СОГЛАСОВАНО

Первый заместитель генерального директора – заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов «20» O'Los a 2021 г. М.п.

Государственная система обеспечения единства измерений

Осциллографы Infiniium V

Методика поверки

651-21-046 МП

р.п. Менделеево 2021 г.

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Настоящая методика распространяется на осциллографы Infiniium V (далее - осциллографы) модификаций DSOV084A, DSAV084A, MSOV084A, DSOV134A, DSAV134A, MSOV134A, DSOV164A, DSAV164A, MSOV164A, DSOV204A, DSAV204A, MSOV204A, DSOV254A, DSAV254A, MSOV254A, DSOV334A, DSAV334A, MSOV334A, изготовленные компанией «Keysight Technologies Malaysia Sdn. Bhd.», Малайзия, устанавливает методы, порядок и объем первичной и периодической поверок.

1.2 При проведении поверки должна быть обеспечена прослеживаемость к ГЭТ 182-2010 (Государственный первичный специальный эталон единицы импульсного электрического напряжения с длительностью импульса от 4 · 10 ⁻¹¹ до 1 · 10 ⁻⁵ с).

1.3 Методика поверки реализуется посредством методов прямых измерений.

1.4 Объем первичной и периодической поверок приведен в таблице 1.

1.5 Интервал между поверками - 1 год.

2 ПЕРЕЧЕНЬ ОПЕРАЦИЙ ПОВЕРКИ

2.1 При поверке осциллографов выполнить работы в объеме, указанном в таблице 1.

Таблица 1

	Номер	Проведение о	перации при:
Наименование операции	пункта мето- дики поверки	первичной поверке (после ремонта)	периодиче- ской поверке
1 Внешний осмотр	7	да	да
2 Опробование	8	да	да
3 Проверка программного обеспечения (да- лее – ПО) средства измерений	9	да	да
Определение метрологических характери- стик средств измерений	10	да	да
4 Определение абсолютной погрешности установки напряжения смещения	10.1	да	да
5 Определение абсолютной погрешности установки коэффициента отклонения	10.2	да	да
6 Определение относительной погрешности по частоте внутреннего опорного генератора	10.3	да	да
7Определение верхней граничной частоты полосы пропускания	10.4	да	да

2.2 Допускается проведение поверки на меньшем числе поддиапазонов измерений и меньшем количестве режимов измерений, которые используются при эксплуатации по соответствующим пунктам настоящей методики поверки. Соответствующая запись должна быть сделана в эксплуатационных документах и свидетельстве о поверке на основании решения эксплуатирующей организации.

2.3 При получении отрицательных результатов при выполнении любой из операций, приведенных в таблице 1, поверка прекращается и осциллограф признается непригодным к применению.

3 ТРЕБОВАНИЯ К УСЛОВИЯМ ПРОВЕДЕНИЯ ПОВЕРКИ

3.1 При проведении поверки должны соблюдаться следующие условия: -температура окружающего воздуха, °С от 18 до 28;

-относительная влажность окружающего воздуха, %, не более до 80:

питание от сети переменного тока частотой 50 Гц от 198 до 242:

3.2 Перед проведением поверки выполнить следующие подготовительные работы:

проверить комплектность осциллографа, в соответствии с РЭ;

проверить наличие действующих свидетельств о поверке средств измерений;

 осциллограф и средства поверки должны быть выдержаны при нормальных условиях не менее 1 ч.

4 ТРЕБОВАНИЯ К СПЕЦИАЛИСТАМ, ОСУЩЕСТВЛЯЮЩИМ ПОВЕРКУ

4.1 К поверке допускаются лица со средним техническим и высшим образованием, аттестованные на право поверки средств измерений радиоэлектронных и радиотехнических величин, изучившие техническую и эксплуатационную документацию на осциллографы и используемые средства поверки.

