

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы»

119361, г.Москва, ул. Озерная, 46

Тел.: (495) 437 55 77 E-mail: Office@vniims.ru Факс: (495) 437 56 66 www.vniims.ru

СОГЛАСОВАНО

Первый заместитель директора по науке ФЕУН «ВНИИМС»

Ф.В. Булыгин

2021 r.

Заместитель директора по инновациям ФГУП «ВНИИОФИ»

> __И.С. Филимонов ОТ 2021 г.

Государственная система обеспечения единства измерений

Системы непрерывного измерения температуры расплавов металлов HFC-IV

МП 207-025-2021

МЕТОДИКА ПОВЕРКИ

Общие положения

Настоящая методика распространяется на системы непрерывного измерения температуры расплавов металлов HFC-IV (далее – системы) и устанавливает методы и средства их первичной и периодической поверок.

Метрологические характеристики систем в зависимости от модели приведены в Приложении 1.

Поверка систем проводится методом прямых измерений с использованием эталонных излучателей в виде модели абсолютно черного тела (АЧТ).

Прослеживаемость поверяемых систем к государственным первичным эталонам (ГЭТ 34-2020) обеспечена применением эталонов, соответствующих требованиям ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры.

1 Перечень операций поверки

При проведении первичной и периодической поверки должны выполняться операции, указанные в таблице 1.

Таблина 1

*	Номер пункта Проведение операции при		операции при
Наименование операции	методики	первичной	периодической
	поверки	поверке	поверке
1. Внешний осмотр средства измерений	6	Да	Да
2. Опробование средства измерений	7.2	Да	Да
3. Определение метрологических характеристик средства измерений	8	Да	Да
3.1 Определение абсолютной погрешности измерения радиационной температуры	8.1	Да	Да
3.2 Определение абсолютной погрешности цифро-аналогово преобразования (в температурном эквиваленте)	8.2	Да	Да

Примечания:

при получении отрицательных результатов в процессе проведения той или иной операции, поверка прекращается

2 Метрологические и технические требования к средствам поверки

При проведении поверки применяют средства измерений, указанные в таблице 2. Таблица 2

		Метрологические и	
Операция поверки	Средство поверки	технические	Рекомендуемые типы
Операция поверки	Средство поверки	требования к	средств поверки
		средствам поверки	
Определение	Рабочий эталон	Диапазон	Излучатели в виде
метрологических	единицы	воспроизводимых	модели абсолютно
характеристик	температуры	температур от плюс	черного тела АЧТ-
средства измерений	1-го по ГОСТ 8.558-	900 до плюс 1400 °C,	30/900/2500
	2009	доверительные	(Регистрационный
		границы абсолютной	№ 38818-08),
		погрешности при	Излучатели в виде
		доверительной	модели абсолютно
		вероятности 0,95 не	черного тела М300
		более:	(Регистрационный
		δ = 2,33,5 °C	№ 56559-14) и др.

	Рабочий эталон единицы температуры 1-го разряда по ГОСТ 8.558-2009	Диапазон измеряемых температур от плюс 900 до плюс 1400 °С, доверительные границы абсолютной погрешности при доверительной вероятности 0,95 не более: δ = 2,33,5 °С	Пирометры инфракрасные
	Рабочий эталон 0-го разряда по ГОСТ 8.558-2009	Диапазон воспроизводимых температур св. плюс 1400 до плюс 1650 °С, доверительные границы абсолютной погрешности при доверительной вероятности 0,95 не более: δ = 1,41,65 °С	Излучатели в виде модели абсолютно черного тела АЧТ
	Эталон единицы силы постоянного электрического тока 2-го разряда в соответствии с приказом Росстандарта от 01.10.2018 г. № 2091	Диапазон измерений от 4 до 20 мА, Δ=±3 мкА	Калибратор многофункциональный и коммуникатор ВЕАМЕХ МС6 (-R) (Рег. № 52489-13) и др.
	Эталон единицы постоянного электрического напряжения 2-го разряда в соответствии с приказом Росстандарта от 30.12.2019 г. № 3457	Диапазон измерений от 0 до 5 В, Δ =±5 мкВ	Калибратор многофункциональный и коммуникатор ВЕАМЕХ МС6 (-R) (Рег. № 52489-13) и др.
Контроль условий проведений поверки		Измерение температуры окружающего воздуха в диапазоне от плюс 15 до плюс 25 °C ($\Delta = \pm 0,5$ °C (не более)), относительной	Приборы комбинированные Testo 608-H1, Testo 608-H2, Testo 610, Testo 622, Testo 623 (Регистрационный № 53505-13) и др.

