ĮИ,
Таблица В2 – (наиме Наименование параметра Номинальные значения параметра Измеренные значения параметра первого канала Измеренные значения параметра второго канала Максимальное значе бсолютной) погрешности, по	нование измер ние (относител ервого канала:	яемого паравной, прив	аметра) Значени еденной к	в параме	гра веденной Д	ĮИ,
Таблица В2 – (наиме Наименование параметра Номинальные значения параметра Измеренные значения параметра первого канала Измеренные значения параметра второго канала Максимальное значе бсолютной) погрешности, по Максимальное значения	нование измер ние (относител ервого канала:	яемого паравной, прив	аметра) Значени еденной к	в параме	гра веденной Д	ЦИ,
Таблица В2 — (наиме Наименование параметра Номинальные значения параметра Измеренные значения параметра первого канала Измеренные значения параметра второго канала Максимальное значенобсолютной) погрешности, по	нование измер ние (относител ервого канала:	яемого паравной, прив	аметра) Значени еденной к	в параме	гра веденной Д	ЦИ,

Приложение Г

(рекомендуемое)

Форма протокола поверки при автоматическом способе поверки

Протокол

		поверки из	мерительно	ого (ых) кана	ла (ов) Сис	стемы
Дата	:,1	время	:			
Диаг	азон пове	рки:				
Коли	чество ци	клов:				
Коли	чество по	рций:				
Разм	ер порции	:				
Обра	тный ход:					
Наим	иенование	эталона				
Темп	пература оп	кружающей	среды:	, влажность:	измере	ено:
Bepc	ия ПО "Re	corder":				
ПО '	Калиброві	ка" версия:_				
Спис	сок контро	льных точек	ζ.			
Точка №	1	2	3	4	5	
Значение						
Точка №	6	7	8		n	
Значение						

Каналы:

Канал	Описание	Част. дискр., Гц
Канал №1		
Канал №2		

Сводная таблица.

Эталон,	Измерено модулем

S - оценка систематической составляющей погрешности, A - оценка случайной составляющей погрешности, H - оценка вариации, Dm - оценка погрешности (максимум). Dr - относительная погрешность.

Канал №1

Эталон	Измерено	S	A	Dm	Dr %

	Измерено	S	A	Dm
Приведенн Во время п	сть (максимальная пая погрешность:_	%. валась следук		чная (аппаратна
	динейной интерпо			
Канал №2 Эталон		S	A	Dm
Jialon	Измерено	3	^	Dill
-		5 V. S	пазоне:	
D				
-	проверки использо линейной интерпо		ощая калиорово	чная (аппаратна
а. Таблица		JIJIIIII.		
я: Таблица			\neg	
я: Таблица				
я: Таблица	1		7	
Интерполя	щия за границами:	есть.		
Интерполя Сводная т	нция за границами:	есть.		
Интерполя Сводная т De - приве	щия за границами:	есть.	ительная погрег	шность, N1 - оцен
Интерполя Сводная т De - приве іности.	нция за границами: габлица погрешнос гденная погрешнос	есть. Остей ть, Dr - относ		
Интерполя Сводная т De - приве іности.	нция за границами:	есть.	ительная погрег Dr, %	шность, Nl - оцен Nl, dB
Интерполя Сводная т De - приве іности.	нция за границами: габлица погрешнос гденная погрешнос	есть. Остей ть, Dr - относ		
Интерполя Сводная т De - приве йности.	нция за границами: габлица погрешнос гденная погрешнос	есть. Остей ть, Dr - относ		
Интерполя Сводная т De - приве йности.	нция за границами: габлица погрешнос денная погрешнос Канал	есть. Остей ть, Dr - относ		
Интерполя Сводная т Dе - приве йности. Ма Допусковь	ация за границами: габлица погрешнос денная погрешнос Канал ксимум	есть. ОСТЕЙ ть, Dr - отност	Dr, %	NI, dB
Интерполя Сводная т Dе - приве йности. Ма Допусковь	нция за границами: габлица погрешнос гденная погрешнос Канал	есть. остей ть, Dr - относ De, %	Dr, %	NI, dB

Поверку провел (а)_