5 МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ПОВЕРКИ

5.1 При	проведении поверки применятьсредства измерении, указанные в таолице 2.
Таблица 2	
Номер пункта	Наименование рабочих эталонов или вспомогательных средств поверки; номер
методики	документа регламентирующего технические требования к рабочим эталонам
поверки	или вспомогательным средствам; разряд по государственной поверочной схеме
	и (или) метрологические и основные технические характеристики средства по-
	верки
10.4	Генератор сигналов E8257D (опция 540): диапазон частот от 250 кГц до 40 ГГц,
	пределы допускаемой относительной погрешности установки частоты ±7,5·10-8;
	максимальный уровень выходной мощности не менее 10 дБ/мВт, пределы до-
	пускаемой относительной погрешности установки уровня мощности ±1,2 дБ
10.4	Преобразователь измерительный U8487А: частотный диапазон от 10 МГц до 50
	ГГц, динамический диапазон от минус 35 до плюс 20 дБм, пределы допускаемой
	погрешности измерений мощности ±4 %
10.1, 10.2	Мультиметр 3458А: диапазон измерений напряжения постоянного тока от 0 до
	1000 В, пределы допускаемой абсолютной погрешности \pm (1,5·10 ⁻⁶ D+0,3·10 ⁻⁶ E) в
	диапазоне от 0,1 до 1 В, ±(0,5·10 ⁻⁶ D+0,05·10 ⁻⁶ Е) в диапазоне от 1 до 10 В, где D
	 показания мультиметра, Е – верхний предел диапазона измерений
10.3	Частотомер электронно-счетный 53152А: диапазон частот от 10 Гц до 46 ГГц,
	пределы основной допускаемой абсолютной погрешности измерений частоты
	при работе от внутреннего генератора \pm (F · 10 ⁻⁷ + Δ F), где F – частота сигнала, Δ F
	 – разрешение по частоте
10.3	Стандарт частоты рубидиевый FS725: пределы допускаемой относительной по-
	грешности частоты 10 МГц $\pm 1.10^{-10}$

5.2 Вместо указанных в таблице 2 средств поверки разрешается применять другие приборы, обеспечивающие определение соответствующих параметров с требуемой точностью.

5.3 Применяемые средства поверки должны быть исправны и поверены и иметь действующие свидетельства о поверке.

- 6 ТРЕБОВАНИЯ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ ПОВЕРКИ

6.1 При проведении поверки необходимо соблюдать:

- требования по технике безопасности, указанные в эксплуатационной документации (далее - ЭД) на используемые средства поверки;

- правила по технике безопасности, действующие на месте поверки;

- ГОСТ 12.3.019-80, «Правилами техники безопасности при эксплуатации электроустановок потребителей».

7 ВНЕШНИЙ ОСМОТР СРЕДСТВА ИЗМЕРЕНИЙ

7.1При внешнем осмотре проверить:

 отсутствие механических повреждений и ослабление элементов, четкость фиксации их положения;

 чёткость обозначений, чистоту и исправность разъёмов и гнёзд, наличие и целостность печатей и пломб;

- наличие маркировки согласно требованиям эксплуатационной документации.

7.2 Результаты поверки считать положительными, если выполняются все перечисленные в п. 7.1 требования. В противном случае осциллограф бракуется.

8 ПОДГОТОВКА К ПОВЕРКЕ И ОПРОБОВАНИЕ СРЕДСТВА ИЗМЕРЕНИЙ

8.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:

- выполнить операции, оговоренные в документации изготовителя на поверяемый осциллограф по его подготовке к работе;

 выполнить операции, оговоренные в руководстве по эксплуатации (далее – РЭ) на применяемые средства поверки по их подготовке к измерениям;

- осуществить прогрев приборов для установления их рабочих режимов.

8.2 Опробование

8.2.1 Подготовить осциллограф к работе в соответствии с технической документацией изготовителя. Проверить отсутствие сообщений о неисправности в процессе загрузки осцилло-графа.

8.2.2 Результаты поверки считать положительными, если выполняются процедуры, приведенные в пп. 8.2.1.

9 ПРОВЕРКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ СРЕДСТВА ИЗМЕРЕНИЙ

Проверку соответствия заявленных идентификационных данных ПО осциллографа провести в следующей последовательности:

- проверить наименование ПО;

проверить идентификационное наименование ПО;

- проверить номер версии (идентификационный номер) ПО;

Результаты поверки считать положительными, если идентификационные данные ПО соответствуют идентификационным данным, приведенным в таблице 3.

Таблица 3

гле

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	SetupInfiniium05010000
Номер версии (идентификационный номер) ПО	не ниже 05010000
Цифровой идентификатор ПО	-

10 ОПРЕДЕЛЕНИЕ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СРЕДСТВ ИЗМЕРЕНИЙ

10.1 Определение абсолютной погрешности установки напряжения смещения

10.1.1 Абсолютную погрешность установки напряжения смещения определять по формуле (1):

 $\Delta_{\rm CM} = \pm \left(\Delta_{\rm foas} + \Delta_0 \right) ;$

(1)

 Δ_{6a3} = - базовая составляющая погрешности установки напряжения смещения;

 $\Delta_0 =$ -составляющая погрешности установки напряжения смещения из-за дрейфа «нуля».