влажности окружающего воздуха от 30 до 80 $\%$ ($\Delta = \pm 3$ % (не более))	Измерители давления Testo 510, Testo 511 (Регистрационный № 53431-13) и др.
Измерение атмосферного давления в диапазоне от 86 до $106,7\ \mathrm{k\Pi a}\ (\Delta=\pm5\ \mathrm{r\Pi a}\ (\mathrm{he}\ \mathrm{fonee}))$	

Примечания:

- 1. Все средства измерений, применяемые при поверке, должны иметь действующие свидетельства о поверке, испытательное оборудование должно быть аттестовано;
- 2. Эталоны единиц величин, используемые при поверке, должны соответствовать требованиям Положения об эталонах единиц величин, используемых в сфере государственного регулирования обеспечения единства измерений, утвержденного постановлением Правительства Российской Федерации от 23 сентября 2010 г. № 734;
- 3. Допускается применение аналогичных средств поверки, разрешенных к применению в Российской Федерации, и обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

3 Требования к специалистам, осуществляющим поверку

3.1 Поверка систем должна выполняться специалистами, прошедшими обучение в качестве поверителей данного вида средств измерений, ознакомленные с руководством по эксплуатации и освоившими работу с системами.

4 Требования (условия) по обеспечению безопасности проведения поверки

- 4.1 При проведении поверки необходимо соблюдать:
- требования безопасности, которые предусматривают «Правила по охране труда при эксплуатации электроустановок (Приказ Минтруда РФ от 15.12.2020 N 903H);
- указания по технике безопасности, приведенные в эксплуатационной документации на эталонные средства измерений и средства испытаний;
- указания по технике безопасности, приведенные в руководстве по эксплуатации тепловизоров.

5 Требования к условиям проведения поверки

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °С

or + 15 дo + 25;

- относительная влажность окружающего воздуха, %

от 30 до 80;

- атмосферное давление, кПа

от 86 до 106,7.

6 Внешний осмотр средства измерений

При внешнем осмотре проверяется:

- соответствие маркировки компонентов систем эксплуатационной документации на него;
 - отсутствие посторонних шумов при встряхивании;
- отсутствие внешних повреждений компонентов поверяемой системы, которые могут повлиять на ее метрологические характеристики.

Система, не отвечающая перечисленным выше требованиям, дальнейшей поверке не подлежит.

7 Подготовка к поверке и опробование средства измерений

- 7.1 Подготовка системы к поверке
- 7.1.1 Все компоненты поверяемой системы перед проведением поверки должны предварительно выдерживаться в нерабочем состоянии при температуре окружающего воздуха от 15 до 25 °C не менее 30 минут.
- 7.1.2 Подключить все компоненты системы в следующем порядке в соответствии с Руководством по эксплуатации на систему.
 - 7.1.3 Включить питание блока процессора и большого дисплея.

7.2 Опробование средства измерений

При включении питания блока процессора и большого дисплея, на дисплее должна высветиться системная информация, после чего должно произойти отображение значения измеряемой температуры, равное «0», что свидетельствует о корректном подключении компонентов системы.

Результаты опробования считаются положительными, если после включения питания на дисплее отображается «0». В случае отображения ошибки, дальнейшую поверку не проводят до ее устранения (в соответствии с Руководством по эксплуатации на систему).

8 Определение метрологических характеристик средства измерений

8.1 Определение погрешности измерения радиационной температуры

Перед определением погрешности измерения радиационной температуры необходимо закрепить на штативе детектор системы, так, чтобы направление его оптической оси совпадало с оптической осью эталонного излучателя.

Измерения проводятся на расстоянии от 0,5 до 0,8 м между источником излучения в виде модели черного тела (далее – АЧТ) и объективом детектора системы.

Определение погрешности систем проводят не менее, чем в пяти точках диапазона измерений температур системы (нижняя, верхняя и три точки внутри диапазона). После установления стационарного режима эталонного излучателя на каждой температуре, не менее пяти раз измеряют радиационную температуру излучателя. Результаты измерений снимают с дисплея процессора. Определяют среднее значение радиационной температуры эталонного излучателя t_{cp}^t (°C).