10.1.2 Определение составляющей погрешности установки напряжения смещения изза дрейфа «нуля»

10.1.2.1 Прогреть осциллограф в течении 30 минут.

10.1.2.2 Установить значение входного импеданса 50 Ом.

10.1.2.3 Отсоединить все кабели от входов осциллографа.

10.1.2.4 Нажать клавишу DEFAULTSETUP для настройки осциллографа:

- нажать программную клавишу SETUP>ACQUISITION;

- когда отобразится меню ACQUISITION, сделать установки в соответствии с рисунком 1.

10.1.2.5 Настроить осциллограф для измерения напряжения следующим образом:

- установить коэффициент отклонения канала 1 равным 10 мВ/дел;

- перейти на вкладку Vertical Meas в левой стороне экранаи перетащить значок Средняя измерения на канал 1 сигнала

- нажать программную клавишу «Vavg» в левом нижнем углу экрана измерений (рисунок 2).

Когда отобразиться программное окно ENTERMEASUREMENTINFO, выбрать значения:

Source = Channel 1;

Measurement area = Entire Display;

и нажать программную клавишу ОК (рисунок 3).

Рисунок 1

Рисунок 2

Enter Measurement Info	
Measurement	ок
V avg	Cancel
Source	Help ₹?
Channel 1	and the second second
Measurement Area	
C Single Cycle	
Entire Display	

Рисунок 3

10.1.2.6 Нажать клавишу CLEARDISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

10.1.2.7 Записать полученное значение среднего напряжения U_{cp} (определяется как «Mean» на экране осциллографа) в таблицу 4.

Таблица 4					
Значение ко-	Допустимые	Из	меренные зн	ачения Ucp, 1	мВ
эффициента	значения Ucp	канал 1	канал 2	канал 3	канал 4
отклонения	(Δ0), мВ				
1	2	3	4	5	6
5мВ/дел	±1,8				
10 мВ/дел	±1,8				
20 мВ/дел	±2,6				
50 мВ/дел	±5				
100 мВ/дел	±9				
200 мВ/дел	±17				
500 мВ/дел	±41				
1 В/дел	±81				

П р и м е ч а н и е - Если поверх всех значений в нижней части экрана осциллографа отображается знак вопроса, необходимо нажать клавишу CLEARDISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

10.1.2.8 Изменить значение коэффициента отклонения канала 1 на 10 мВ/дел, нажать клавишу CLEAR DISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не стает равно 256, затем записать полученное значение среднего напряжения U_{cp} (определяется как «Mean» на экране осциллографа) в таблицу 4.

10.1.2.9 Повторить операции п. 10.1.2.8 для всех значений коэффициента отклонения канала 1 из таблицы 4.

10.1.2.10 Нажать клавишу Default Setup, отключить канал 1 и включить канал 2.

10.1.2.11 Настроить осциллограф для измерения значения Ucp на канале 2:

- нажать программную клавишу SETUP MENU и выбрать значение ACQUISITION;

- когда отобразится меню ACQUISITION SETUP, установить значение #Avgs равным 256;

- изменить значение коэффициента отклонения канала 2 на 5 мВ/дел;

 нажать программную клавишу «Vavg» в левом нижнем углу экрана измерений (рисунок 2);

- когда отобразиться программное окно ENTER MEASUREMENT INFO, выбрать значения:

Source = Channel 2

Measurement area = Entire Display

и нажать программную клавишу ОК (рисунок 3).

10.1.2.12 Нажать клавишу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не стает равно 256.

Записать полученное значение среднего напряжения U_{cp} (определяется как «Mean» на экране осциллографа) в таблицу 4.

Повторить пункт 10.1.2.10 для всех значений коэффициента отклонения канала 2 из таблицы 4.

10.1.2.13 Повторить операции п.п. 10.1.2.10 – 10.1.2.12 для каналов 3 и 4.

10.1.2.14 Провести вышеописанные операции для значения импеданса, равного 1 МОм, записывая измеренные значения в таблицу 5.