- 8.2 Определение абсолютной погрешности цифро-аналогово преобразования (в температурном эквиваленте)
- 8.2.1 Погрешность определяют не менее, чем в трех контрольных точках настроенного диапазона измерений (от плюс 1400 до плюс 1600 °C), включая нижний и верхний пределы.
- 8.2.2 Подключают коммуникатор BEAMEX MC6 (-R) к соответствующим клеммам, находящимся внутри корпуса блока процессора (в соответствии с Руководством по эксплуатации).
- 8.2.3 Включают АЧТ согласно Руководству по эксплуатации и устанавливают требуемую температуру, соответствующую нижней границе настроенного диапазона измерений температуры.
- 8.2.4 Наводят объектив детектора на излучающую поверхность АЧТ и при достижении заданного режима АЧТ измеряют температуру поверхности АЧТ, фиксируя при этом показания с коммуникатора ВЕАМЕХ МС6 (-R) в форме унифицированного аналогового выходного сигнала постоянного тока в диапазоне от 4 до 20 мА или напряжения постоянного тока в диапазоне от 0 до 5 В. Проводится серия из 5-ти измерений и рассчитывается среднее арифметическое значение.
 - 8.2.5 Операции по п.п. 8.2.2-8.2.4 повторяют для остальных контрольных точек.

9 Подтверждение соответствия средства измерений метрологическим требованиям

- 9.1 Подтверждение соответствия средства измерений метрологическим требованиям при определении погрешности измерения радиационной температуры
- 9.1.1 Допускаемую абсолютную погрешность измерений температуры Δt рассчитывают по формуле:

$$\Delta t = t^{t}_{cp} - t_{cp}, \, ^{\circ}C$$
 (1)

где t_{cp}^t – среднее арифметическое значение измеренной температуры, °C;

 t_{cp} – среднее арифметическое значение температуры эталонного (образцового) излучателя, °С.

Результаты поверки считаются положительными, если погрешность в каждой точке, рассчитанная по формуле (1), не превышает значений, приведенных в Приложении 1.

Примечание:

В случае если по результатам измерений выявлено превышение пределов допускаемой абсолютной погрешности измерения радиационной температуры, допускается проводить настройку в соответствии с инструкцией, полученной от представителя фирмы-изготовителя, после чего повторяют операции по п. 8.1.

9.2 Подтверждение соответствия средства измерений метрологическим требованиям при определении абсолютной погрешности цифро-аналогово преобразования (в температурном эквиваленте)

Рассчитывают основную абсолютную погрешность для каждой контрольной точки по формуле 2:

$$\Delta_{abc} = X_{var} - X_{a} \tag{2}$$

где: X_3 – среднее арифметическое значение температуры эталонного (образцового) излучателя, °C;

 $X_{\text{изм}}$ — среднее арифметическое значение измеренной температуры, °C, определяемое по формуле 3:

$$X_{uxm} = X_{ex \min} + \frac{I_{uxm} - I_{ext \min}}{I_{ext \max} - I_{ext \min}} \cdot (X_{ex \max} - X_{ex \min})$$
(3)

где: $X_{\text{вхmах}}$, $X_{\text{вхmin}}$ — соответственно верхний и нижний пределы настроенного интервала входных сигналов поверяемого прибора, (°C);

 $I_{\text{выхтах}}$, $I_{\text{выхтіп}}$ — соответственно верхний и нижний пределы настроенного диапазона выходных сигналов поверяемого прибора, мА (или В);

I_{изм} – значение измеренного выходного сигнала, мА (или В).

10 Оформление результатов поверки

- 10.1 Сведения о результатах поверки систем в соответствии с действующим законодательством в области обеспечения единства измерений РФ передаются в Федеральный информационный фонд по обеспечению единства измерений.
- 10.2 Системы, прошедшие поверку с положительным результатом, признаются годными и допускаются к применению. По заявлению владельца средства измерений или лица, представившего его на поверку, на средство измерений выдается свидетельство о поверке.

10.3 При отрицательных результатах поверки на средство измерений по заявлению владельца средства измерений или лица, представившего его на поверку, оформляется извещение о непригодности к применению.

Начальник отлела 207

метрологического обеспечения термометрии

ФГУП «ВНИИМС»

А.А. Игнатог

Ведущий инженер отдела 207

метрологического обеспечения термометрии

ФГУП «ВНИИМС»

М.В. Константинов

Начальник отдела испытаний ФГУП «ВНИИОФИ»

Ведущий инженер отдела

М-4 ФГУП «ВНИИОФИ»

А.Н. Шобина

М.Л. Самойлов

Метрологические характеристики систем непрерывного измерения температуры расплавов металлов HFC-IV

Наименование характеристики	Значение
Диапазон измерений температуры, °С	от +900 до +1650
Пределы допускаемой абсолютной погрешности, °C	
- в диапазоне измерений от +900 до +1400 °C вкл.	±6
- в диапазоне измерений св. +1400 °C	±3
Диапазон выходного аналогового сигнала	от 4 до 20 мА
	от 1 до 5 В
	(соответствует диапазону
	измерений от +1400 °C до +1600 °C)
Пределы допускаемой абсолютной погрешности цифро-	
аналогово преобразования (в температурном	±1
эквиваленте), °С	
Разрешающая способность ЖК-дисплея, °С	1