Таблица 5					
Значение ко-	Допустимые	Из	меренные зн	ачения Ucp, 1	мВ
эффициента	значения U _{ср}	канал 1	канал 2	канал 3	канал 4
отклонения	(Δ ₀), мВ				
1	2	3	4	5	6
5мВ/дел	$\pm 1,8$				
10 мВ/дел	±1,8				
20 мВ/дел	±2,6				
50 мВ/дел	±5				
100 мВ/дел	±9				
200 мВ/дел	±17				
500 мВ/дел	±41				
1 В/дел	±81				
2 В/дел	± 161				
5 В/дел	± 401				

10.1.2.15 Результаты поверки считать положительными, если значения U_{cp} находятся в пределах, приведенных в графе 2 таблиц 4 и 5. В противном случае осциллограф бракуется и направляется в ремонт.

10.1.3 Определение базовой составляющей погрешности установки напряжения смещения

10.1.3.1 Подключить калибровочный выход осциллографа через тройник ко входу 1 осциллографа и входу цифрового мультиметра.

10.1.3.2 Нажать клавишу DEFAULTSETUP для настройки осциллографа - нажать программную клавишу SETUPMENU и выбрать значение ACQUISITION; когда отобразится меню ACQUISITION SETUP, сделать установки в соответствии с рисунком 1.

10.1.3.3 Установить коэффициент отклонения 1 канала 5 мВ/дел. В меню ACQUISITION выбрать ENABLED AVERAGING и ввести количество усреднений равное 256. Когда отобразиться программное окно ENTERMEASUREMENTINFO, выбрать значения:

Source = Channel 1;

Measurement area = Entire Display;

и нажать программную клавишу ОК (рисунок 4).

10.1.3.4 Установить значение напряжения смещения 1 канала равным плюс 60 мВ и значение импеданса 50 Ом.

10.1.3.5 Установить значение выходного напряжения источника питания равным плюс 60 мВ.

10.1.3.6 Нажать клавишу CLEARDISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

10.1.3.7 Включить на осциллографе функцию автоматического измерения среднего значения напряжения Vavg, и в окне измерения выбрать MEASURMENT AREA - ENTIRE DISPLAY.

File Co	ntrol Setup	Trigger Measur	e Analyze Lit	alities Help				6.20 AM
*	49.00Se/s	#Avgs: 256 mV/ 🔀	0 ⁰		Cn		20Hz Standard E)n	- u
<u>}</u> <u>}</u> H	Channel Selu O O O V On Scale	p Orrnel 1 Vernier	Close Help					
	S.0mV/ Offset 400,0mV Skew 0.0s	± 1000				4. 4	+ + 1 - 4	
ןו ן∫ו ה	Labeis I' On Is	3	Probes . Trigger .					
More (1 of 2)		Narkers Scale	E E 100	5 N	0.05	40+	1 380.0	bı m∧ ÷∐
Delete	Curren Hos Ma	V avg(1) at 398.454eV an 398.527eV th 398.494eV ax 398.591eV						5

Рисунок 4

10.1.3.8 Нажать кнопку CLEAR DISPLAY. После достижения показаний счетчика усреднений в верхнем левом углу дисплея значения 256, записать показания мультиметра U_{м+} и показания U_{ocu+} (Vavg) осциллографа в таблицу 6.

10.1.3.9 Рассчитать $\Delta_{\delta a 3^+}$ как разницу между показаниями мультиметра $U_{\tt M^+}$ и показаниями $U_{\tt ocu^+}$.

10.1.3.10 Установить значение выходного напряжения источника питания равным минус 60 мВ.

10.1.3.11 Установить значение напряжения смещения 1 канала равным минус 60 мВ и значение импеданса 50 Ом.

10.1.3.12 Нажать кнопку CLEAR DISPLAY. После достижения показаний счетчика усреднений в верхнем левом углу дисплея значения 256, записать показания мультиметра U_м- и показания осциллографа U_{осц}- в таблицу 6.

10.1.3.13 Рассчитать $\Delta_{\rm {\tilde{o}}a3}$ - как разницу между показаниями мультиметра $U_{\rm M}$ - и показаниями $U_{\rm ocu}$ -.

Tof muno 6

Гаолица	10					
Установлен-	Напряжение на вы-	Показа-	Показа-	Показа-	Показа-	Δ_{6a3} (±),
ный коэффи-	ходе источника пи-	ния	ния	ния ос-	ния ос-	мВ
циент откло-	тания/ установлен-	мульти-	мульти-	цилло-	цилло-	
нения	ное постоянное	метра	метра	графа	графа	
	смещение, В	U_{M^+}	U _M -	Uocu+	Uocu-	
1 В/ дел	±4					131
500 мВ/ дел	±4					91
200 мВ/ дел	±2,4					47
100 мВ/ дел	±1,2					24
50 мВ/ дел	±0,6					12,5
20 мВ/ дел	±0,24	1				5,6
10 мВ/ дел	±0,12					3,3
5 мВ/ дел	±0,06					2.55

10.1.3.14 Повторить операции пп. 10.1.3.2 - 10.1.3.13, изменяя напряжение на выходе источника питания и коэффициент отклонения канала 1 в соответствии с таблицей 5.

10.1.3.15 Повторить измерения для значения выходного импеданса 1 МОм, записывая результаты измерений в таблицу 7. Тоблицо 7

Установлен-	Напряжение на вы-	Показа-	Показа-	Показа-	Показа-	$\Delta_{\mathrm{бa3}}$ (±), мВ
ный коэффи-	ходе источника пи-	ния муль-	ния	ния ос-	ния ос-	
циент откло-	тания/ установлен-	тиметра	мульти-	цилло-	цилло-	
нения	ное постоянное	U _M +	метра	графа	графа	
	смещение, В		U _M -	Uocu+	Uocu-	
5 В/ дел	±100					1650,0
2 В/ дел	±100					1410,0
1 В/ дел	±100					1310,0
500 мВ/ дел	±20					291,0
200 мВ/ дел	±20					267,0
100 мВ/ дел	±20					259,0
50 мВ/ дел	±10					130,0
20 мВ/ дел	±10					127,6
10 мВ/ дел	±5					64,3
5 мВ/ дел	±2					26,4

10.2 Определение абсолютной погрешности установки коэффициента отклонения

10.2.1 Подключить выход источника питания через тройник ко входу 1 осциллографа и входу цифрового мультиметра.

10.2.2 Убедиться, что напряжение на входе каналов осциллографа не превышает значений $\pm 5~{\rm B}.$

10.2.3 Прогреть осциллограф в течении 30 минут.

10.2.4 Отсоединить все кабели от входов осциллографа.

10.2.5 Нажать клавишу Default Setup для настройки осциллографа - нажать программную клавишу Setup menu и выбрать значение Acquisition; когда отобразится меню Acquisition Setup, сделать установки в соответствии с рисунком 1.

10.2.6 Установить на источнике питания напряжение плюс 15 мВ, а значение импеданса осциллографа 50 Ом.

10.2.7 Настроить осциллограф для измерений среднего значения напряжения следующим образом:

- установить коэффициент отклонения канала 1 равным 5 мВ/дел;

- нажать программную клавишу «Vavg» в левом нижнем углу экрана измерений (рисунок 2).

Когда отобразиться программное окно ENTERMEASUREMENTINFO, выбрать значения:

Source = Channel 1;

Measurement area = Entire Display;

и нажать программную клавишу ОК (рисунок 3).

10.2.8 Нажать клавишу CLEARDISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

10.2.9 Записать полученные значения среднего напряжения, измеренные мультиметром (U_{м+}) и осциллографом (U_{ocu+}) (определяется как «Mean» на экране осциллографа) в таблицу 8.

П р и м е ч а н и е - Если поверх всех значений в нижней части экрана осциллографа отображается знак вопроса, необходимо нажать клавишу CLEARDISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

10.2.10 Установить на источнике питания напряжение минус 15 мВ.

10.2.11 Нажать клавишу CLEARDISPLAY на осциллографе и подождать, пока

значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

10.2.12 Записать полученные значения среднего напряжения, измеренные мультиметром (U_м-) и осциллографом (U_{осц}-) (определяется как «Mean» на экране осциллографа) в таблицу 8.

10.2.13 Провести измерения для значения импеданса осциллографа 1 МОм.

10.2.14 Вычислить относительную погрешность установки коэффициента отклонения δ_{Ko} (в процентах) по формулам (2) и (3):

- для значения импеданса 50 Ом:

$$\delta_{\text{Ko}} = \left[(U_{\text{ocu}+} - U_{\text{ocu}-}) / (U_{\text{M}+} - U_{\text{M}-}) - 1 \right] \cdot 0,375 ; \qquad (2)$$

- для значения импеданса 1 МОм:

$$\delta_{\text{Ko}} = \left[(U_{\text{ocu}^+} - U_{\text{ocu}^-}) / (U_{\text{M}^+} - U_{\text{M}^-}) - 1 \right] \cdot 0,75.$$
(3)

Таблица 8

Значение ко-	Значение	Измере	нные знач	ения напр	яжения	Вычисленное	Пределы до-
эффициента	напряжения	U_{M^+}	Uм-	Uocu-	U _{ocu+}	значение по-	пускаемой по-
отклонения	на выходе					грешности ко-	грешности
осцилло-	источника					эффициента	установки ко-
графа	питания					отклонения	эффициента
						δ _{Ko}	отклонения,%
			Ка	нал1			
5мВ/дел	±15 мВ						
10 мВ/дел	± 30 мВ						
20 мВ/дел	±60 мВ						
50 мВ/дел	±150 мВ						± 2
100 мВ/дел	± 300 мВ						
200 мВ/дел	± 600 мВ						
500 мВ/дел	± 1,5 B						
1 В/дел	± 3 B						
500 мВ/дел	± 1,5 B						
1 В/дел	± 3 B						
Для 1	МОм						
2 В/дел	± 6 B						
5 В/дел	± 15 B						

10.2.15 Повторить измерения для всех значений коэффициента отклонения из таблицы 8. При каждом измерении устанавливать положительное и отрицательное значение напряжения на выходе источника питания из таблицы 8.

10.2.16 Повторить измерения для всех каналов осциллографа.

10.3 Определение относительной погрешности по частоте внутреннего опорного генератора

10.3.1 Собрать измерительную схему в соответствии с рисунком 5. При этом выход опорного сигнала (10 МГц REF) на задней панели осциллографа подключить к входу А часто-томера.

10.3.2 На частотомере установить: режим измерения частоты по входу А; входное сопротивление частотомера 50 Ом, переключатель X1/X10 в положение X1; вход открытый.

10.3.3 На осциллографе нажать клавишу Utility и программируемые клавиши Options, RearPanel, RefsignalOutput, 10MHzoutput.

10.3.4 Измерить частотомером частоту опорного сигнала осциллографа и определить относительную погрешность осциллографа по частоте внутреннего опорного генератора по формуле (4):

$$\delta_{\rm or} = (10^7 - F_{\rm y})/10^7 , \qquad (4)$$

где F₄ – показания частотомера, Гц.

10.4 Определение верхней граничной частоты полосы пропускания

10.4.1 Собрать измерительную схему в соответствии с рисунком 6, подключая делитель мощности 11667С через адаптеры к СИ:

- к входу измерительного преобразователя измерительного U8487A, подключенного к персональному компьютеру;

- к выходу генератора E8257D через адаптер 1,85(P)-1,85(P), высокочастотный кабель 1,85(B)-1,85(B) и адаптер 1,85(P)-1,85(P);

- к входу канала «1» осциллографа через адаптер 1,85(Р)-1,85(Р).

Рисунок 6

10.4.2 Сбросить все настройки осциллографа до начальных нажатием на кнопку «Default Setup».

10.4.3 Открыть окно настроек сбора данных, выбрав пункт меню «Setup»→«Acquisition» главного окна программы Infiniium. Включить усреднение и установить количество усредняемых отсчетов («# of Average») равным 256.

10.4.4 Включить 1-й канал осциллографа (и выключить все остальные), используя кнопки блока выбора и настройки каналов. Включить измерение среднеквадратического значения напряжения в единицах [дБм], выбрав пункт меню «Measure/Mark»→«Add Measurement» для 1-го канала осциллографа (см. рисунок 7).

Add Measurement	Contractor of the local division of the loca	States and states of	-	2 ? X
Measurement —		Descr	iption ———	ок
All	RMS Amplitude Base Top Overshoot	Ě	\frown	Apply Cancel
Setup Source				
Measurement Ar	ea		Units —	
Single Cycle		O AC	🔵 Volt	
🔵 Entire Displa	ý	OC	🔘 dBm	
Thresholds) Limit Test	10, 50, 90% of Top	, Base		

Рисунок 7

10.4.5 Установить коэффициент отклонения 10 мВ/дел.

10.4.6 Установить на генераторе режим воспроизведения синусоидального сигнала с амплитудой 0 дБм и частотой 50 МГц, включить режим генерации. Изменить амплитуду выходного сигнала генератора так, чтобы полный размах отображаемой осциллографом синусоиды занимал 4 деления. Записать измеренное ваттметром значение мощности сигнала Рвт.мин и среднего квадратическое значение напряжения Росциин, измеренное осциллографом. Выключить режим генерации.

10.4.7 Установить частоту сигнала генератора, соответствующую верхней граничной частоте полосы пропускания испытуемого осциллографа (Fв):

- для осциллографов DSOV/ DSAV/MSOV084AFB = 8 ГГц,
- для осциллографов DSOV/ DSAV/MSOV134AFв = 13 ГГц,
- для осциллографов DSOV/ DSAV/MSOV164AFв = 16 ГГц,
- для осциллографов DSOV/ DSAV/MSOV204AFв = 20 ГГц,
- для осциллографов DSOV/ DSAV/MSOV254AFв = 25 ГГц,
- для осциллографов DSOV/ DSAV/MSOV334AFb = 32 ГГц.

Включить режим генерации и изменить амплитуду выходного сигнала генератора так, чтобы полный размах отображаемой осциллографом синусоиды занимал 4 деления. Записать измеренное ваттметром значение мощности сигнала Р_{вт.макс} и среднего квадратическое значение напряжения Р_{осц.макс}, измеренное осциллографом. Выключить режим генерации.

10.4.8 Повторить операции п.п. 10.4.6-10.4.7, устанавливая следующие коэффициенты отклонения: 20 мВ/дел, 50 мВ/дел, 100 мВ/дел, 200 мВ/дел, 500 мВ/дел и 1 В/дел.

10.4.9. Повторить операции п.п. 10.4.1-10.4.8 для каналов 2-4, подключая выход генератора ко входам «2», «3», «4» осциллографа.

10.4.10 Рассчитать ослабление сигнала L на частоте Fв по формуле (5):

$$L = \left(P_{\text{осц.мин}} - P_{\text{осц.макс}}\right) - \left(P_{\text{вт.мин}} - P_{\text{вт.макс}}\right) \tag{5}$$

где L - значение ослабления сигнала на частоте Fв;

Р_{осц.мин} - измеренное осциллографом среднеквадратическое значение мощности синусоидального сигнала частотой 50 МГц;

Р_{осц.макс} - измеренное осциллографом среднеквадратическое значение мощности синусоидального сигнала частотой Fв;

Р_{вт.мин} - измеренное ваттметром значение мощности синусоидального сигнала частотой 50 МГц;

Р_{вт.макс} - измеренное ваттметром значение мощности синусоидального сигнала частотой Fв.

11 ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ СРЕДСТВА ИЗМЕРЕНИЙ МЕТРОЛОГИЧЕСКИМ ТРЕБОВАНИЯМ

11.1 Определение абсолютной погрешности установки напряжения смещения

Результаты поверки считать положительными, если значения Δ_{6a3} не превышают указанных в таблицах 6 и 7. В противном случае осциллограф бракуется и направляется в ремонт.

11.2 Определение абсолютной погрешности установки коэффициента отклонения

Результаты поверки считать положительными, если значения погрешности установки коэффициентов отклонения находятся в пределах ±2 %. В противном случае осциллограф бракуется и направляется в ремонт

11.3 Определение относительной погрешности по частоте внутреннего опорного генератора

Результаты поверки считать положительными, если значение относительной погрешности осциллографа по частоте внутреннего опорного генератора находится в пределах $\pm (0,1\cdot10^{-6}\cdot + 0,1\cdot10^{-6}\cdot T_3)$, где T_3 – количество лет эксплуатации осциллографа). В противном случае осциллограф бракуется и направляется в ремонт.

11.4 Определение верхней граничной частоты полосы пропускания

Результаты испытаний считать положительными, если рассчитанные значения ослабления синусоидального сигнала на верхней граничной частоте полосы пропускания испытуемого осциллографа (Fв) находятся в пределах ±3 дБ.

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

12.1 Результаты поверки осциллографов подтверждаются сведениями о результатах поверки средств измерений включенными в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца осциллографов, и (или) лица, представившего его на поверку, выдается свидетельство о поверке средств измерений, и (или) в паспорт осциллографов вносится запись о проведенной поверке, заверяемая подписью поверителя и знаком поверки, с указанием даты поверки, или выдается извещение о непригодности к применению средств измерений.

12.2 Результаты поверки оформить по установленной форме.

Начальник отделения ФГУП «ВНИИФТРИ»

О.В.Каминский